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Abstract: Background: Skin colour is essential to skin and wound assessment as it brings valuable information about 
skin physiology and pathology. An approach, which can help deconvolute and isolate various mechanisms 
affecting skin colour, could be helpful to drive the rPPG utility beyond its current applications. Aim: The 
present work aims to create a framework that links skin colour with melanin content. Material and methods: 
The model consists of two parts. First, the model's core connects tissue chromophore concentrations with 
changes in tissue reflectance. Seven-layer tissue models and Monte Carlo simulations were used to obtain the 
tissue reflectance spectra. In the second step, the tissue reflectance is convoluted with the responsivity of a 
sensor (tristimulus response in the case of the human eye) and the light source's emission spectrum. Results: 
The model allows linking melanin content with skin colour. Conclusion: The model can be helpful for the 
interpretation of the amplitudes of various components of the rPPG signal.  

1 INTRODUCTION 

Optical methods in the visible range have difficulties 
extracting physiological parameters in subjects with 
darker skin. Recent reporting identified potential skin 
tone biases of PPG. For instance, Sjoding et al. 
(Sjoding, 2020) investigated the occurrence of occult 
hypoxemia across patients who self-identified as 
White or Black, which is true oxygen saturation of 
<88% given a PPG-quantified saturation from 92-
96% (i.e., a false negative from PPG on detection of 
low saturation). They reported that occult hypoxemia 
occurred in 12% of patients who self-identified as 
Black, compared to 4% of patients who self-identified 
as White. 

Thus, it is plausible that current clinical datasets 
are skewed toward subjects with lighter skin 
complexion resulting in bias toward lighter skin 
tones. Consequently, the validity of the immense 
amount of accumulated clinical data may be 
questionable. Thus, the research on the influence of 
skin tone on optical physiological data (e.g., tissue 
oxygenation) and algorithms considering/correcting 
this impact are necessary. 
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  Thus, the first step in this direction would be to 
establish quantifiable metrics. However, clinically 
used metrics (Fitzpatrick’s skin tones) are subjective, 
and more objective models are required although to 
be correlated with the Fitzpatrick’s scale to provide 
consistency of the ‘results’ interpretation. 

Thus, the critical step in that direction is using 
objective (non-device specific) colour representation. 
RGB, by far, is the most common colour space; 
however, it suffers several drawbacks. The 
International Commission on Illumination (CIE) 
adopted the CIE XYZ colour space to overcome the 
disadvantages of trichromatic additive colour spaces 
like RGB. However, CIE XYZ space demonstrates 
perceptual nonuniformity (MacAdams, 1942). In 
adopting the CIELUV colour space, the CIE 
attempted to address this concern (Colorimetry, 
1986).  

In previous work (Saiko, 2022) the skin colour 
dependence on blood oxygenation and perfusion was 
studied analytically. In the current work we aim to 
investigate the influence of melanin content on skin 
colour using Monte Carlo simulations. Ultimately 
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this framework can help extract additional 
information from rPPG signals. 

2 METHODS 

The model conceptually consists of two parts. On step 
one we calculate the tissue reflectance. On step two 
we convolute the tissue reflectance with light source 
spectrum and sensor response curves (tristimulus 
response in the case of the human eye). 

2.1 Tissue Reflectance 

For this experiment, the spectrums of total and diffuse 
reflectance at various percentages of melanin content 
were simulated using the Monte Carlo method. To 
achieve this, first a layer model was designed to 
depict a computational model of human skin tissue. 
Then using that model, Monte Carlo simulations were 
run for the wavelength spectrum of 400-1000 nm with 
5 nm increments, for melanin concentrations of 1, 2, 
4, 6, 8, 16, and 32% respectively. 

