
VeriCombTest: Automated Test Case Generation Technique Using a
Combination of Verification and Combinatorial Testing

Sangharatna Godboley a

Department of Computer Science and Engineering,
National Institute of Technology Warangal, Telangana, India

Keywords: Verification, Combinatorial Testing, Test Cases, Mutation Analysis.

Abstract: We propose VeriCombTest which is the combination of Verification and Combinatorial Testing. We experi-
mented with 38 C-Programs from The RERS challenge repository. Verification (CBMC) produced 940 test
cases and Combinatorial Testing (PICT) populated a total of 42053 test cases. The good point is that for 40
programs, PICT consumed only 2.6 Minutes to populate the test inputs, however, CBMC which is a Static
Symbolic Executor consumed 546.99 Minutes to generate the test inputs. We performed mutation analysis for
this work. VeriCombTest has 355 extra killed mutants as compared to the baseline. VeriCombTest is a fully
automated tool.

1 INTRODUCTION

Software verification and testing are two impor-
tant techniques in Software Development Life Cycle
(SDLC) (Mall, 2018; Mathur and Wong, 1993). Both
have their individual advantages and disadvantages.
For example, verifiers are usually faster as compared
to testers. The automated test case generation process
is now becoming an essential approach in the software
testing phase.

Automated test case generation is still a challeng-
ing task. There are several test case generation tech-
niques proposed in past including Fuzzing, Bounded
Model Checking, Dynamic Symbolic Execution, and
Combinatorial Testing, etc. These techniques have
shown good performances in efficient ways to date.
But, each individual technique has some issues as-
sociated and none of them claims to be 100% accu-
rate. Hence, there is always a scope for improvement.
For verification, we have considered the state-of-art
tool CBMC (Bounded Model Checker for C) and for
the Combinatorial Testing, we considered PICT (Pair-
wise Independent Combinatorial Testing). The idea
is straightforward, we generate test inputs for a C-
Program using CBMC and supply them into PICT to
populate new test inputs. PICT is lightweight because
it doesn’t execute the program but rather applies pair-
wise or n-way techniques on given test inputs to gen-
erate new useful test inputs.

a https://orcid.org/0000-0002-6169-6334

In Bounded Model Checking (BMC)(Clarke et al.,
2003; Armando et al., 2006), a Boolean formula is
checked for satisfiability using SAT solver. If the
Boolean formula is satisfiable, a counterexample is
extracted from the output of the SAT. On the other
hand, if the formula is not satisfiable, the program can
be unwound more to determine if a longer counterex-
ample exists.

Combinatorial Testing (CT) (Nie and Leung,
2011) can identify crashes or failures by interactions
of various parameters in the program with a covering
set of test cases generated by existing techniques. It
has been an active domain of research and practice in
the last 2 to 3 decades.

Motivation of this work is to make stronger test
cases so that the quality of the application can be as-
sured. This is one of the principles of Software Qual-
ity Assurance. As literature shows that no single tech-
nique or tool is sufficient to cover all the corner cases
while testing. Every tool comes with pros and cons.
So, there is a need of combining the tools and test
the application. Such combinations are most of the
time beneficial. There are works such as Veritesting
(Avgerinos et al., 2014), VeriAbs (Afzal et al., 2019),
and VeriFuzz (Basak Chowdhury et al., 2019) which
are based on the combinations of techniques. As we
know the Bounded Model Checking (BMC) concept
is a static symbolic execution. So dynamic behaviour
in BMC is not covered. But, BMC-based tools are
very lightweight and most of the time assure qual-

306
Godboley, S.
VeriCombTest: Automated Test Case Generation Technique Using a Combination of Verification and Combinatorial Testing.
DOI: 10.5220/0011758700003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 306-313
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

ity results. But, due to the static behaviour, there
is always a scope for exploring the uncovered code
or bugs. On the other hand, combinatorial testing
proved to be the most powerful testing technique. But,
it cannot be even started without a set of initial test
cases. Since combinatorial testing is a black-box test-
ing technique there is no need of providing the source
code of the application. So just test cases are there
to make the pairing and produce new test cases. This
is the main objective of combinatorial testing. Now,
to solve the disadvantages of both techniques, com-
bining them would be a good solution. We consider
coverage and mutation analysis to show the benefits.

In this work, we are taking advantage of both ver-
ification and testing methods. From the domain of
verification, we found that BMC is a prominent ap-
proach and CBMC is a state-of-the-art tool to use. On
the other hand, combinatorial testing is becoming a
reasonable and economical technique to be used to
populate new test cases. PICT is a popular tool in
combinatorial testing domain. Since, the hybridiza-
tion of the techniques and tools becoming one of the
practices, hence, we consider both CBMC and PICT
tools to combine in our work. Our main objective and
contribution to this work are to improve the test suite
so that we get benefits in terms of both coverage and
errors (mutants). Hence, VeriCombTest technique is
proposed and implemented. In our work, we have
chosen two modes and defined them below:

Definition 1.1 (Mode1). This Mode1 deals with the
process of computing coverage and mutation results
in wrt. test cases generated from CBMC. In this pa-
per, any metrics suffixed with “1” is associated with
Mode1.

