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The rapid growth in the adoption of Internet of Things in various areas of our daily lives makes it an interesting

target to malicious actors. One area that is witnessing accelerating growth in smart device adoption is health
and medical services. The growth in Internet of Medical Things is triggering increased interest in privacy,
confidentiality, and intrusion detection. In this paper, we present a deep neural network designed to detect
attacks on Internet-of-Things devices in medical settings. The proposed system was tested using WUSTL-
EHMS-2020 dataset. Tests showed that the proposed deep learning system can deliver excellent performance
with accuracy 97.578%, and a false-positive rate of 3.12%.

1 INTRODUCTION

As the world witnesses rapid growth in Internet-of-
Things (IoT) adoption, medical and health applica-
tions show an even more rapid growth. According to
(Statista, 2022a), electronic health devices expected
to hit a revenue of US$12.97bn before the end of
2022. That rapid growth makes these devices an in-
teresting target for malicious actors. Figure 1 shows
the revenue of the eHealth Device market from 2017,
with projections until 2027. As shown in the figure,
the expected market growth is about 50% in the com-
ing five years. This significant growth comes with
noticeable increase in the attacks conducted on such
devices.

Internet-of-Medical-Things (IoMT), in addition to
the security threats in common with other IoT de-
vices, pause a particularly significant privacy risk as
such devices handle extremely sensitive private infor-
mation. While some attacks, such as false-data injec-
tion attacks, might be categorized as a low-to-medium
risk in other IoT contexts, they can be life-threatening
in IoMT context. When data emanating from a smart-
home based thermometer is maliciously falsified, it
can cause the air-conditioning system to operate in an
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undesired manner that could cause discomfort. How-
ever, when falsified data is maliciously injected to ap-
pear as originating from a thermometer attached to
a patient, it can cause the smart treatment system to
miscalculate the medication dosage given to a patient,
and might cause the loss of life.

Man-In-The-Middle (MITM) attacks are of partic-
ular concern in IoMT context. In these attacks the at-
tacker operates in the middle between an [oMT device
and a server, or between IoMT devices. Techniques
that the attacker might use would include spoofing.
In spoofing attacks, the attacker impersonates a legiti-
mate entity such as a server or an [oMT device. When
impersonating a server, the attacker would intercept
the sensor’s traffic, and would be able to send falsified
commands to the IoMT device(Alani, 2014). On the
other hand, when the attacker impersonates an IoMT
device, it could intercept commands issued from the
server and prevent the actual [oMT device from doing
its job, or send false information to the server to sab-
otage the collected data at the server’s side. In both
scenarios, the outcome of a successful attack could
be of catastrophic consequences.

In this paper, we present an Intrusion Detection
System (IDS) designed to capture different types of
attacks on IoMT environments using features ex-
tracted from network-flows. The proposed system is
based on explainable Deep Neural Network (DNN)
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Figure 1: Historical eHealth Device Market Revenue by Segment with Future Projections (Statista, 2022a).

that processes the information extracted from the net-
work to make predictions to help detect and block
malicious traffic. The proposed DNN solution is ex-
plained using Shapley Additive Explanation (SHAP)
to identify how the selected features impact the clas-
sifier’s decision.

The following section reviews relevant literature,
while Section 3 presents an overview of the proposed
system. The details of the used dataset and its pre-
processing is explained in Section 4, along with the
implementation environment. Section 5 outlines the
implemented experiments and their results, followed
by a thorough discussion of the model’s explainability
in Section 6. The presented results are discussed with
comparative analysis in Section 7, followed by the last
section presenting conclusions and future work.

2 RELATED WORKS

Intrusion detection has been one of the active areas of
machine-learning research for a long time. General
IoT IDS research has also gained a lot of momen-
tum in the past few years with applications ranging
from classical machine learning (Alani, 2022) to deep
learning (Ahmad et al., 2021), to federated learning
(Alazab et al., 2021). This was enabled by the avail-
ability of many realistic and synthetic datasets that
captured traffic such as Bot-IoT (Koroniotis et al.,
2019), TON_IoT (Moustafa, 2021), and [oT-ID (Kang
et al., 2019).

