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Abstract: In this paper, we address the joint production and Condition-based maintenance (CBM) planning problem for 
a deteriorating single-machine multi-product manufacturing system with uncertain product demands. The 
objective is to find an integrated production and maintenance policy such that the sum of expected setup, 
holding, lost sales, preventive and corrective maintenance costs is minimized. We formulate the problem as a 
semi-Markov decision process and propose a Q-learning algorithm for the problem. A numerical example is 
provided to illustrate the solution method. 

1 INTRODUCTION 

Preventive maintenance aims to reduce the likelihood 
of equipment failures that result in unexpected 
downtimes and production losses. Condition-based 
maintenance (CBM), as a preventive maintenance 
strategy, recommends performing maintenance 
activities based on the current equipment condition. 
If a CBM program is properly implemented, it can 
significantly save costs by reducing the unnecessary 
scheduled preventive maintenance operations 
(Jardine et. al, 2006). 

In recent years, the integration of production lot-
sizing and CBM has been studied by many 
researchers. The majority of the existing research 
studies the joint optimization of the economic 
production quantity (EPQ) and CBM for single-
product systems under constant and deterministic 
demand rate. However, there are many cases in 
practice where multiple-items are produced by a 
single facility (machine) and the demand is uncertain.  

In this study, we consider a stochastically 
degrading single-machine multi-product production/ 
inventory system under stochastic demand. Only a 
single product can be produced at a time. The 
produced items are stored in the inventory with 
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limited capacity for each product, and holding costs 
are charged for the unconsumed products. Unsatisfied 
demand is lost, and a penalty cost is incurred for each. 
Switching production from one product to another or 
from the idle state to production takes a certain 
amount of time, and a setup cost is charged for this 
operation. The degradation level of the machine 
increases with production, and degradation behaviour 
changes with respect to the product being produced. 
Preventive or corrective maintenance brings the 
machine to “as good as new” state and they both take 
a deterministic time. The goal is to find a joint 
production/inventory and maintenance policy to 
minimize the long run expected average cost per unit 
time, which includes the holding, lost sales, setup, 
preventive and corrective maintenance costs. 

We model the above-mentioned problem as a 
semi-Markov decision process (SMDP), in which the 
system state consists of the degradation level, the 
setup status of the machine and the stock levels of the 
products. Upon observing the state at a decision 
epoch, one of the following actions is taken: keeping 
the machine idle; producing a particular product that 
the machine has been set up; carrying out setup for a 
product in case the machine is idle or has been set up 
for another product; performing preventive 
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maintenance; or performing corrective maintenance 
(it is the only choice if the machine fails). To solve 
the underlying model, we adopt a Q-learning 
algorithm for SMDP.   

The rest of the paper is organized as follows. In 
Section 2, we review the relevant literature. The 
SMDP formulation is presented in Section 3. Then, in 
Section 4, we present the Q-learning algorithm 
adopted for our problem. In Section 5, a numerical 
example is given. Then, concluding remarks are 
provided in Section 6. 

2 LITERATURE REVIEW 

The integration of lot-sizing and time-based preventive 
maintenance has been extensively studied by many 
researchers (Aghezzaf et al., 2007; Ben Daya and 
Makhdoum, 1998; Ben-Daya, 2002; El-Ferik, 2008; 
Liao and Sheu, 2011; Suliman and Jawad, 2012; 
Shamsaei and Vyve, 2017). In recent years, integrated 
EPQ and CBM-based preventive maintenance models 
have been proposed with the aim of optimizing the lot-
size and the degradation threshold, beyond which 
preventive maintenance is conducted. Jafari and Makis 
(2015) address the joint optimization of EPQ and 
preventive maintenance policy. The deterioration of 
the system is modelled by a proportional hazards 
model that considers the condition monitoring 
information and the age of the machine. Peng and van 
Houtum (2016) develop a joint optimization model of 
EPQ and CBM in which degradation is modelled as a 
continuous time and continuous state stochastic 
process. Khatab et al. (2019) investigate the problem 
of integrating production quality and CBM for a 
production system under periodic monitoring. Cheng 
et al. (2018) develop a model to optimize production, 
quality control and CBM policies for a system in which 
product quality depends on the degradation level. Jafari 
and Makis (2016) propose a model to jointly optimize 
EPQ and preventive maintenance policy for a partially 
observable two-unit system. Cheng et al. (2017) 
consider joint optimization of production lot-sizing and 
CBM for systems with multiple products. Preventive 
maintenance decision making depends on the 
predictive reliability and the structural importance 
measure of the components. 