Definition 1.2 (Mode2). This Mode2 deals with the
process of computing coverage and mutation results
in wrt. test cases generated from CBMC and PICT. In
this paper, any metrics suffixed with “2” is associated
with Mode2.

The rest of the paper is organised as below: The
proposed approach is explained in Section 2. An ex-
ample is explained in Section 3. Section 4 shows the
detailed experimental study of the work. Finally, we
conclude the paper with future work in Section 5.

2 PROPOSED APPROACH:
VeriCombTest

In this section we discuss our proposed approach in
detail. We will discuss the framework of our ap-
proach.

Figure 1: Framework for VeriCombTest.

Basically, VeriCombTest tool is the integration of
seven components as shown in Fig. 1 and it is au-
tomatic. These seven components are a) CBMC, b)
PICT, c) TSCombiner, d) GCOV, e) Mutants Genera-
tor, f) Dead Mutants Eliminator, and g) Mutants Val-
idator. The main purpose of this tool is to escalate the
test suite by quantity as well as quality. The quan-
tity can be measured directly by counting test cases.
However, to measure quality, coverage and mutation
analysis are required to be performed. There is a rea-
son to go for mutation analysis which is beyond cov-
erage analysis. This we will explain in more detail
in Section 4. For now, consider the coverage analy-
sis and mutation analysis are the outputs of the auto-
mated VeriCombTest tool.

The flow in the framework starts by supplying a
C-Program into CBMC as an input. The CBMC has
two options to analyse a program. The first option is a
bug finding and the second option is the coverage. We
have used coverage option for our work. CBMC pro-
duces a detailed report from which we have extracted
the test suite. In Fig. 1, it can be observed that CBMC
produced TS1.

This TS1 is supplied into PICT. The PICT tool
has options for n-way testing. The basic one is 2-
way or pairwise testing. We have used this basic and
default option in our work. We leave work on the
higher order n-way testing for future analysis. The
PICT tool produces combinatorial test cases. In Fig.
1, it can be observed that PICT produced TS1’.

Now, the TSCombiner component takes both TS1
and TS1’ and produces TS2. Please note that TS1’ is
generated from PICT tool, which is only mutating test
values and doesn’t bother with logic in the program,
consider it as a black-box tool. So, it is quite possi-
ble that TS1’ alone could lead to low coverage. Also,
as stated earlier CBMC is a verifier though it gener-
ates quality test cases, due to complex predicates and
loop structures, there is a scope for improvement in
the quality of test cases. Now, to utilise the advan-
tages of CBMC and PICT mechanisms we combine
both the test suites TS1 and TS1’, so that at least we
will achieve equal or more coverage. In Fig. 1, it can

VeriCombTest: Automated Test Case Generation Technique Using a Combination of Verification and Combinatorial Testing

307

be observed that TSCombiner produced TS2.
Next, C-Program, TS1 and TS2 supplied into

GCOV component. GCOV is a well-known test case
validator that comes with GCC compiler. We re-
played TS1 and TS2 with C-Program and produced
Line Coverage for Mode 1 (LC1), Line Coverage for
Mode 2 (LC2), Branch Coverage for Mode 1 (BC1),
and Branch Coverage for Mode 2 BC2 as shown in
Fig. 1.

Briefly speaking, Line Coverage and Branch Cov-
erage information was not enough to show the quality
of test cases generated by VeriCombTest tool (as men-
tioned earlier too the detailed reason will be explained
in the experimental section). Hence, Mutation Anal-
yser which is developed by us has been used. Muta-
tion Analyser component comprises of three compo-
nents, Mutants Generator, Dead Mutants Eliminator,
and Mutants Validator. From Fig. 1, it can be ob-
served that C-Program is supplied into Mutants gen-
erator to produce Mutants as output. Please note that
we have taken five types of Mutants (M) in our work.
These are 1. LOF (Logical Operator Faults), 2. AOF
(Arithmetic Operator Faults), 3. ROF (Relational Op-
erator Faults), 4. LNF (Literal Negation Faults) and
5. PNF (Predicate Negation Faults).

Now, after generating all mutants from the C-
Program, it is quite possible that most of them might
be unreachable. The reason is the static mechanism
of mutant generation. We have implemented Dead
Mutants Eliminator which takes all mutants and Line
Coverage information (LC1 and LC2) as inputs and
removes the Dead Mutants (in other words unreach-
able mutants based on line coverage). So, the remain-
ing mutants are called Reachable Mutants which are
the outputs of Dead Mutants Eliminator component.

Finally, the last component i.e. Mutants Valida-
tor accepts C-Program, TS1, TS2, and Reachable Mu-
tants as inputs. This validator replays test cases with
C-Program and all mutants and checks their outputs.
If the outputs of a C-Program and a mutant are not
the same then the mutant is called as Killed Mutant
(KM), otherwise Alive Mutants. This component pro-
duces Killed Mutant for Mode 1 (KM1) and Killed
Mutant for Mode 2 (KM2) as outputs as shown in
Fig.1.

3 WORKING EXAMPLE

In this section, we explain the flow with an example
that we experimented.

