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Abstract: Bone fragility in osteoporosis is associated with a decrease in the thickness of the cortical layer CTh in long 
bones and the development of internal porosity P in it. In the present work, an attempt was made to predict 
the factors-of-interest CTh and P based on the pattern recognition approach, where DFT analysis was applied 
to ultrasonic signals in surface transmission through a soft tissue layer. Compact bone was modeled with 
PMMA plates with gradual changes in CTh from 2 to 6 mm, and internal porosity P was created by drilling 
where the thickness of the porous layer P varied from 0 to 100% of CTh. The estimation method was based 
on a statistical analysis of the magnitude of the DFT spectrum of the ultrasonic signals. Decision rules were 
mathematical criteria calculated as ratios between the envelope functions of the magnitudes. Each of the 
objects was chosen in turn as a test object, while other specimens composed the training set. The results of 
the experiments showed the potential effectiveness of the CTh and P prediction, while additional physical 
parameters may be used as decision rules to improve the reliability of the diagnosis. 

1 INTRODUCTION 

Osteoporosis is a systemic skeletal disease 
characterized by low bone density and 
microarchitectural deterioration of bone tissue with a 
consequent increase in bone fragility (WHO, 2003). 
It is a severe symptom of aging and a complication in 
many metabolic diseases. Cortical bone or compact 
bone tissue, the main load-carrying component of the 
skeleton, suffers from osteoporosis by reducing the 
thickness of the compact layer and increasing the 
internal porosity in it, progressing from the side of the 
channel (Osterhoff et al., 2016). An adequate 
assessment of these manifestations of osteoporosis 
can help in timely prevention and treatment. 
Conventionally, the diagnosis of osteoporosis is made 
using dual x-ray absorption techniques by measuring 
the bone mineral density (Guglielmi, 2010). 
However, planar radiography is not able to 
distinguish reliably between changes associated with 
bone thinning and porosity and thus distinguish 
between thin normality and osteoporosis.  

Ultrasonic techniques based on measuring the 
parameters of elastic waves are a perspective 
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modality to assess bone conditions in respect of 
osteoporosis (Laugier, 2008). Axial bone 
ultrasonometers use to measure ultrasound velocity in 
the compact bone of long bones, such as the tibia and 
forearm bones. Although it demonstrated sensitivity 
to osteoporosis and mineralization disorders, its 
clinical use is compromised by the inability to discern 
multiple factors influencing the bone condition by 
this single input. New approaches are focused on 
analysing guided wave propagation at several 
frequencies that provide extensive information about 
bone structure and properties (Tatarinov et al., 2014). 
However, discrimination of the factors of interest 
such as cortical porosity and thickness of the cortical 
layer against the background of the influence of the 
surrounding soft tissues requires advanced data 
processing. Traditional approaches based on the 
measurement of single parameters such as ultrasound 
velocity do not allow separating the complex 
influences of these acting factors. Artificial 
intelligence methods, particularly, pattern recognition 
applied to a complex of propagated ultrasonic signals 
at different frequencies are expected to help solve the 
problem. 
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The purpose of this study was to investigate the 
possibility to detect differentially two independent 
factors of interest, cortical thickness and intracortical 
porosity as diagnostically valuable determinants of 
bone fragility in osteoporosis. Synthetic solid 
phantoms modeling the cortical layer with the gradual 
variation of both factors were used. The very 
formulation of the problem suggested the need to 
apply pattern recognition methods, but unlike the 
classical classification problem, in this case, there 
was no need to determine the belonging of the object 
under study to any known class, but just to find the 
values of the factors, which were a-priori unknown. 
Soft tissues covering bones were considered as an 
aside factor, so the datasets were obtained for three 
thicknesses of the soft layer to assure the feasibility 
of the method for persons of different constitutions. 