Fewer studies, however, develop integrated 
production and maintenance policies for systems with 
stochastic demand. To find the optimal policy for 
systems with stochastic demand, MDP and SMDP 
models are proposed (Iravani and Duenyas, 2002; 
Sloan, 2004; Jafari and Makis, 2019; Xiang et al., 
2014). These studies assume that the system produces 

a single product type and the degradation is modelled 
by a Markov chain with a limited number of states. In 
this study, however, we propose a joint production 
and CBM policy for a multi-product production 
system with random product demands. 

Darendeliler et al. (2022) has recently studied 
joint optimal production/inventory and CBM control 
for a multi-product manufacturing system under 
stochastic product demands. It is assumed that the 
system is reviewed at equidistant time points, so the 
durations of producing a lot and maintenance are 
assumed to be equal. The present paper relaxes this 
assumption and extends the work by modelling the 
problem as a SMDP, in which the system is reviewed 
at the completion of a unit production, setup and 
maintenance. Also, the previous work does not take 
the production setup times into account, while they 
are incorporated in the present model.   

In literature, the problem of planning the lot-size 
and sequence of several products on a single machine 
with random product demands is known as the 
stochastic economic lot scheduling problem 
(SELSP). In the SELSP, the objective is to find a 
policy that proposes whether to continue the 
production of the current item, whether to switch to 
another product or whether to keep the machine idle 
so as to minimize the total expected average cost. 
Obtaining such a policy, which dynamically 
distributes the finite production capacity among the 
products to be reactive to the stochastic demands, 
processing and setup times, is a challenging problem 
(Sox et al., 1999). Winands et al. (2011) categorize 
SELSPs based on their sequencing and lot-sizing 
strategies. Our model’s production policy could be 
considered in the category of dynamic sequence and 
global lot-sizing, in which there is no predetermined 
production sequence, and the quantity of the lot-size 
depends on the stock levels of all products and the 
machine status rather than depending only on the 
stock level of the product currently setup. The 
majority of the SELSP models do not consider the 
effect of equipment deterioration and maintenance on 
the production policies. However, in this study, we 
incorporate CBM policy in the SELSP problem. 

There are few studies that consider dynamic 
sequencing and global lot-sizing for the SELSP. Qiu 
and Loulou (1995) model the SELSP as a SMDP and 
solve limited-size problems by the successive 
approximation method. Wang et al. (2012) apply two 
reinforcement learning algorithms to the SELSP with 
the random demand and processing times. Löhndorf 
and Minner (2013) propose an approximate value 
iteration method and compare its performance with the 
global search for parameters of simple control policies.  
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3 PROBLEM FORMULATION 

We consider a single machine production system 
producing 𝑁 items one at a time. The processing time 
of product 𝑛 takes 𝜌௡ time units, and the machine must 
be set up for product 𝑛 if it is going to be produced. 
The setup for item 𝑛 takes 𝑆𝑇௡ time units and incurs a 
cost 𝑐𝑠௡. Finished products are stored in an inventory 
with limited storage capacity 𝑥̅௡ for each product 𝑛 ∈ሼ1, … , 𝑁ሽ . A holding cost of 𝑐ℎ௡  is charged per 
product per unit time for product 𝑛. Demand for each 
product follows a Poisson process with rate 𝜆௡ . The 
unsatisfied demand is lost and a lost sales cost 𝑐𝑙௡ is 
incurred per item. The machine has multiple 
degradation states ሼ1, … , 𝐹ሽ , where 1  is the as-new 
state, and 𝐹 is the failure state. If the machine 
degradation level is observed to be 𝐹, then corrective 
maintenance is immediately performed which takes 𝐶𝑇  time unit and costs 𝑐𝑐 . Conducting preventive 
maintenance in an operational state takes 𝑃𝑇 time units 
and costs 𝑐𝑝 . Both preventive and corrective 
maintenance bring the machine to the as good as new 
state (state “1”). Note that the system cannot be 
interrupted during production, setup and maintenance 
operations. The objective is to find the optimal 
production/inventory and maintenance policy that 
minimizes the total long-run average cost per time unit. 