We have selected test27-B2.c program from our
experimented benchmark set. This program is of 2934
LOCs, 160 functions, 232 total predicates, and 1293

atomic conditions. It has a for loop with two itera-
tions. Since the program is too big therefore main()
has been shown in Listing 1. This program has a vari-
able “symb” that is not concrete variable rather re-
quired test input value(s) to achieve code coverage.
Also, it is to be noted that the “symb” variable is in-
side “for” loop, it means for each iteration the variable
gets reset and takes new value. It considered as two
different variables for second iteration.

The test27-B2.c1 program analysed using CBMC
with coverage mode and test suite have been gener-
ated as shown in Listing 2. Each line in Listing 2 is
a test case. So, there is a total 5 test cases in TS1.
Now, TS1 required some formatting as per the re-
quirement of PICT tool. The format PICT accepts the
test cases is mentioned in Listing 3. It is to be noted
that CBMC’s report considered “symb” variable two
different times but the variable names mentioned was
“symb” only. But, PICT required distinct variables in
the test suite which need to be supplied. Hence, we
renamed the variables for the purpose to utilise PICT.
The renamed variable are “ 1symb” and “ 2symb” as
shown in Listing 3.

Listing 1: main() of C-Program test27-B2.c.
int BOUND = 2;
.....................
calculate_output(int input) {
THE PROGRAM IS TOO BIG
}
.....................
int main() {
int symb;
printf("POINT: 467\n");
for (int FLAG=0;FLAG<BOUND;FLAG++){
printf("POINT: 468\n");
symb = nondet_int();
__CPROVER_input("symb",symb);
printf("POINT: 469\n");
if((symb != 8) && (symb != 9) && (symb != 7) &&

(symb != 5) && (symb != 2) && (symb != 4) &&
(symb != 10) && (symb != 6) && (symb != 3) &&
(symb != 1)){

printf("POINT: 470\n");
return -2;}
calculate_output(symb);//Too Big function
}}

Listing 2: Test Suite (TS1) generated from CBMC.
TC1: symb=8, symb=8
TC2: symb=4, symb=4
TC3: symb=134217732
TC4: symb=8, symb=6
TC5: symb=8, symb=2

Listing 3: Test Suite (TSPICT) generated from CBMC and
formatted as per PICT requirements.
_1symb:8, 4, 134217732, 8, 8
_2symb:8, 4, 6, 2

1Full Program is provided with Supplementary material

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

308

Table 1: Test Suite (TS1’) generated from PICT.
TC 1symb 2symb TC 1symb 2symb TC 1symb 2symb
1 8 8 8 8 2 15 8 4
2 4 2 9 4 4 16 8 6
3 134217732 2 10 8 6 17 8 2
4 134217732 4 11 8 8 18 8 8
5 134217732 8 12 8 4 19 4 8
6 8 6 13 4 6 20 8 4
7 134217732 6 14 8 2 - - -

Next, TSPICT is supplied into PICT and generate
TS1’ as shown in Tabe 1. This test suite has 20 test
cases generated from the combinatorial testing tech-
nique. Factually, PICT generates non-redundant test
cases. But, as we can observe from Table 1 we do get
some duplicate test cases. This is against the princi-
ples of PICT tool. We have identified the problems
and we explain that the test values of “ 1symb” vari-
able in TSPICT has “8” which is repeated 3 times.
But, if we see the context of these repetitions then
we will observe that the combinations of both vari-
ables “ 1symb” and “ 2symb” achieve higher cover-
age which is reasonable, and they are absolutely not
redundant for CBMC. But, this is also true that PICT
is a black-box tool which doesn’t bother for the logic
of the program here. Hence, it is leading to duplica-
tion of test input values in test suite. In this paper, we
haven’t removed such test cases upfront by consid-
ering that PICT is super fast and duplication may not
effect the execution time much. But, yes we are pretty
aware that mutation time might be definitely affected
by this issue. We leave the study of Optimization of
test cases for the future work. Finally, we merge two
test suites TS1 and TS1’ and form a new test suite TS2.
For the test27-B2.c program TS2 has a total of 25 test
cases (to save space we have not shown a separate
Listing for TS2).

To know whether the combination of test cases
is actually useful or not, we used GCOV to get the
coverage results. GCOV results Line coverage and
Branch Coverage reports. The coverage reports by
GCOV on TS1 and TS2 are shown in Listings 4 and
5. We expect that the coverage should be enhanced
since the test cases have been increased. But, unfor-
tunately, both the modes have the same Line cover-
age for the program test27-B2.c i.e. 18.74%. This
is reasonable because the CBMC is a well-established
verifier which is popularly known for covering lines
(good reachability in terms of bugs). This is not sur-
prising that both modes are having same Line cover-
age. Secondly, we expect that the Branch Coverage
will be enhanced. From Listings 4 and 5, it can be
observed that Mode1 has 23.40% Branch Coverage,
however Mode2 has 23.90%. So, there is little im-
provement of 0.50%. This result shows that CBMC
has not 100% optimal Branch Coverage. Hence, there
is a scope for some improvements in the results.

Listing 4: GCOV report using Test Suite for Mode 1 (TS1).