The main obstacle faced by the such research
within the medical context of IoT was the lack of

realistic datasets that captured attacks and normal
traffic data. Many research papers designed ma-
chine learning-based intrusion detection systems us-
ing datasets that are do not capture medical IoT traf-
fic. This research ignores the fact that traffic gener-
ated and received by medical [oT devices has unique
characteristics such as the size and number of pack-
ets, the amount of data generated, and the sensitivity
of the data carried on that traffic. However, the dataset
used in our research, WUSTL-EHMS-2020 captures
IoT traffic within medical context. In this section we
will review research conducted within the IoMT con-
text specifically.

Hady et al. presented the WUSTI-EHMS-2020
dataset in (Hady et al., 2020) along with a proposed
intrusion detection system based on machine learn-
ing. The proposed system tested different classifier
algorithms, with a k-Nearest Neighbor (kNN) model
outperforming other classifiers with an accuracy of
91.56%, and AUC of 0.8748. The proposed classifiers
suffered from low AUC generally due to ignoring the
class imbalance issue in the dataset.

In 2021, Lee et al. proposed a multi-class
classification-based IDS for IoT in medical context
named M-IDM (Lee et al., 2021). The proposed
system employed Convolutional Neural Networks
(CNN) to classify traffic type in a multi-class fash-
ion. The proposed architecture classifies the data into
multiple classes: Critical, informal, major, and minor,
for intrusion detection. The proposed system used
a non-public dataset collected from actual IoMT de-
vices over a period of time. When tested, the pro-
posed system delivered an AUC of 0.967 and an Fj
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score of 0.937, with and accuracy of approximately
94%.

In 2022, Gupta et al. presented an IoMT net-
work IDS system based on a tree classifier (Gupta
et al., 2022). The proposed system utilized WUSTL-
EHMS-2020 dataset to build a tree classifier-based in-
trusion detector that focuses on dimensionality reduc-
tion to speed up the detection process. The proposed
system also utilized GridSearchCV to find the best es-
timator in a group of different random forest classi-
fiers. The proposed system was tested, and performed
with an accuracy of 94.23% with an F; score of 0.938.

Wahab et al. presented, in 2022, a machine
learning-based intrusion detection system for IoMT
devices (Wahab et al., 2022). The proposed system
utilizes a hybrid model consisting of long short-term
memory (LSTM) and gated recurrent unit (GRU) to
create a highly accurate classifier. The issue with this
research is that it was trained and tested using CI-
CDDo0S2019 dataset (Sharafaldin et al., 2019). This
dataset captures only Distributed Denial of Service
(DDoS) attacks on computers. It is not an IoT dataset,
nor it is a [oMT dataset. Despite the high accuracy of
99.01%, this research does not actually address the
IoMT security issues.

Nandy et al. proposed, in 2022, an IoMT in-
trusion detection system based neural networks op-
timized by swarm intelligence (Nandy et al., 2022).
The proposed system falls into the same issue men-
tioned about the previous research article; it trains
and tests the classifier using a non-IoMT dataset. The
dataset used in the proposed system was TON_IoT.
The dataset, although captured from IoT devices, it
did not contain any IoMT traffic. Hence, the produced
high accuracy of 99.5% is not representative of the
quality of detection for IoMT traffic.

Further information can be found in (Si-Ahmed
et al., 2022) about other directions of research that
addresses IoMT security using machine-learning.

3 PROPOSED SYSTEM

In this paper, we proposed a DNN-based intrusion de-
tection system that is trained to detect attack in loMT
environments, named XMeDNN. Figure 2 shows an
overview of the proposed system.

As shown in the figure, the training stage includes
preprocessing, and hyperparameter tuning to reach
the best possible trained DNN. Once the training stage
is completed, the trained DNN model is then sent to
the deployment stage.

At the deployment stage, the network traffic is
captured as raw packets. These raw packets are
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then passed through a network-flow analysis pack-
age named ARGUS (Statista, 2022b). This tool, ex-
tracts network-flow features from raw captured traf-
fic. These features are then passed as the input to the
trained DNN model for inference. The trained DNN
model then produces a prediction whether the cap-
tured network flow is normal or attack traffic. This
prediction can later be linked a firewall to block the
source IP address for attack traffic.