We formulate the problem as a semi-Markov 
decision process (SMDP), where the state is 
described as 𝑠 = (𝑖, 𝑘, 𝑥ଵ, … , 𝑥ே)  with degradation 
level 𝑖 ∈ ሼ1, … , 𝐹ሽ, machine status 𝑘 ∈ ሼ0, … , 𝑁ሽ and 
the product inventories 𝑥ଵ, … , 𝑥ே. When the machine 
status is  𝑘 = 𝑛 , the machine has been set up for 
product 𝑛 ∈ ሼ1, … , 𝑁ሽ . The system is reviewed at 
decision epochs, which are epochs at which demand 
for any product has just arrived in case the machine is 
idle, or setup or production for an item has just been 
completed, or preventive or corrective maintenance 
has just been performed. At a decision epoch, based 
on state 𝑠, an action 𝑎 ∈ 𝐴(𝑠) is chosen. The eligible 
actions are: (1) keeping the machine idle (𝑎 = 0); (2) 
producing item 𝑛  (𝑎 = 𝑛) ; (3) carrying out 
preventive maintenance (𝑎 = −1) ; (4) conducting 
corrective maintenance ( 𝑎 = −2 ) if and only if 
failure occurs. If product 𝑛 is decided to be produced 
and the machine is set up for another product or is in 
the idle state, then the machine is going to be set up 
for item 𝑛. 

For state 𝑠 = (𝑖, 𝑘, 𝑥ଵ, … , 𝑥ே)  and action 𝑎 , the 
transition probabilities for the degradation can be 
expressed as 

𝑃௜௝௞,௔

=
⎩⎪⎨
⎪⎧ 1 𝑖𝑓 𝑎 = 0, 𝑖 = 𝑗                                1           𝑖𝑓 𝑎 = −2 , 𝑖 = 𝐹, 𝑗 = 1              1         𝑖𝑓 𝑎 = −1, 𝑗 = 1                             𝑝௜௝(𝑛)          𝑖𝑓 𝑎 =  𝑛 = 𝑘, 𝑗 ∈ ሼ𝑖, … , 𝐹ሽ1 𝑖𝑓 𝑎 = 𝑛 ≠ 𝑘, 𝑗 = 𝑖                       0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                                 (1)

where, the degradation remains at the same level until 
the next decision epoch if no production occurs, and 
it will be at state 𝑗 in case of production.  

The expected time until the next decision epoch is 
given by 

𝜏(𝑠, 𝑎) =
⎩⎪⎪⎨
⎪⎪⎧1 ෍ 𝜆௡   𝑓𝑜𝑟 𝑎 = 0 ே௡ୀଵൗ   𝐶𝑇                  𝑓𝑜𝑟 𝑎 = −2𝑃𝑇                 𝑓𝑜𝑟 𝑎 = −1𝜌௡ 𝑓𝑜𝑟 𝑎 = 𝑛 = 𝑘𝑆𝑇௡ 𝑓𝑜𝑟 𝑎 = 𝑛 ≠ 𝑘.

 

(2)

For state  𝑠 = (𝑖, 𝑘, 𝑥ଵ, … , 𝑥ே) , the transition 
probabilities of the stock level of product 𝑛 =1, … , 𝑁, and the machine status 𝑘 under the action 𝑎 
are as follows: 𝑇௡(𝑘ᇱ, 𝑥௡ᇱ |𝑘, 𝑥௡, 𝑎) 