Lines executed:18.74% of 2102
Branches executed:23.40% of 2389
Taken at least once:13.94% of 2389
Calls executed:31.76% of 636

Listing 5: GCOV report using Test Suite for Mode 2 TS2.

Lines executed:18.74% of 2102
Branches executed:23.90% of 2389
Taken at least once:14.23% of 2389
Calls executed:31.76% of 636

Listing 6: Mutants Generated.

Logical Operator Faults: 1175
Arithmetic Operator Faults: 7312
Relational Operator Faults: 6465
Literal Negation Faults: 1391
Predicate Negation Faults: 235

Listing 7: Mutants Statistics for Mode1.

============Mutation Score Report============
Total number of Alive Mutants =: 2934
Total number of Killed Mutants =: 1171
Total number of Reached Mutants =: 4105
Total number of Dead Mutants =: 12473
Total number of Total Mutants =: 16578
Mutation Score (Killed/Reached) =: 28.53%
============Report-Finish====================

Listing 8: Mutants Statistics for Mode2.

============Mutation Score Report============
Total number of Alive Mutants =: 2928
Total number of Killed Mutants =: 1177
Total number of Reached Mutants =: 4105
Total number of Dead Mutants =: 12473
Total number of Total Mutants =: 16578
Mutation Score (Killed/Reached) =: 28.67%
============Report-Finish====================

Listing 9: Time Statistics.

Time Analysis CBMC Report: 116.10 seconds
Time Analysis PICT Report: 0.002 seconds
Time Analysis GCOV Report: 0.676 seconds
Time Analysis MA Mode1 Report: 1060.71 seconds
Time Analysis MA Mode2 Report: 1295.83 seconds

Now, Listings 7 and 8 show the mutants statistics
for Mode1 and Mode2 respectively. From both re-
ports, we can observe that the total of mutants created
was 16578. Since we know these mutants are stati-
cally generated. So, we use line coverage information
from GCOV to detect the dead mutants and eliminate
them. We have observed that 12473 mutants were
dead (unreachable), which means 4105 mutants were
only reachable and useful to run. In Mode1, a total
number of 1171 mutants got killed and 2934 mutants
were alive as shown in Listing 7. However, in Mode2,
a total number of 1177 mutants got killed and 2928
mutants were alive. So, a total of 6 extra mutants got
killed in Mode2 in contrast to Mode1. The Reach-

VeriCombTest: Automated Test Case Generation Technique Using a Combination of Verification and Combinatorial Testing

309

able Mutation scores can be observed for Mode1 and
Mode2 as 28.53% and 28.67% respectively. This
is the strength of our proposed work. There is an
improvement of 0.14% for Mode2 as compared to
Mode1.

Next, we also explain the mutation analysis for
test27-B2.c program. First, we statically generate all
possible mutants for test27-B2.c program. We have
considered 5 types of faults. The created mutants with
each category are mentioned in Listing 6.

Lastly, we report the time analysis for test27-B2.c
program. At each main step, we compute execution
times. We consider CBMC, PICT, GCOV, MA Mode1
and MA Mode2 steps as important to capture execu-
tion times. For this program, CBMC consumed 116
sec, PICT consumed 0.002 sec, and GCOV consumed
0.67 sec (it covers both modes). Mutation Analy-
sis time for Mode1 has 1060 sec and for Mode2 it
is 1295 sec. We can observe that PICT’s execution
time is very less, almost negligible. But, the muta-
tion analysis time for Mode2 which is actually having
test cases generated from both CBMC and PICT tools.
The extra mutation analysis time Mode2 required was
235.12 sec as compared to Mode1. This is the weak-
ness of our work.

4 EXPERIMENTAL STUDY

In this section, we discuss the setup and benchmarks
tested, and discuss on results.

4.1 The Set Up

We used an Intel Core i7-9700 CPU @ 3.00GHz × 8
Linux box (64-bit Ubuntu 16.04) with 64 GB RAM.
All the input programs considered for our study are
written in ANSI-C format. For result comparison, we
consider CBMC as our baseline because it is a state-
of-the-art tool. The programs and all the raw experi-
mental details are provided in the supplementary arte-
facts (VeriCombTest-Artifacts, 2021).

4.2 Benchmarks Tested

Here, we describe the programs experimented with.
In total, we have tested 382 programs taken from
various open source repositories. In our study, we
have considered programs from RERS(RERS, 2018).
These programs are from the small and moderate size

2Actually we targeted to run 40 programs, but CBMC
runs for test23-B4 and test23-B5 were consuming almost
30+ hrs so we discontinued testing them.