The raw data were presented by sets of ultrasonic 
signals acquired stepwise by surface profiling of the 
object in the pitch-catch mode. The discrete Fourier 
transform (DFT), one of the recognized methods of 
signal analysis, transforming the signals from time to 
frequency domains was used (Irrigaray et al., 2016). 
A set of statistical parameters was extracted from the 
set of magnitude signals, thus forming a set of 
features describing the object. Extracting statistical 
parameters from each object in the set, decision rules 
are created to be the instrument for the evaluation of 
parameters of interest in the examined objects.  

2 PROPOSED APPROACH 

The proposed approach for evaluating two factors-of-
interest using ultrasonic signals datasets was based on 
pattern recognition principles. The evaluation method 
consisted of two parts: creating a set of decision rules 
from the data for a training set of phantoms and 
validating the set of decision rules by substitution the 
data for an examination specimen to make verify the 
correctness of the approach. 

2.1 Bone Phantoms and Ultrasonic 
Data Acquisition 

Bone models (phantoms) presented a set of bi-layer 
PMMA (polymethyl methacrylate) plates (Figure1) 
with gradually varied overall thicknesses 2, 3, 4, 5 
and 6 mm that corresponded to the bone cortical 
thickness CTh. The effect of intracortical porosity 
progressing from the in-bone channel was imitated by 
the regularly bottom-drilled holes. The volumetric 
porosity of the porous layer was constant at the level 
of 20%, but the gradual progress of porosity P from 

zero to 100% of CTh was set by increasing the 
thickness of the porous layer PTh with a step of 1 mm.  

 

 

Figure 1: PMMA phantoms modeling the progression of 
osteoporosis in compact bone tissue: CTh – cortical 
thickness; PTh – thickness of the porous layer.  

Ultrasonic signals were acquired by means of a 
custom-made scanning setup by stepwise profiling 
the upper surface of the phantoms covered by soft 
tissues with a profiling step of 3 mm (Figure 2).  

 

 

Figure 2: Acquisition of ultrasonic signals in phantoms: A 
– general view of ultrasonic setup, B – layout of 
experiment.  

Totally acquired 24 signals formed so called 
ultrasonic spatiotemporal waveform profiles that 
served as the source material for pattern recognition 
(Figure 3). The profiles contained complex 
information on temporal (velocities) and energetic 
(attenuation) characteristics of different modes of 
ultrasound propagation in the objects. Commonly, it 
presents difficult to analyze those analytically using 
signals decomposition (Bochud et al., 2017), but the 
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pattern recognition approach provided an integral 
solution.  

 

Figure 3: Examples of ultrasonic spatiotemporal waveform 
profiles in bone phantoms: A – normalized within each 
signal line; B – normalized upon the entire profile. The 
abscissa is ultrasonic time; the ordinate is profiling 
distance. 

In one signal frame of a 1 ms duration, three 
frequency excitation responses were collected: HF at 
500 kHz, LF at 100 kHz, and a chirp signal with 
frequency sweeping from 500 to 50 kHz. In this 
frequency range, different modes of ultrasonic guided 
waves manifested, including S0 and A0 Lamb waves. 

2.2 Used Mathematical Method 

The initial data set comprised raw ultrasonic signals 
obtained at three different frequency regimes of 
excitation (HF, LF, chirp) and forming the 
spatiotemporal waveform profiles that contained 24 
stepwise acquired signals. The general structure of 
the initial data on objects (phantoms) is shown in 
Figure 4.  

 

Figure 4: Data structure of source objects in the space of 
factors-of-interest CTh and P.  

As the set of bi-layer phantoms consisted of 
gradually varied solid and porous layers with an 
increment of 1 mm, the objects’ grid in the space of 
the factors-of-interest CTh and P was a non-
orthogonal one that made an additional challenge for 
interpolation. 