=

⎩⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪
⎪⎧ 𝑃൫𝐷𝑛(𝑡) = 𝑥𝑛 − 𝑥𝑛′ ൯   𝑓𝑜𝑟 𝑥𝑛′ > 0,         ൫𝑎 = −2, −1; 𝑘′ = 0൯ ∨         ൫𝑎 = 𝑘 ≠ 𝑛 > 0, 𝑘′ = 𝑎൯ ∨൫𝑎 ≠ 𝑘 > 0, 𝑘′ = 𝑎൯   𝑃൫𝐷𝑛(𝑡) ≥ 𝑥𝑛 − 𝑥𝑛′ ൯    𝑓𝑜𝑟 𝑥𝑛′ = 0,         ൫𝑎 = −2, −1; 𝑘′ = 0൯ ∨          ൫𝑎 = 𝑘 ≠ 𝑛 > 0, 𝑘′ = 𝑎൯ ∨൫𝑎 ≠ 𝑘 > 0, 𝑘′ = 𝑎൯   𝑃൫𝐷𝑛(𝑡) = 𝑥𝑛 − 𝑥𝑛′ + 1൯  𝑓𝑜𝑟 𝑥𝑛′ > 1,𝑎 = 𝑛 = 𝑘, 𝑘′ = 𝑛      𝑃(𝐷𝑛(𝑡) ≥ 𝑥𝑛)  𝑓𝑜𝑟 𝑥𝑛′ = 1𝑎 = 𝑛 = 𝑘, 𝑘′ = 𝑛      𝜆𝑛 ෍ 𝜆𝑗𝑁

𝑗=1ൗ    𝑓𝑜𝑟  𝑥𝑛′ = (𝑥𝑛 − 1)+   
  

   𝑎 = 0, 𝑘′ = 0 1 − 𝜆𝑛 ෍ 𝜆𝑗𝑁
𝑗=1  ൗ 𝑓𝑜𝑟 𝑥𝑛′ = 𝑥𝑛,              𝑎 = 0, 𝑘′ = 00 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,            

(3)
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where 𝑡 = 𝜏(𝑠, 𝑎) and 𝐷௡(𝑡) is the random variable 
with distribution 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆௡𝑡). For 𝑥௡ᇱ > 0,  if the 
action is conducting corrective or preventive 
maintenance (𝑎 = −2, −1), setup for any product (𝑎 > 0 ∧ 𝑎 ≠ 𝑘) or producing an item other than 𝑛 (𝑎 > 0 ∧ 𝑎 = 𝑘 ≠ 𝑛); then the transition probability 
to the next state (𝑥௡ᇱ , 𝑘ᇱ) is 𝑃(𝐷௡(𝑡) = 𝑥௡ − 𝑥௡ᇱ );  for 𝑥௡ᇱ = 0 , then the corresponding probability is 𝑃(𝐷௡(𝑡) ≥ 𝑥௡ − 𝑥௡ᇱ )  for the same actions. If 
production takes place for product 𝑛  (𝑎 = 𝑛 = 𝑘 ), 
then the transition probability to the next state is 𝑃(𝐷௡(𝑡) = 𝑥௡ − 𝑥௡ᇱ + 1) when 𝑥௡ᇱ > 1; for 𝑥௡ᇱ = 1, 
the transition probability is 𝑃(𝐷௡(𝑡) ≥ 𝑥௡ − 𝑥௡ᇱ +1) . In case the machine is idle (𝑎 = 0), then the 
inventory level at the next decision epoch is either 𝑥௡ᇱ = (𝑥௡ − 1)ା with probability 𝜆௡ ∑ 𝜆௝ே௝ୀଵ⁄  (first 
demand is for item 𝑛) or 𝑥௡ᇱ = 𝑥௡  with probability 1 − 𝜆௡ ∑ 𝜆௝ே௝ୀଵ⁄  (the first arrival is demand for 
another product).  

Let  𝑆௡ଵ, 𝑆௡ଶ, …  denote demand arrival times for 
product 𝑛. Then, the conditional expectation of 𝑆௡௝ , 
given that  𝑚  demand arrivals occur in period of 
length 𝑡, is given by 𝐸ൣ𝑆௡௝ห𝐷௡(𝑡) = 𝑚൧ = 𝑡𝑗𝑚 + 1 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑚. (4)

By using the conditional expectation of arrival 
times, the expected inventory holding cost for product 𝑛 , accumulated in a period of length 𝑡 , can be 
expressed as 𝐻௡ሾ𝑥௡, 𝑡ሿ 

= 𝑐ℎ௡ ෍ ෍ ൬ 𝑡𝑗𝑚 + 1൰ 𝑃(𝐷௡(𝑡) = 𝑚)௠
௝ୀଵ

௫೙
௠ୀ଴  

   +𝑐ℎ௡ ෍ 𝑡(𝑥௡ − 𝑚)𝑃(𝐷௡(𝑡) = 𝑚)௫೙
௠ୀ଴  

+𝑐ℎ௡ ෍ ෍ ൬ 𝑡𝑗𝑚 + 1൰ 𝑃(𝐷௡(𝑡) = 𝑚)௫೙
௝ୀଵ

ஶ
௠ୀ௫೙ାଵ . 