Table 2: Test Cases and Coverage Results.
Sl Program TC1 TC1’ TC2 LC BC1 BC2 BI
1 test21-B2 13 156 169 26.95 28.43 28.43 0.00
2 test21-B3 24 619 643 53.67 56.35 56.35 0.00
3 test21-B4 64 4324 4388 100.00 100.00 100.00 0.00
4 test21-B5 49 2716 2765 100.00 100.00 100.00 0.00
5 test22-B2 6 30 36 9.78 12.83 12.83 0.00
6 test22-B3 13 159 172 15.05 22.03 22.03 0.00
7 test22-B4 24 596 620 23.58 31.32 31.40 0.08
8 test22-B5 44 2195 2239 40.03 51.57 51.57 0.00
9 test23-B2 8 56 64 6.46 7.89 7.89 0.00

10 test23-B3 19 365 384 11.99 15.10 15.10 0.00
11 test29-B2 10 100 110 28.54 32.80 32.80 0.00
12 test29-B3 23 556 579 47.57 55.03 55.03 0.00
13 test29-B4 38 1508 1546 62.96 68.25 68.25 0.00
14 test29-B5 40 1773 1813 73.08 76.19 76.19 0.00
15 test26-B2 9 81 90 26.23 33.44 33.44 0.00
16 test26-B3 17 314 331 38.17 49.27 49.27 0.00
17 test26-B4 28 883 911 58.52 69.68 69.68 0.00
18 test26-B5 32 1209 1241 73.00 84.33 84.33 0.00
19 test31-B2 4 12 16 7.00 8.53 8.53 0.00
20 test31-B3 6 30 36 9.45 11.25 11.25 0.00
21 test31-B4 7 49 56 12.77 15.18 15.18 0.00
22 test31-B5 10 110 120 16.71 19.44 19.44 0.00
23 test32-B2 17 272 289 27.41 27.32 27.43 0.11
24 test32-B3 47 2265 2312 46.66 46.54 46.54 0.00
25 test32-B4 72 5471 5543 60.82 59.79 59.79 0.00
26 test32-B5 87 8282 8369 66.76 65.30 65.30 0.00
27 test24-B2 5 25 30 14.34 16.02 16.02 0.00
28 test24-B3 9 74 83 15.34 16.80 16.80 0.00
29 test24-B4 11 143 154 18.03 19.74 19.74 0.00
30 test24-B5 22 556 578 22.97 24.70 24.75 0.05
31 test28-B2 7 49 56 15.19 17.54 17.54 0.00
32 test28-B3 13 164 177 18.35 20.31 20.31 0.00
33 test28-B4 28 854 882 23.27 24.55 24.55 0.00
34 test28-B5 40 1829 1869 31.25 31.61 31.69 0.08
35 test27-B2 5 20 25 18.74 23.40 23.90 0.50
36 test27-B3 10 95 105 24.83 32.31 33.24 0.93
37 test27-B4 23 563 586 36.63 46.30 47.47 1.17
38 test27-B5 56 3550 3606 63.84 69.28 71.20 1.92

group and easy to hard categories. Note that due to the
complex loop patterns, the number of Killed mutants
can change at different bounds. Programs are origi-
nally unbounded. We instead set reasonable bounds
as 2, 3, 4, and 5. Also in the programs identified by a
suffix with “-B*”, “*” indicates the bound used in the
programs. The unbounded programs mean the pro-
grams have infinite loop bound without any exit cri-
terion. Further, it is to be noted that, the size of cov-
erable parts in the program will vary from one loop
bound to another loop bound. Because for a higher
loop bound more parts of the program will be cov-
erable. Since the reachable and killable mutants are
getting increased hence the mutation score will be
higher. It is to be noted that the total number of mu-
tants for lower or higher loop bounds is equal because
it is computed statically.

4.3 Coverage Analysis

In this section, we discuss on the coverage results gen-
erated for test cases.

Table 2 shows test cases and coverage results.
Columns 1 and 2 of Table 2 show the number and
names of programs. Columns 3 to 5 show the test
cases. Column 3 (TC1) is the test cases generated

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

310

from CBMC and Column 4 (TC1’) is the test cases
generated from PICT. For 38 programs, the aggregate
of the test cases for CBMC and PICT are 940 and
42053 respectively. We can observe that test cases
generated by PICT (TC1’) have extra test cases al-
most 44× as compared to CBMC. Now, Column 5
(TC2) can be generated by using the equation “TC2=
TC1 + TC1′”. It is to be noted that TC1 and TC2
show the test cases for Modes 1 and 2 respectively.

Next, TC1 replayed with C-Program to generate
Line and Branch Coverage. Column 6 of Table 2
shows the LC (Line Coverage). It is to be noted that
LC = LC1 = LC2, which means the Line coverage for
both modes 1 and 2 are equal hence, we reported in
a single column only. The reason is that the CBMC
has a good statement reachability feature. Columns 7
and 8 show the Branch Coverage information. Col-
umn 7 (BC1) shows the Branch Coverage for Mode 1
and Column 8 (BC2) shows the Branch Coverage for
Mode 2. Lastly, Column 9 shows the Branch Cover-
age Improvement (BI) which can be computed using
the equation “BI = BC2−BC1”. From Table 2, it can
be observed that for 8 (21.05% out of 38) programs
(highlighted with green colours in Table 2), Mode
2 i.e. VeriCombTest has higher Branch Coverage as
compared to CBMC i.e. Mode 1. Though the im-
provements in Branch Coverage for the programs are
not much, the achieved results are sufficient to prove
that the baseline CBMC alone has the scope of im-
provement by introducing the extra test cases.