4 THE DATASET

The dataset used to train and test the proposed model,
WUSTL-EHMS-2020, was introduced in (Hady et al.,
2020). The dataset was created using actual IoMT de-
vices connected in a testbed setup. The devices used
to build the dataset were SpO, measurement device,
blood pressure measurement device, Electro-Cardio-
Graph (ECG) device, and a thermometer. The data
collected included network traffic in addition to de-
vice readings. The traffic files were processed using a
tool named ARGUS, that produces network-flow fea-
tures from raw captured packets.

The original dataset was composed of 16,138 sam-
ples (14,272 normal, and 2,046 attack). Each sample
contains 35 network-flow features, and eight device
reading features. As our proposed model was focused
on detecting attacks through the analysis of network
traffic, we removed the device biometric readings.

4.1 Implementation Environment

The data preprocessing, model training, model test-
ing, and explainability was performed in an environ-
ment with the following specifications:

* Processor: AMD Ryzen 5 3600 (4.2GHz)
« RAM: 128GB

¢ GPU: Nvidia RTX3060Ti

e Nvidia CUDA v11.3

¢ Operating System: Windows 10 Pro

* Python v3.10.0

* TensorFlow v2.9.1

¢ Sci-Kit Learn v1.1.3

* Matplotlib v3.5.3

¢ SHAP v0.39.0

4.2 Preprocessing

Upon close examination of the dataset, we made the
following observations:
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Figure 2: An overview of the proposed system XMeDNN.

1. There is a noticeable imbalance between the “nor-
mal” class and the “attack™ class, with the attack
class making up only 12.5% of the total number
of samples.

2. The features included in the dataset include many
host specific features such as source and desti-
nation IP addresses, and source and destination
MAC addresses.

3. The dataset includes two samples with invalid
data (in the form of text in features that are sup-
posed to hold numbers).

Based on these observations, the preprocessing steps
shown in Algorithm 1 was performed.

Algorithm 1: Dataset Preprocessing.

Input: Original dataset
Output: Preprocessed dataset

Array < Dataset
Array < Array(remove_unwanted_features)
foriin 16,318 do

if Array(i) = invalid_data then

| Remove_Sample Array(i)

end
end
Array < RandomOverSampling(Array)
Dataset < Array

The first step in the preprocessing of the dataset
was to remove unwanted features. The features re-
moved were host-specific, such as IP and MAC ad-

dresses. If these features were to be used in train-
ing, they would cause poor classifier generalization
as the model would be trained to capture traffic from
a specific source as the malicious source, and would
perform poorly when tested with attacks from other
sources. This resulted in the removal of seven fea-
tures, with 28 features remaining.

The next step in the preprocessing, as shown in
the algorithm, was to detect and remove samples
with invalid data. There were only two samples that
contained invalid data. This leaves 16,316 samples
(14,270 normal, and 2,046 attack).

The last step was to address the noticeable imbal-
ance between the normal and attack samples. This
was addressed through random over-sampling of the
minority class (attack) until the two classes have an
equal number of samples. This produced a dataset
with 28,540 samples (14,270 normal, and 14,270 at-
tack), with 28 features.

According to (Raschka et al., 2022), it is a com-
mon best practice to normalize the data used in train-
ing and testing neural networks. This feature-wise
normalization is said to help neural networks perform
better and avoid being impacted by the wide range of
different input features. As our proposed system was
based on DNN, we proceeded to normalize the data
using MinMaxScaler from the Sci-Kit Learn (Learn,
2022) package in Python.
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S EXPERIMENTS AND RESULTS

The data was randomly split into 75% training subset,
and 25% testing subset. The random split took into
account maintaining the balance between the normal
and attack classes.

5.1 Experiment Setup

To ensure that the best possible performance can be
reached using our proposed DNN, we used a hy-
perparameter optimization package named Talos (au-
tonomio, 2022). This package performs a thorough
search in different ranges of hyperparameters that we
chose to fine-tune the neural network. Ultilizing this
optimization package, along with our experience, the
following hyperparameters were capable of delivering
the best performance for our proposed system:

* Number of input neurons: 28

* Number of hidden layers: 3

* Number of neurons in hidden layers: 64-32-8
* Activation functions in hidden layers: elu

* Number of neurons in the output layer: 1

* Activation function in the output layer: sigmoid
* Initializer: He Normal Initializer

* Optimizer: Nadam with learning rate of 0.01
* Loss function: Binary cross-entropy

* Epochs: 150

* Batch size: 20

To prove DNN’s superiority over classical machine
learning in solving this classification task, we set up
the experiments to train and test five different types of
classifiers:

1. DNN Multi-Layer Perceptron (MLP)
2. Logistic Regression (LR)

3. Decision Tree (DT)

4. Gaussian Naive Bayes (GNB)

5. eXtreme Gradient Boosting (XGB)

Each of these classifiers were trained using the train-
ing subset, and tested with the testing subset. The
results of testing can be found in Table 1.