2.1.1 Tissue Model 

The computational modelling of skin tissue is based 
on the consideration that skin is a three-dimensional 
half-infinite medium divided into several layers with 
varying optical properties (Wang, Jacques, & Zheng, 
1995). The layers considered in this experiment are 
the stratum corneum, the living epidermis, the 
papillary dermis, the upper blood net dermis, the 
reticular dermis, the deep blood net dermis, and the 
subcutaneous fat. The top two layers (stratum 
corneum and living epidermis) comprises the 
bloodless epidermal layer. Stratum corneum is the 
first layer and is approximately 20 μm thick, it is 

composed of flattened dead cells mainly containing 
keratin (Meglinsky & Matcher, 2001). The second 
layer is the living epidermis and is mainly composed 
of living cells including, dehydrated cells, laden cells 
with keratohyalin granules, columnar cells, melanin 
dust, small melanin granules and melanosomes 
(Meglinsky & Matcher, 2001). This layer is approx. 
80 μm thick. The dermis has the inhomogeneous 
distribution of the blood vessels and skin capillaries 
within the skin (Meglinsky & Matcher, 2001). To 
emulate this complexity, we split the dermis layer into 
four sublayers, the papillary dermis (150 μm thick), 
the upper blood net dermis (80 μm thick), the reticular 
dermis (1500 μm thick) and the deep blood net dermis 
(170 μm thick). The last layer considered is the 
subcutaneous fat. We approximated it as 6 mm thick. 
The physical organisation of these layers can be 
visualised in Figure 1. Table 1 demonstrates the order 
of these layers as well as some of their optical and 
physical properties. The values for layer thickness 
and optical properties are an approximation and 
would vary slightly between in vivo subjects. 
 

 
Figure 1: Skin layers for Monte Carlo simulations. 

 

Table 1: Layer settings for λ = 700 nm and 1% melanin concentration, where n = refractive index, μa= absorption coefficient, 
μs= scattering coefficient, g = scattering anisotropy, d = layers thickness, Cb =blood volume fraction and Cw = water volume 
fraction. 

# Skin Layer n μa(cm-1) μs(cm-1) g d (mm) Cb Cw 
1 Stratum corneum 1.33 0.0012 285.71 0.9 0.02 0 0.2 
2 Living epidermis 1.33 2.2162 285.71 0.85 0.05 0 0.2 
3 Papillary dermis 1.37 0.0207 183.52 0.8 0.15 0.004 0.65 
4 Upper blood net dermis 1.4 0.0881 183.52 0.9 0.08 0.02 0.65 
5 Reticular dermis 1.4 0.0207 183.52 0.76 1.5 0.004 0.65 
6 Deep blood net dermis 1.4 0.1723 183.52 0.95 0.17 0.04 0.65 
7 Subcutaneous fat 1.44 0.1266 183.52 0.8 6 0.03 0.05 
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2.1.2 Optical Settings in Layer Model  

The values of the optical properties set in this 
experiment were found both from existing literature 
as well as derived from optical equations. Retrieved 
from literature were the values for scattering 
anisotropy which was set to 0.9 and the values for the 
refractive index which ranged from around 1.34-1.53 
depending on the tissue layer (Moço, Stuijk, & de 
Haan, 2018).  This experiment ran simulations for a 
wavelength range of 400 to 1000 nm for each 
different concentration of melanin. For each 
wavelength and skin configuration the scattering and 
absorption coefficients for both the epidermal and the 
dermal layers was adjusted. The optical properties 
represented in Table 1 correspond to a wavelength of 
700 nm and a concentration of melanin of 1%. The 
equations used to derive the values for the scattering 
and absorption coefficients of the dermis and 
epidermis were retrieved from work by Jacques et al 
(S. Jacques, T. Li & S. Prahl, 2019). 

 
Absorption Coefficient, μa 
The same equation is used to calculate the absorption 
coefficient of both the epidermis and the dermis, but 
the calculations differ in which input values were 
included or omitted. For example, when calculating 
the absorption coefficient of the epidermis, the 
volume fraction of melanosomes had to be considered 
while it did not for the absorption coefficient of the 
dermis and was set to zero. For the dermis, differing 
from the epidermis, in calculating the absorption 
coefficient, the average volume fraction of blood had 
to be included. The equation used to calculate the 
absorption coefficients was: 
 𝜇௔ =  𝐶௕(𝑆𝑂2𝜇௔.ு௕ைଶ +  (1 − 𝑆𝑂2ሻ𝜇௔.ோு௕) +  𝐶௪𝜇௔.௪௔௧௘௥ + 𝐶௠𝜇௔.௠௘௟௔௡௢௦௢௠௘ + 𝐶௙𝜇௔.௙௔௧  

(1)

 

Where: Cb = blood volume fraction, SO2 = 
oxygen saturation of hemoglobin, Cw = water volume 
fraction, Cf = fat volume fraction, Cm = volume 
fraction of melanosomes, μa.HbO2 = absorption 
coefficient of oxygenated hemoglobin, μa.RHb = 
absorption coefficient of deoxygenated hemoglobin, 
μa.fat = absorption coefficient of fat, μa.water = 
absorption coefficient of water, and μa.melanosome = 
absorption coefficient of melanosomes. 