Giving a remark, in this section before the ex-
perimentation our main expectation was to observe
improvement in Line Coverage. But, after the ob-
servation, we got to know that Line Coverages for
both modes are equal. Hence, we decided to com-
pute Branch Coverage in a hope that we might get
an improvement. After the experimentation, we have
observed that we have some improvements which ig-
nite our further analysis i.e. Mutation analysis. As we
know that Branch Coverage report will just focus on
the true and false branches of conditional statements
such as “if-statement” which might not be enough
to observe the actual benefits of VeriCombTest tech-
nique. Therefore next we explain mutation analysis
for the programs.

4.4 Mutation Analysis

In this section we discuss Mutation Analysis in de-
tail. Table 3 shows the results of Mutation Analy-
sis for the considered benchmark programs. Column
1 of Table 3 shows the programs. Columns 2, 3,
and 4 show the total number of Mutants (TM), to-
tal number of Dead Mutants (DM), and total num-

Table 3: Mutation Analysis.
Sl TM DM RM KM1 KM2 T1% T2% R1% R2% TI RI D1 D2
1 1302 950 352 287 288 22.04 22.12 81.53 81.82 0.08 0.28 59.49 59.70
2 1302 598 704 550 558 42.24 42.86 78.13 79.26 0.61 1.14 35.88 36.40
3 1302 0 1302 1033 1046 79.34 80.34 79.34 80.34 1.00 1.00 0.00 0.00
4 1302 0 1302 1025 1051 78.73 80.72 78.73 80.72 2.00 2.00 0.00 0.00
5 12858 11302 1556 676 677 5.26 5.27 43.44 43.51 0.01 0.06 38.19 38.24
6 12858 10225 2633 1205 1207 9.37 9.39 45.77 45.84 0.02 0.08 36.39 36.45
7 12858 9014 3844 2104 2114 16.36 16.44 54.73 54.99 0.08 0.26 38.37 38.55
8 12858 6494 6364 3904 3918 30.36 30.47 61.35 61.57 0.11 0.22 30.98 31.09
9 31455 28947 2508 1280 1280 4.07 4.07 51.04 51.04 0.00 0.00 46.97 46.97
10 31455 26641 4814 2842 2845 9.04 9.04 59.04 59.10 0.01 0.06 50.00 50.05
11 1314 904 410 294 296 22.37 22.53 71.71 72.20 0.15 0.49 49.33 49.67
12 1314 621 693 535 547 40.72 41.63 77.20 78.93 0.91 1.73 36.49 37.30
13 1314 437 877 703 710 53.50 54.03 80.16 80.96 0.53 0.80 26.66 26.92
14 1314 322 992 799 814 60.81 61.95 80.54 82.06 1.14 1.51 19.74 20.11
15 3219 2129 1090 544 546 16.90 16.96 49.91 50.09 0.06 0.18 33.01 33.13
16 3219 1739 1480 884 889 27.46 27.62 59.73 60.07 0.16 0.34 32.27 32.45
17 3219 1078 2141 1405 1418 43.65 44.05 65.62 66.23 0.40 0.61 21.98 22.18
18 3219 646 2573 1797 1816 55.82 56.42 69.84 70.58 0.59 0.74 14.02 14.16
19 3182 2922 260 181 181 5.69 5.69 69.62 69.62 0.00 0.00 63.93 63.93
20 3182 2845 337 242 242 7.61 7.61 71.81 71.81 0.00 0.00 64.20 64.20
21 3182 2713 469 274 275 8.61 8.64 58.42 58.64 0.03 0.21 49.81 49.99
22 3182 2582 600 384 385 12.07 12.10 64.00 64.17 0.03 0.17 51.93 52.07
23 5883 3087 2796 948 956 16.11 16.25 33.91 34.19 0.14 0.29 17.79 17.94
24 5883 2085 3798 1840 1850 31.28 31.45 48.45 48.71 0.17 0.26 17.17 17.26
25 5883 1362 4521 2500 2514 42.50 42.73 55.30 55.61 0.24 0.31 12.80 12.87
26 5883 1074 4809 2785 2801 47.34 47.61 57.91 58.24 0.27 0.33 10.57 10.63
27 7827 5391 2436 407 408 5.20 5.21 16.71 16.75 0.01 0.04 11.51 11.54
28 7827 5322 2505 533 534 6.81 6.82 21.28 21.32 0.01 0.04 14.47 14.49
29 7827 5121 2706 767 770 9.80 9.84 28.34 28.46 0.04 0.11 18.55 18.62
30 7827 4752 3075 1125 1140 14.37 14.56 36.59 37.07 0.19 0.49 22.21 22.51
31 8478 5835 2643 717 717 8.46 8.46 27.13 27.13 0.00 0.00 18.67 18.67
32 8478 5595 2883 1008 1014 11.89 11.96 34.96 35.17 0.07 0.21 23.07 23.21
33 8478 5229 3249 1379 1388 16.27 16.37 42.44 42.72 0.11 0.28 26.18 26.35
34 8478 4611 3867 1909 1948 22.52 22.98 49.37 50.37 0.46 1.01 26.85 27.40
35 16578 12473 4105 1171 1177 7.06 7.10 28.53 28.67 0.04 0.15 21.46 21.57
36 16578 11155 5423 2149 2169 12.96 13.08 39.63 40.00 0.12 0.37 26.66 26.91
37 16578 8650 7928 4187 4203 25.26 25.35 52.81 53.01 0.10 0.20 27.56 27.66
38 16578 3742 12836 8803 8839 53.10 53.32 68.58 68.86 0.22 0.28 15.48 15.54