Table 1: Testing Results for the Five Classifiers.

Accuracy Precision Recall Fj Score
DNN 0.96878 0.96995 0.96887 0.96877
LR 0.68053 0.70065 0.68001 0.67192
DT 0.96114 0.96337 0.96125 0.96110
GNB 0.69200 0.73657 0.69128 0.67627
XGB 0.92239 0.92342 0.92247 0.92235
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Figure 3: Confusion Matrix Plot for the DNN Classifier.

As we examine the results in the table, we can
see the proposed DNN architecture slightly outper-
forms DT classifier with F; score of 0.968, and they
both noticeably outperform the other classifiers. Fig-
ure 3 shows the confusion matrix plot of the proposed
DNN classifier. The confusion matrix plot shows that
the proposed classifier achieves a false-positive rate
of 3.12%, and a false-negative rate of 3.01%.

Figure 4 shows the changes in the loss and accu-
racy values as the training proceeds until 150 epochs.
This figure shows that the accuracy was improving
while the loss is gradually being reduced as the train-
ing proceeds.

5.2 10-Fold Cross-Validation

To ensure that the proposed classifier can generalize
well, we performed 10-fold cross-validation. In a 10-
fold cross-validation, the dataset is randomly divided
into 10 different subsets. Ten training cycles are per-
formed where one of the subsets is used for testing
and the remaining nine are used for training. At the
end of the 10 cycles, each one of the 10 subsets was
used for testing, while excluded from training, once.
At the end of the cross-validation process, if the re-
sults of the 10 folds have low standard deviation, the
mean value of the performance metrics can be consid-
ered a reliable result. The results of applying 10-fold
cross validation on our proposed model can be found
in Table 2.

By examining the results shown in the table, it
is clear that the standard deviation is minimal, and
the results of the 10 folds are very aligned with each
other, with an average accuracy of 97.57%, and an
average F; score of 0.9763. This result establishes
that the proposed classifier generalizes well beyond
its training dataset.
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Table 2: Results of the 10-fold cross-validation.

Fold Accuracy Precision Recall Fy Score
1 0.98072 0.96390 0.99930 0.98128

2 0.97617 0.95363 0.99927 0.97592

3 0.97582 0.95411 0.99929 0.97618

4 0.97196 0.94870 0.99789 0.97267

5 0.97687 0.95588 1.00000 0.97744

6 0.97512 0.95133 1.00000 0.97506

7 0.97267 0.95006 1.00000 0.97439

8 0.97582 0.95396 1.00000 0.97644

9 0.97547 0.95385 1.00000 0.97638
10 0.97722 0.95766 0.99859 0.97770
Mean 0.97578 0.95431 0.99943 0.97634
STDev 0.00229 0.00406 0.00068 0.00215

6 MODEL EXPLAINABILITY

Model’s explainability increases trust in the trained
model by explaining how the prediction decisions in
the classifier are made. When the impact of different
features on the prediction decision is explained, the
neural network does not remain a black-box system
where decisions are made without proper understand-
ing of the impact of features’ values on the decision
process.

For our system, we chose the use of SHAP values
for explanation of the proposed model. SHAP values
are model-agnostic explanation method that is based
on game theory. It was first introduced in (Lundberg
and Lee, 2017) in 2017. The operation of SHAP in-
volves calculating the impact of each feature by cal-
culating the difference between the model’s perfor-
mance with the feature, and without the feature. This
helps in understanding the individual contribution of
the feature to the prediction. The explainer type used
in our experiment was DeepExplainer.

Figure 5 shows the SHAP values summary plot
of the top five features with the highest importance.
These five features are ordered in descending order
from the feature with the highest impact on the deci-

sion to the lowest.