(5)

The expected lost sales cost for product 𝑛 is given by 𝐿௡ሾ𝑥௡, 𝑡ሿ 
= 𝑐𝑙௡ ෍ (𝑚 − 𝑥௡)𝑃(𝐷௡(𝑡) = 𝑚)ஶ

௠ୀ௫೙ାଵ . 
(6)𝐶(𝑠, 𝑎) denotes the total expected cost incurred 

until the next decision epoch if action 𝑎 is taken in 
state 𝑠. It can be expressed as 

𝐶(𝑠, 𝑎) 

=

⎩⎪⎪
⎪⎪⎪
⎪⎪⎪
⎨⎪
⎪⎪⎪
⎪⎪⎪
⎪⎧ ∑ 𝑥௡𝑐ℎ௡ே௡ୀଵ∑ 𝜆௡ே௡ୀଵ + ∑ 𝑐𝑙௡(1 − 𝑥௡)ା ே௡ୀଵ 𝜆௡∑ 𝜆௡ே௡ୀଵ   𝑓𝑜𝑟 𝑎 = 0𝑐𝑐 + ෍ 𝐻௡ሾ𝑥௡, 𝐶𝑇ሿ +ே

௡ୀଵ ෍ 𝐿௡ሾ𝑥௡, 𝐶𝑇ሿே
௡ୀଵ    𝑓𝑜𝑟 𝑎 = −2 𝑐𝑝 + ෍ 𝐻௡ሾ𝑥௡, 𝑃𝑇ሿ +ே

௡ୀଵ ෍ 𝐿௡ሾ𝑥௡, 𝑃𝑇ሿே
௡ୀଵ        𝑓𝑜𝑟 𝑎 = −1      ෍ 𝐻௡ሾ𝑥௡, 𝜌௠ሿே

௡ୀଵ  + ෍ 𝐿௡ሾ𝑥௡, 𝜌௠ሿ        ே
௡ୀଵ                  𝑓𝑜𝑟 𝑎 = 𝑚, 𝑚 = 𝑘𝑐𝑠௠ + ෍ 𝐻௡ሾ𝑥௡, 𝑆𝑇௠ሿ +ே

௡ୀଵ ෍ 𝐿௡ሾ𝑥௡, 𝑆𝑇௠ሿே
௡ୀଵ𝑓𝑜𝑟 𝑎 = 𝑚, 𝑚 ≠ 𝑘. (7)

The average cost optimality equation is as follows 𝑉∗(𝑠) = min௔∈஺(௦)ሼ𝐶(𝑠, 𝑎) − 𝑔∗𝜏(𝑠, 𝑎) + ෍ 𝑃(𝑠ᇱ|𝑠, 𝑎)௦ᇲ∈ௌ 𝑉∗(𝑠ᇱ)ൡ   ∀𝑠 ∈ 𝑆, 
(8)

where 𝑠 = (𝑖, 𝑘, 𝑥ଵ, … , 𝑥ே)  and 𝑠ᇱ =(𝑖ᇱ, 𝑘ᇱ, 𝑥ଵᇱ , … , 𝑥ேᇱ ) and the transition probability is 

𝑃(𝑠ᇱ|𝑠, 𝑎) = 𝑃௜௜ᇲ௞,௔ ෑ 𝑇௡(𝑘ᇱ, 𝑥௡ᇱ |𝑘, 𝑥௡, 𝑎).ே
௡ୀଵ  

(9)

A solution to these equations gives the minimum 
expected average cost per time unit 𝑔∗ and optimal 
value functions 𝑉∗(𝑠). Any policy that minimizes the 
right-hand side of (8) for all 𝑠 ∈ 𝑆 is optimal. 