In this study, the method for evaluating of factors 
of interest used a pattern recognition approach 

applied to ultrasonic signals after DFT processing 
(Sisojevs et al., 2022). The signal frame consisting of 
three frequency regimes was divided into three-time 
sub-frames. In each sub-frame, mathematical criteria 
were calculated. For this, the magnitude functions of 
the DFT signals received from the corresponding sub-
frames were used. Then, for each object, mathematical 
criteria were calculated that presented various ratios 
between the envelope functions of signal magnitudes 
(Sisojevs et al., 2022). The total number of 
mathematical criteria for one sub-frame was 13, and 
considering three sub-frames in the time domain, the 
number of mathematical criteria for one object was 39. 

After calculating the mathematical criteria for all 
objects in the training set, decision rules were built. 
In this case, mathematical criteria were used as 
attributes for pattern recognition rules. For decision 
rule creation, the bilinear interpolation of a patch of 
the surface was used (Sisojevs et al., 2022). 

3 EXPERIMENTS 

As part of the validation of the proposed approach, 
experiments were carried out to assess the total 
thickness of the bone phantom CTh and the thickness 
of the porous part P with a-priori known values of the 
soft tissue thickness. In the experiment, the soft tissue 
thicknesses were 0, 2 and 4 mm. 

A separate experiment was carried out for each of 
the soft tissue thickness values. The experiment 
looked like this. Of all the scanned objects, one was 
selected for the test sample. The rest made up the 
training set. In this work, the method (Sisojevs et al., 
2022) was used. For each object, the magnitudes of 
DFT signals were calculated for sub-frames in the 
signal time domain. 
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and 
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In the selected interval ω, the values of three functions 
were calculated: 

𝐹_𝑚𝑎𝑥ሺ𝜔ሻ ൌ 𝑚𝑎𝑥ሼ𝑀ሺ𝜔ሻሽ; 
𝐹௔௩௥ሺఠሻ ൌ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒ሼ𝑀ሺ𝜔ሻሽ and 
𝐹_𝑚𝑖𝑛ሺ𝜔ሻ ൌ 𝑚𝑖𝑛ሼ𝑀ሺ𝜔ሻሽ 
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Then, according to the values of these functions, 
mathematical criteria were calculated:  

First criteria cr#1 is the number of 𝜔 values that 
fulfill the condition 

𝐹௠௔௫ሺఠሻ ൒ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒൫𝐹_𝑚𝑎𝑥ሺ𝜔ሻ൯, ሺ𝑐𝑟#1ሻ; 
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௠௔௫|ௗி_௠௔௫ሺఠሻ|
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where: 
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The interest parameter estimation method was 
based on the creation and use of decision rules. To 
create decision rules, piecewise linear interpolation 
was used for each of the parametric directions. As a 
result, the decision rule was represented as a 
piecewise bilinear function of two variables. 

The use of a decision rule to evaluate an unknown 
object was reduced to the calculation of mathematical 
criteria and their comparison with the corresponding 
decision rules. In this case, the value of the criterion 
expanded to the interval ±ε (eps). The result of 
evaluation according to one rule is a set (segment) of 
possible correct answers. Figure 5 illustrates such a 
case. 

 

Figure 5: An example of using a single decision rule to 
evaluate an unknown object. 

When using several decision rules, a sub-segment 
of possible answers is found that is included in the 
maximum number of initially found segments. It is 
this sub-segment that is taken as the final evaluation 
of the method used. 

 

Figure 6: Result of evaluation of object with CTh = 3 mm 
and P = 33.3% (PTh = 1 mm), soft tissue thickness = 0 mm 
and eps = 25%. 

After this estimate was obtained, this result was 
compared with the a-priori known values of CTh and 
P of this object. Within the framework of one 
experiment, each of the objects was chosen in turn as 
a test object. 

Examples of how the method of the estimation 
factors-of-interest works are shown in Figures 6-8. In 
the figures, the red segment is the obtained estimate 
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of the non-test object by the method (Sisojevs et al., 
2022), the white dot denotes the position of the test 
object.  