In the figure, the dots shown on the left side of
the axis are the values that drag the prediction value
down, which makes the prediction closer to “normal”
traffic, while the dots on the right side of the axis push
the prediction value up which makes the prediction
closer to “attack” traffic. The dots in red represent a
high value of the feature, while the blue dots represent
a low value of the feature.

As shown in Figure 5, the feature with the high-
est impact is SrcLoad. This feature measures the data
rate in bits-per-second for the data originating from
the source host within a network flow. The figure
shows that lower values of SrcLoad push the predic-
tion closer toward an “‘attack”, while higher values
brings the prediction closer to “normal” traffic. This
is consistent with the fact that the attacker would usu-
ally utilize low data rates to avoid detection, while
normal traffic, as shown in the figure, can have vary-
ing high rates. This phenomenon also explains the
fourth feature, Load, which captures the average load
on both sides in bits-per-second.

The feature with the second and third features in
terms of impact, as shown in the figure are DintPkt
and DstJitter. DintPkt feature captures the aver-
age inter-packet arrival time at the destination side in
the network flow, while Dst Jitter captures the aver-
age jitter at the destination side. The figure shows that
low values, and extremely high values or inter-packet
timing are indicative of normal traffic. On the other
hand, high values are indicative of an attack. Logi-
cally, this is aligned with the jitter value that captures
the variation of the arrival time of the packet from
true periodicity. Both of these features explanation is
consistent with the fact that attack packets are mostly
manually crafted by the attacker and would not be
sent in an organized flow rate.
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Figure 5: SHAP Summary Plot for the Top Five Features.

Table 3: Comparison of the results of the proposed system with related works.

Research Dataset Classifier Accuracy F Score FPR Explainabl
Gupta et al. (Gupta et al., 2022) WUSTL-EHMS-2020 Tree 94.23% 0.938 6% X
Hady et al. (Hady et al., 2020) WUSTL-EHMS-2020 kNN 91.56% - X
Lee et al. (Lee et al., 2021) (Lee et al., 2021) CNN 94% 0.937 5.3% X
Proposed system WUSTL-EHMS-2020 MLP 97.57% 0.976 3.1% v

The fifth feature in the figure is Sport, which cap-
tures the source port number. Figure 5 shows that low
port numbers are an indicator of attack, while medium
to high port numbers are seen as an indicator of nor-
mal traffic. This is highly aligned with the fact that in
normal traffic, the source port number is dynamically
assigned with the range of the ephemeral ports. Al-
though the IETF standard shows 1,024-65,536 as a us-
able range (Reynolds, 1992), most operating system
utilize high ranges of ports for dynamic usage. Many
Linux distributions use the range of 32,768-61,000,
while recent Windows versions use the range 49,152-
65,535 (Techopedia, 2014). This is also aligned with
the fact that attack packets are manually crafted by the
attacker, and hence do not always adhere to the port
selection industry standards.

7 DISCUSSION

Testing results obtained in the initial testing were val-
idated by the results obtained by the 10-fold cross-
validation process. The proves that the trained classi-
fier can generalize well beyond its training dataset.

Table 3 shows a comparison of the results obtained
with relevant previous works. We excluded the papers
that did not use IoMT dataset as their results are not
valid in the IoMT context.

As shown in the table, our proposed system out-
performs all related works by a good margin in terms
of accuracy, F] score, as well as the false-positive rate.

As clearly stated in Table 3, none of the related
works utilized explainable machine learning to ex-
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plain the impact of different features on the classifier’s
decision.

Model’s explainability of the top five features,
presented in Section 6, is noticed to be highly aligned
with general cybersecurity experience in the con-
ducted attacks. This further validates the accuracy of
the results obtained.

8 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a DNN-based intrusion
detection system for IoMT environments. The pro-
posed system was trained and tested using WUSTL-
EHMS-2020 dataset. The proposed system, namely
XMeDNN, delivered an average accuracy of 97.578%
in 10-fold cross-validation, with an average F; score
of 0.97634. The proposed system delivered better per-
formance metrics when compared to related previous
works, as discussed in Section 7.

Future directions of this research include the fol-
lowing:
1. Improving the scope of attacks covered by the

proposed IDS by exploring additional datasets.

2. Performing further validation by testing with dif-
ferent datasets.

3. Exploring the use of federated learning to main-
tain data-source privacy while improving the sys-
tem’s accuracy.
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