 
Scattering Coefficient, μs 

Tissue scattering is described as a summation of 
Rayleigh and Mie Scattering. To calculate the 
scattering coefficient first the reduced scattering 
coefficient, which describes the diffusion of photons 

in a random walk, needs to be calculated. After the 
reduced scattering coefficient has been calculated, it 
can be incorporated with the anisotropy to calculate 
the scattering coefficient. The main difference 
between the scattering coefficient of the epidermis 
versus the dermis is that dermal scattering is 
described in terms of the relative contributions of Mie 
and Rayleigh scattering due to collagen fibres while 
epidermal scattering is relative to scattering due to 
keratin fibres (Jacques, 1998). Again, the same 
equations were used to calculate the scattering 
coefficient of the dermis and the epidermis differing 
only by the values of the input parameters. The 
equations used were as follows: 

 𝜇௦ᇱ =  𝜇௦.ହ଴଴ᇱ (𝑓௥ ቀ ఒହ଴଴ቁିସ + (1 − 𝑓௠) ቀ ఒହ଴଴ቁି௕௠)   (2) 
 𝜇௦ =  ఓೞᇲଵି௚   (3) 
Where 𝜇௦ᇱ  = reduced scattering coefficient, 𝜇௦  = 
scattering coefficient, 𝜇௦.ହ଴଴ᇱ  = reduced scattering 
coefficient at 500 nm, 𝑓௥ = fraction of Rayleigh 
scattering at 500 nm, 𝑓௠= fraction of Mie scattering 
at 500 nm, 𝑏௠ = scatter power for Mie scattering, λ is 
the wavelength in [nm] and g is the anisotropy of 
scattering. 

2.1.3 Monte Carlo Simulations of Skin 
Reflectance  

For this experiment the Monte Carlo for Multi-
Layered media (MCML) program by L. Wang & S. 
L. Jacques was used to provide a realistic model of 
light propagation in biological tissue (Wang & 
Jacques, 1992). In essence, the Monte Carlo method 
describes the transport of an infinitely narrow photon 
beam perpendicularly incident on a multi-layered 
tissue (Wang et al, 1995). Running Monte Carlo 
simulations generates a variety of output results but 
the output of interest for this experiment was the total 
and diffuse reflectance. To achieve these results, first 
an input file was generated to specify the simulation. 
This input file was generated in MATLAB using the 
function create_MCML_input_file that sets up the 
layer model used to describe the multi-layered tissue 
the simulation is being performed on (Akerstam & 
Andersson-Engels, 2011). An example of this layer 
model can be seen in Table 1. In the input file the 
number of incident photons to be used is also 
declared, for this experiment the amount of photons 
set was 100000. Once the input file has been 
generated, the input file is fed to the MCML program, 
and the simulation is run. Once the simulation is 
finished an output file is generated with the results. 
The MATLAB program getmcml.m was used to read 
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the generated output file and interpret the results 
(Wang & Jacques, 1992). These results include the 
diffuse and specular reflectance, which when 
combined provides the total reflectance. This process 
was repeated for a wavelength range of 400 to 1000 
nm at different volume fractions of melanosomes. 
Using these results, the total reflectance and diffuse 
reflectance versus wavelength was plotted for each 
volume fraction of melanosomes of interest. 

2.2 Light Source  

It should be noted that while the colour representation 
for additive colour schemas (emissive case) can be 
considered absolute, it is not the case for subtractive 
colour schemas (reflection and transmission), where 
the response needs to be convoluted with the spectral 
power distribution of the illuminant. Thus, perceived 
colour in a subtractive colour scheme is light source 
dependent. 

CIE standard illuminant E was used as the light 
source in our simulations. 