 

Figure 7: Result of evaluation of object with CTh = 4 mm, 
P = 100% (PTh = 4 mm), soft tissue thickness = 2 mm and 
eps = 25%. 

 

Figure 8: Result of evaluation of object with CTh = 6 mm, 
P = 66.6% (PTh = 4 mm), soft tissue thickness = 4 mm and 
eps = 5%.  

3.1 Estimation Accuracy 

The estimation accuracy in the experiment was 
determined for each of the factors-of-interest (CTh 
and P). The error was calculated as the modulus of the 
difference between the computed estimate of the 
factor’s value and the a-priori known value of this 
factor in the object 

The estimate of the error in determining CTh 
ranged from 0.0021 to 3.992 mm (i.e. between very 
precise and completely incorrect). The average 

estimation error was in the range of 0.561 - 1.675 mm 
(depending on soft tissue thickness and eps value). 
After sorting the errors in ascending order, the 
distribution of errors is shown in Figure 9. The best 
results or the results showing the smallest deviation 
for CTh estimation are obtained with a value of the 
soft tissue thickness layer of 4 mm and 2 mm at 
eps=25% (average error 0.561 - 0.749 mm, maximum 
1.606 - 2.532mm). Contrary, the worst results (the 
highest deviation) are obtained for the value of the 
soft tissue thickness layer 0 mm, regardless of the eps 
value (average error 1.372 - 1.675 mm, maximum 
3.623 - 3.983 mm). If the acceptable diagnostic 
deviation threshold for CTh is 1.2 mm with a general 
range of its changes from 2 to 6 mm, then the number 
of correct estimations is 20 out of 25 or 80%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Distribution of errors for CTh estimations 
depending on the thickness of the soft tissue layer and eps. 

The estimate of the error in determining the porosity 
ranged from 0 to 92.478%, i.e. from the lowest to the 
almost highest possible). The average estimation 
error was in the range of 21.736 - 31.162%. 
Depending on soft tissue thickness and eps value. 
After sorting the errors in ascending order, the 
distribution of errors for P is shown in Figure 10. The 
best results from the point of least deviation for 
porosity P were obtained with a soft tissue thickness 
layer 2 mm at eps=25% (average error 21.736%, 
maximum error 74.558%). At the same time, the 
parameters (thickness of soft tissue and eps) giving 
the worst performance in terms of accuracy are not 
indicated. If the acceptable diagnostic deviation 
threshold for P is 30% with a general range of its 
changes from 0 to 100% mm, then the number of 
correct estimations is 15 out of 25 or 60%. This shows 
that the accuracy of determining bone thickness CTh 
is somewhat better than that of its porosity P, using 

CTh, mm

n 
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DFT-based criteria applied to the ultrasonic signals 
related to the guided waves propagation. 

 
 
 
 
 
 
 
 
 
 
 
 
 

. 
 
 

 
 

Figure 10: Distribution of porosity P estimation errors 
depending on the thickness of the soft tissue layer and eps. 

4 CONCLUSIONS 

The results of the experiments showed the potential 
effectiveness of the earlier proposed pattern 
recognition method (Sisojevs et al., 2022) in the tasks 
of determining the factors of interest in osteoporosis 
diagnostics (total thickness of the cortical bone and 
the degree of inner porosity), using ultrasonic surface 
profiling.  

The use of only the DFT analysis does not give 
full agreement between the obtained estimates and the 
a priori predicted ones. The application of additional 
evaluation criteria based on the physical parameters 
of guided wave propagation may improve the 
reliability of the diagnosis. 

The small number of available objects (bone 
phantoms) and the approximate nature of the 
mathematical criteria did not allow us to estimate the 
factors of interest with high accuracy. However, the 
results obtained demonstrated the prospects for using 
this method and increasing its accuracy with an 
increase in the number of objects with a priori known 
values of the factors.  
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