Figure 2: Improvement Analysis.

ber of Reachable Mutants (RM) respectively. RM can
be computed using the equation “RM = T M −DM”.
Columns 5 and 6 show the total number of killed
mutants (KM1 for Mode1 and KM2 for Mode2) af-
ter processing reachable mutants. For 38 programs
there are a total 305474 mutants (TM). Out of which
198593 mutants are Dead Mutants (DM) and 106881
are Reachable Mutants (RM). It means 65% of total
mutants are dead (or unreachable) and it does not re-
quire running them using the test cases for both modes
because they will be reported as Alive Mutants which
means no test case can detect that mutant. But, tra-
ditionally the mutation scores were able to compute
without the information of dead mutants3. The total

3To avoid the confusion, it is to be noted that “Dead
Mutants” and “Killed Mutants” are two different elements.
The “Dead Mutants” is nothing but the mutation or change
made in the code which is actually dead or unreachable.
However, “Killed Mutants” shows the detection of the mu-
tants or change in the reachable code using test cases.

VeriCombTest: Automated Test Case Generation Technique Using a Combination of Verification and Combinatorial Testing

311

Figure 3: Time consumption by CBMC and PICT.

Figure 4: Time consumption in mutation analysis by Mode
1 and Mode 2.

killed mutants for Mode 1 is 55176 and for Mode 2
is 55531. It can be observed that Mode 2 has killed
355 extra mutants as compared to Mode 1, this is the
key result and strength that we were expecting from
VeriCombTest approach.

Next, Columns 7 to 10 show the mutation scores.
Column 7 shows the Traditional Mutation Score for
Mode 1 (T1%) and can be computed using equation
“T 1% = KM1

T M X100”. Same way, Column 8 shows
the Traditional Mutation Score for Mode 2 (T2%) and
can be computed using equation “T 2% = KM2

T M X100”.
Column 9 shows the Reachable Mutation Score for
Mode 1(R1%) and can be computed using equation
“R1% = KM1

RM X100”. Same way, Column 10 shows
the Reachable Mutation Score for Mode 2 (R2%) and
can be computed using equation “R2% = KM2

RM X100”.
Columns 11 and 12 show the Traditional Muta-

tion Improved (TI) and Reachable Mutation Improved
(RI) results respectively. TI can be computed using
equation “T I = T 2% − T 1%” and RI can be com-
puted using equation “RI = R2% − R1%”. From
Columns 11 and 12 of Table 3, we can observe that
in total 34 (89.47% of 38) programs have improve-
ments (highlighted with green colours). The four pro-
grams test23-B2, test31-B2, test31-B3, and test28-B2
have no improvements in both TI and RI. We can ob-
serve the programs, the loop bound inside the pro-

grams is 2 or 3. It means the structure of the pro-
gram is less and a huge part is uncovered. As soon
as the loop iterations get increased so the uncovered
parts become coverable. On an average of 38 pro-
grams, the value for TI is 0.26% and RI is 0.42%.
Fig. 2 shows the Improvement Analysis. The x-
axis shows the programs whereas the y-axis shows
the mutation score. We can observe that blue cir-
cles (T1%) and red crosses (T2%) are mostly below
as compared to yellow squares (R1%) and green tri-
angles (R2%). The error differences between blue
circles (T1%) and red crosses (T2%) can be observed
for 34 programs. Same way, it can be observed for
yellow squares (R1%) and green triangles (R2%) for
34 programs.

A side work is done on mutation analysis to check
that how much improvement has been achieved from
the traditional to the proposed technique. Columns
13 and 14 of Table 3 show the Reachable Traditional
Difference (D1 i.e. “D1 = R1%−T 1%” for Mode1
and RTD2 i.e. “D2 = R2%−T 2%” for Mode2).

For 36 (94.73% of 38) programs the improvement
can be observed in D1 and D2. For two programs
test21-B4, and test21-B5 have no improvements in D1
and D2 (highlighted with orange colour). This is be-
cause, for these two programs, the total number of
dead mutants is 0. On an average of 38 programs, the
value of D1 is 29.22% and D2 is 29.38%. It shows
that even though it is a traditional or newly proposed
technique the elimination of Dead Mutants is impor-
tant which can save a huge time of in mutation anal-
ysis. Finally, in this mutation analysis, we have ob-
served that the VeriCombTest technique is beneficial,
and we have provided the evidence with all the results.