4 SOLUTION METHOD 

Dynamic programming methods provide exact 
optimal policies by iteratively solving the Bellman 
equations. However, they are not computationally 
feasible for large and even for moderate-size 
problems. Hence, we apply the Q-learning algorithm 
to our problem, which is a model-free reinforcement 
learning algorithm proposed by Watkins (1989). Q-
learning estimates the optimal state-action values (Q-
values) by the sampled values instead of using 
complete transition probabilities to make expected 
updates. 
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1. Initialize a starting state 𝑠, and 𝑄(𝑠, 𝑎) for all 𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐴(𝑠) 
2. For 𝑡 = 1,  2, … , 𝑇 
 2.1. Choose action 𝑎 ∈ 𝐴(𝑠) for state 𝑠 (𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦) 
 2.2. Sample the cost 𝑐(𝑠, 𝑎), the sojourn time 𝜏 and the next state 𝑠ᇱ based on the current state 𝑠 and action 𝑎  
 2.3. Update the Q-value by the equation: 
             𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ൬𝑐(𝑠, 𝑎) + 𝑒ିఊఛ min௔ᇲ∈஺(௦ᇲ) 𝑄(𝑠ᇱ, 𝑎ᇱ) − 𝑄(𝑠, 𝑎)൰ 

 2.4. Update 𝑠 ← 𝑠ᇱ  
3. Return 𝜇(𝑠) = 𝑎𝑟𝑔 𝑚𝑖𝑛௔∈஺(௦) 𝑄(𝑠, 𝑎)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆 

Figure 1: Steps of Q-learning for SMDP. 

We use the Q-learning algorithm adapted for  
the SMDP (Bradtke and Suff, 1994), which is 
proven to converge to an optimal policy if certain 
conditions are satisfied (Parr, 1998). Figure 1 shows 
the steps of the algorithm. First, the Q-values are 
initialized to 0 . Then, in Step 2, to balance 
exploration and exploitation, an action is chosen for 
current state 𝑠 according to the 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy 
in which the greedy action is taken with probability (1 −  𝜖)  and a random action is taken with 
probability 𝜖 . In Step 2.2, the realization of the 
degradation path on the current state-action pair  
and the product demands are sampled. By using 
these values, the one period cost 𝑐(𝑠, 𝑎) and the next 
state 𝑠ᇱ  are determined by the system equations 
given in Appendix. Once these values are obtained, 
the state-action value of the visited state-action pair, 𝑄(𝑠, 𝑎) , is updated with the temporal difference ൬𝑐(𝑠, 𝑎) + 𝑒ିఊఛ min௔ᇲ∈஺(௦ᇲ) 𝑄(𝑠ᇱ, 𝑎ᇱ) − 𝑄(𝑠, 𝑎)൰ , where 𝜏 is the sampled sojourn time to the next iteration, and 𝛾  is the discount factor which is chosen to be 
sufficiently small in order to minimize the average 
cost. Note that the learning rate, 𝛼 , satisfies the 
necessary conditions for optimality (Parr, 1998). 

5 NUMERICAL EXAMPLE 

In this section, we consider a manufacturing system 
that produces three products (𝑁 = 3) . For each 
product 𝑛, the storage capacity is 𝑥̅௡ = 20. The setup 
costs are set to zero as they mainly correspond to the 
time lost when the system in not operating, which is 
represented by the setup times. For each product, the 
randomly generated parameters within the specific 
ranges are shown in Table 1. The machine 
degradation follows a gamma Process with shape 𝛼 =0.5  and scale parameter 𝛽 = 1 , and the failure 
threshold is 𝐿 = 10 . Based on the procedure 
proposed by De Jonge (2019), the gamma process is 
approximated by a discrete-time Markov Chain with 

21 states where 1 is the as-new state and 21 is the 
failure state 𝐹. 

Table 1: Problem parameters. 