2.3 Tristimulus Colour Space   

The human eye and typical imaging systems interpret 
colours using three colour channels. Thus, in step 2, 
we need to aggregate the tissue reflectance spectra 
into three-channel responses. The CIE XYZ colour 
space encompasses all colour sensations visible to a 
person with average eyesight using the CIE's colour 
matching functions (𝑥(𝜆),𝑦(𝜆),𝑧(𝜆)), which quantify 
the chromatic response of the average observer. The 
CIE 1931 colour space defines the tristimulus values 
denoted by X, Y, and Z. In the case of the subtractive 
colour schema (reflection and transmission) for the 
known light source spectral distribution I(l), the 
tristimulus values can be found as 

𝑋 =  𝐾𝑁න 𝑅(𝜆)𝐼(𝜆)𝑥(𝜆)𝑑𝜆ఒ  (4)

𝑌 =  𝐾𝑁න 𝑅(𝜆)𝐼(𝜆)𝑦(𝜆)𝑑𝜆ఒ  (5)

𝑍 =  𝐾𝑁න 𝑅(𝜆)𝐼(𝜆)𝑧(𝜆)𝑑𝜆ఒ  (6)

Here N = ׬  I(λ)y(λ)dλ஛ , R is the tissue 
reflectance, and K is the scaling factor. The XYZ 
colour space can be transformed into commonly used 
RGB colour space by a simple linear transformation 
(multiplication on a 3x3 matrix). 

However, the CIE XYZ colour space allows 
decomposition into two parts: brightness and 

chromaticity. The CIE XYZ colour space was 
deliberately designed so that the Y parameter is also a 
measure of the luminance of a colour. That allows the 
representation of each colour on 2D colour space 
using normalization 𝑥 =  𝑋𝑋 + 𝑌 + 𝑍  (7)

 𝑦 =  𝑌𝑋 + 𝑌 + 𝑍 (8)

The chromatic coordinates (x,y) can be 
transformed into chromatic coordinates (u',v') in the 
CIELUV colour space (Colorimetry, 1986), which 
has certain advantages over the CIE XYZ colour 
space (namely, perceptual uniformity): 𝑢ᇱ =  4𝑥−2𝑥 + 12𝑦 + 3 

(9)

 𝑣ᇱ =  9𝑦−2𝑥 + 12𝑦 + 3 (10)

3 RESULTS 

In the first step, we generated the tissue's simulated 
reflectance spectrum in the 400-1000 nm range for 
different melanin content (1, 2, 4, 6, 8, 16, and 32%, 
respectively). The results of the MC simulations are 
depicted in Figure 2. 

 
Figure 2: The skin diffuse reflectance spectrum as a 
function of the melanin content (1, 2, 4, 6, 8, 16, and 32%, 
respectively). 

In step 2, the generated spectra were convoluted with 
CIE's colour matching functions and light source 
spectrum to obtain values X, Y, and Z using Eqs. 4-6. 
We approximated the CIE XYZ colour-matching 
functions by a sum of Gaussian functions (Wyman et 
al., 2013). CIE standard illuminant E was used as the 
light source. 
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Then using Eqs.7 and 8, x and y were obtained. The 
result of tissue colour simulations in (x,y) colour 
space is presented in Fig 3 as a function of the 
melanin content (1, 2, 4, 6, 8, 16, and 32%, 
respectively). 

 
Figure 3: The simulated tissue colour in chromaticity 
diagrams (CIE XYZ colour space) as a function of the 
melanin content (1, 2, 4, 6, 8, 16, and 32%, respectively). 

The respective transformation into CIELUV colour 
space using Eqs. 9-10 is depicted in Fig 4 as a 
function of the melanin content (1, 2, 4, 6, 8, 16, and 
32%, respectively). 

 
Figure 4: The simulated tissue colour in chromaticity 
diagrams (CIELUV colour space) as a function of the 
melanin content (1, 2, 4, 6, 8, 16, and 32%, respectively). 

4 CONCLUSIONS 

In summary, we proposed a simple approach where 
the realistic tissue reflectance spectrum generated 
using the multi-layer Monte Carlo model is onvoluted 
with CIE's colour-matching functions and ambient 
light spectrum to obtain tristimulus values in XYZ 
colour space. The proposed approach allows for 

quantitative analysis of the influence of tissue 
chromophores on tissue colour. 
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