4.5 Time Analysis

In this section, we discuss the time analysis. Except
for a few programs mostly CBMC takes less execu-
tion time to analyse the programs. This is due to the
abstract interpretation in CBMC. Also, the program
structure is easy to verify by CBMC. Next, PTime
is computed independently of the program. PICT
requires a set of test cases and it produces another
set of test cases after using a combinatorial testing
approach. Therefore the execution time by PICT is
less. In a comparison of Time for PICT (PTime)
with Time for CBMC (CTime), it has been observed
that 31 (81.57% out of 38) programs have less time-
consuming as compared to CTime. For the rest 7 pro-
grams, it has been observed that the CBMC generated
more test cases in less time and since the total num-
ber of test cases is more PICT consumed more time.
The time comparison graph is shown in Fig. 3. The

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

312

x-axis shows the programs and the y-axis shows the
time in seconds (logarithmic format). We can observe
the red line (PTime) is most of the time below the
blue line (CTime). This shows that PTime is very less
and hence PICT is beneficial to use in VeriCombTest
framework. Time for GCoV (GTime) is the time con-
sumed by the GCOV tool for both modes. The Ag-
gregate of 38 programs, CTime, PTime, and GTime
are 546.99 min, 2.67 min, 5.69 min respectively. Fig.
4 shows the graph for time consumption in mutation
analysis by Mode1 and Mode2. The x-axis shows the
programs and the y-axis shows the time in seconds
(logarithmic format).

From the graph, it is very clear that the blue line
is mostly below the red line. For very few programs
the time difference is closer. In the Aggregate of 38
programs, the value of Mutation Analysis Time for
Mode 1 (MTime1) is 496.07 min and Mutation Anal-
ysis Time for Mode 2 (MTime2) is 3960.17 min. The
VeriCombtest i.e. Mode2 is clearly worse in muta-
tion analysis time by 7.98× as compared to baseline
CBMC i.e. Mode1. Since the PICT produced more
number of test cases that makes mutation time anal-
ysis worse. Improvement of the mutation time is the
out of the scope of this paper. From this work, we
would like to highlight that there is a scope for im-
provement for a verifier i.e. CBMC wrt. test cases.

5 CONCLUSION

From the literature survey we can observe that the
works such as Veritesting (Avgerinos et al., 2014),
Veriabs (Afzal et al., 2019; Darke et al., 2018), and
VeriFuzz (Basak Chowdhury et al., 2019) used the
common mechanism of combining different tools and
techniques. Motivating by these works, we com-
bine two techniques viz. Verification and Combi-
natorial Testing. For verification, we have consid-
ered CBMC and for Combinatorial Testing we con-
sidered PICT. We experimented with 38 C-Programs
from The RERS challenge repository. For 38 pro-
grams PICT only consumed 2.6 Minutes to popu-
late the test inputs, however, CBMC which is a Static
Symbolic Executor consumed 546.99 Minutes to gen-
erate the test input. The VeriCombTest (Mode2)
has 355 extra killed mutants as compared to base-
line CBMC (Mode1). Finally, as discussed in cover-
age analysis section VeriCombTest has 21.05% pro-
grams to achieve higher Branch Coverage and in mu-
tation analysis VeriCombTest has 94.73% programs
to achieve higher mutation score, these show the
strength of our proposed work.

REFERENCES

Afzal, M., Asia, A., Chauhan, A., Chimdyalwar, B., Darke,
P., Datar, A., Kumar, S., and Venkatesh, R. (2019). Ve-
riabs : Verification by abstraction and test generation.
In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 1138–
1141.

Armando, A., Mantovani, J., and Platania, L. (2006).
Bounded model checking of software using SMT
solvers instead of SAT solvers. In 13th SPIN, volume
3925 of Lecture Notes in Computer Science, pages
146–162. Springer.

Avgerinos, T., Rebert, A., Cha, S. K., and Brumley, D.
(2014). Enhancing symbolic execution with veritest-
ing. In Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, page
1083–1094, New York, NY, USA. Association for
Computing Machinery.

Basak Chowdhury, A., Medicherla, R. K., and R, V. (2019).
Verifuzz: Program aware fuzzing. In Beyer, D., Huis-
man, M., Kordon, F., and Steffen, B., editors, Tools
and Algorithms for the Construction and Analysis
of Systems, pages 244–249, Cham. Springer Interna-
tional Publishing.

Clarke, E., Kroening, D., and Yorav, K. (2003). Behavioral
consistency of C and Verilog programs using bounded
model checking. In 40th DAC, pages 368–371. ACM
Press.

Darke, P., Prabhu, S., Chimdyalwar, B., Chauhan, A., Ku-
mar, S., Basakchowdhury, A., Venkatesh, R., Datar,
A., and Medicherla, R. K. (2018). Veriabs: Verifica-
tion by abstraction and test generation. In Beyer, D.
and Huisman, M., editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 457–
462, Cham. Springer International Publishing.

Mall, R. (2018). Fundamentals of software engineering.
PHI Learning Pvt. Ltd.

Mathur, A. P. and Wong, W. E. (1993). Comparing the fault
detection e ectiveness of mutation and data flow test-
ing: An empirical study.

Nie, C. and Leung, H. (2011). A survey of combinatorial
testing. ACM Comput. Surv., 43(2).

RERS (2018). RERS:. http://rers-challenge.org/.
VeriCombTest-Artifacts (2021). Raw experimnetal data.

https://figshare.com/s/0d412445b4411208ae68.

VeriCombTest: Automated Test Case Generation Technique Using a Combination of Verification and Combinatorial Testing

313