Parameter Value
Demand rates U(0.1, 0.25)
Production rates U(1,2) 
Preventive maintenance time U(4,8) 
Corrective maintenance time U(10,16)
Setup time U(0.5,2) 
Preventive maintenance cost U(300,500)
Corrective maintenance cost U(800,1000)
Holding costs U(0.5,2) 
Lost sales costs U(100,200)

In the Q-learning algorithm, the actions are selected 
according to 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy. Initially, we set 𝜖 to 0.1, then every 10ହ iterations, it is reduced by 𝜖 ← 0.9 ×  𝜖 . In updating the Q-values, the harmonic 
learning rate, 𝛼 = 𝑏 (𝑏 + 𝑁௧(𝑠, 𝑎) − 1)⁄  with 𝑏 = 5, 
is used, where 𝑁௧(𝑠, 𝑎) is the number of times that a 
state action pair (𝑠, 𝑎) has been visited up to the time 𝑡; the parameter 𝑏 is tuned based on the procedure in 
Powell (2011).  Figure 2 shows the learning curve for 
the Q-learning. The convergence of the average cost 
rate towards the end of the simulation indicates that 
the algorithm has reached a stable policy. The 
solution algorithm is implemented in Wolfram 
Mathematica 12. The computational experiment took 
223.35 minutes on a quad-core Intel i7 processor 
running at 1.80 GHz with 16 GB RAM. 

6 CONCLUSIONS 

In this paper, we have addressed the joint 
optimization of production, inventory and CBM for a 
stochastically degrading multi-product production 
system with considerable setup and maintenance 
times under stochastic product demands. The goal is 
to find a dynamic production and maintenance policy 
so as to minimize the long run average cost per time 
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Figure 2: Learning curve of the Q-learning. 

unit, which contains setup, holding, lost sales, 
preventive maintenance and corrective maintenance 
costs. The problem has been formulated as a SMDP, 
in which decisions are made based on the current 
machine status and stock levels of the products.  To 
solve this problem, we have proposed a Q-learning 
algorithm and illustrate its performance by a 
numerical example.  
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APPENDIX 

The system evolves as follows: At a decision epoch, 
upon observing the state 𝑠 = (𝑖, 𝑘, 𝑥ଵ, … , 𝑥ே), one of 
the following actions can be chosen: (1) perform 
corrective maintenance if and only if failure occurs; 
(2) perform preventive maintenance; (3) keep the 
machine idle; (4) produce item 𝑚. Then, based on 
state 𝑠 = (𝑖, 𝑘, 𝑥ଵ, … , 𝑥ே) , the selected action 𝑎 ∈

𝐴(𝑠), the sampled degradation path and the demand 
values (also the arrival times), the one-period cost 𝑐(𝑠, 𝑎) and the next state 𝑠ᇱ = (𝑖ᇱ, 𝑘ᇱ, 𝑥ଵᇱ, … , 𝑥ேᇱ) are 
determined by the following equations: 

Let, 𝜏: time until the next decision epoch, 𝑑௡:  sampled demand for product 𝑛  from                   𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆௡𝜏) for 𝑛 = 1, … , 𝑁, 𝑆௡௥: sampled 𝑟௧௛ demand arrival time for 
      𝑟 = 1, … , 𝑑௡ and for product 𝑛 = 1, … , 𝑁, 𝑤௡ = 𝑚𝑖𝑛ሼ𝑥௡, 𝑑௡ሽ for product 𝑛 = 1, … , 𝑁, 

1. If 𝑖 = 𝐹  and corrective maintenance is being 
performed (𝑎 = −2), then 𝜏 = 𝐶𝑇, 𝑐(𝑠, 𝑎) = 𝑐௖ + ෍ ෍ ൫1 − 𝑒ିఊௌ೙ೝ ൯𝛾 𝑐ℎ௡௪೙

௥ୀଵ
ே

௡ୀଵ  

+ (1 − 𝑒ିఊఛ)𝛾 ෍ 𝑐ℎ௡(𝑥௡ − 𝑤௡)ே
௡ୀଵ  

+ ෍ ෍ 𝑒ିఊௌ೙ೝ 𝑐𝑙௡ௗ೙
௥ୀ௪೙శభ

ே
௡ୀଵ , 𝑖ᇱ = 1, 𝑘ᇱ = 0, 𝑥ଵᇱ = (𝑥ଵ − 𝑑ଵ)ା, … , 𝑥ேᇱ = (𝑥ே − 𝑑ே)ା. 

2. If 𝑖 < 𝐹  and preventive maintenance is being 
performed (𝑎 = −1), then 𝜏 = 𝑃𝑇, 𝑐(𝑠, 𝑎) = 𝑐௣ + ෍ ෍ ൫1 − 𝑒ିఊௌ೙ೝ ൯𝛾 𝑐ℎ௡௪೙

௥ୀଵ
ே

௡ୀଵ  

+ (1 − 𝑒ିఊఛ)𝛾 ෍ 𝑐ℎ௡(𝑥௡ − 𝑤௡)ே
௡ୀଵ  

+ ෍ ෍ 𝑒ିఊௌ೙ೝ 𝑐𝑙௡ௗ೙
௥ୀ௪೙శభ

ே
௡ୀଵ , 𝑖ᇱ = 1, 𝑘ᇱ = 0, 𝑥ଵᇱ = (𝑥ଵ − 𝑑ଵ)ା, … , 𝑥ேᇱ = (𝑥ே − 𝑑ே)ା. 

3. If 𝑖 < 𝐹 and the machine is being kept idle (𝑎 =0), then, let 𝑆∗ = 𝑚𝑖𝑛ሼ𝑆ଵଵ, … , 𝑆ேଵ ሽ, and 𝑆௥ଵ = 𝑆∗, for 
some 𝑟 ∈ ሼ1, … , 𝑁ሽ, then 𝜏 = 𝑆∗, 𝑐(𝑠, 𝑎) = (1 − 𝑒ିఊఛ)𝛾 ෍ 𝑐ℎ௡𝑥௡ே

௡ୀଵ  +𝑒ିఊఛ𝑐𝑙௥(1 − 𝑥௥)ା, 𝑖ᇱ = 𝑖, 𝑘ᇱ = 0, 𝑥௥ᇱ = (𝑥௥ − 1)ା. 𝑥௠ᇱ = 𝑥௠ 𝑓𝑜𝑟 𝑚 ∈ ሼ1, … , 𝑁ሽ ∖ 𝑟 
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4. If  𝑖 < 𝐹  and product 𝑚 is going to be produced 
(𝑎 = 𝑚), then 

4.1. If 𝑎 = 𝑚 = 𝑘,  𝜏 = 𝜌௠, 𝑐(𝑠, 𝑎) = ෍ ෍ ൫1 − 𝑒ିఊௌ೙ೝ ൯𝛾 𝑐ℎ௡௪೙
௥ୀଵ

ே
௡ୀଵ  

+ (1 − 𝑒ିఊఛ)𝛾 ෍ 𝑐ℎ௡(𝑥௡ − 𝑤௡)ே
௡ୀଵ  

+ ෍ ෍ 𝑒ିఊௌ೙ೝ 𝑐𝑙௡ௗ೙
௥ୀ௪೙ାଵ

ே
௡ୀଵ , 𝑖ᇱ ≥ 𝑖,  𝑘ᇱ = 𝑚, 𝑥ଵᇱ = (𝑥ଵ − 𝑑ଵ)ା, … , (𝑥௠ − 𝑑௠)ା + 1, … , 𝑥ேᇱ = (𝑥ே − 𝑑ே)ା. 

4.2. If 𝑎 = 𝑚 ≠ 𝑘,  𝜏 = 𝑆𝑇௠, 𝑐(𝑠, 𝑎) = 𝑐𝑠௠ + ෍ ෍ ൫1 − 𝑒ିఊௌ೙ೝ ൯𝛾 𝑐ℎ௡௪೙
௥ୀଵ

ே
௡ୀଵ  

+ (1 − 𝑒ିఊఛ)𝛾 ෍ 𝑐ℎ௡(𝑥௡ − 𝑤௡)ே
௡ୀଵ  

+ ෍ ෍ 𝑒ିఊௌ೙ೝ 𝑐𝑙௡ௗ೙
௥ୀ௪೙శభ

ே
௡ୀଵ , 𝑖ᇱ = 𝑖, 𝑘ᇱ = 𝑚, 𝑥ଵᇱ = (𝑥ଵ − 𝑑ଵ)ା, … , (𝑥௠ − 𝑑௠)ା, … , 𝑥ேᇱ = (𝑥ே − 𝑑ே)ା. 
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