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Abstract: Although CNN-based classifiers have been successfully applied to many pattern classification problems, they 
suffer from adversarial attacks. Slightly modified images can be classified as completely different classes. It 
has been reported that CNN-based classifiers tend to construct decision boundaries close to training samples.  
In order to mitigate this problem, we applied modified kNN classifiers in the output vector space of CNN-
based classifiers. Experimental results show that the proposed method noticeably reduced the classification 
error caused by adversarial attacks. 

1 INTRODUCTION 

CNN-based classifiers have been applied in various 
pattern recognition and signal/image processing areas, 
which include object recognition (Barbu, 2019; 
Hendrycks, 2021; Wang, 2019; Ouyang, 2015, Wonja, 
2017, Girshick, 2014), image processing (Jin, 2017; 
Kim, 2021), speech recognition (Sainath, 2015, 
Amodei, 2016), medical imaging (Gibson, 2018), and 
super-resolution (Kim, 2017; Lee, 2021). Although 
they produced good performance compared to 
conventional methods, CNN-based classifiers have a 
reliability problem. One can easily make a CNN-
based classifier to misclassify slightly modified 
images (Szegedy, 2014). For example, Fig. 1(a) is 
correctly classified as ‘4’ while Fig. 1(b) is 
misclassified as ‘8’. The vulnerability of CNN-based 
classifiers to this kind of adversarial attack is a serious 
reliability issue, which is still unsolved (Goodfellow, 
2015; Ilyas, 2019; Akhtar, 2018).  

 
Figure 1: (a) Correctly classified image, (b) adversarial 
example misclassified as 8, (c) magnified difference image. 

It has been reported (Woo, 2018) that CNN-based 
classifiers tend to construct decision boundaries close 

 
(a)                                       (b) 

Figure 2: Decision boundary formation of neural networks 
for circular distributions. (a) Circular distribution of two 
classes, (b) decision boundaries. 

to training samples (Fig. 2). In particular, when the 
ReLU function is used, it appears that the decision 
boundaries failed to construct desirable decision 
boundaries that divide the input space into 
meaningful subregions even in a low dimensional 
space. Even when the sigmoid function was used as 
activation functions, the results were not very 
promising (Woo, 2018). If the training samples 
contain some erroneous samples, which may almost 
always happen in a real-world application, the neural 
networks with the sigmoid function also failed to 
construct proper decision boundaries. 

In order to reduce this kind of vulnerability of 
CNN-based classifiers, we evaluated a modified kNN 
classifier in the output vector space of CNN-based 
classifiers. The output vector space is the last layer of 
CNN structures and the dimension is the same as the 
number of classes. The number of training samples to 
train a CNN-based classifier can be very large. For 
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example, for the ImageNet database, the number of 
training samples is 1281167. In the conventional kNN 
classifier, we need to compute the distances between a 
test sample and all the training samples. Consequently, 
the computational cost can be prohibitively large. In 
order to solve this problem, we propose a modified 
kNN classifier for the classification in the output vector 
space. To evaluate the proposed method, we applied 
the modified kNN classifier to 12 CNN-based 
classifiers (Simonyan, 2014; Zhang, 2016; Zagoruyko, 
2016; Simonyan, 2015; Huang, 2017; Sandler, 2018; 
Xie, 2017; Szegedy, 2015; Szegedy, 2016; Ma, 2018; 
Tan, 2019). 

2 ADVERSARIAL IMAGES 

It has been reported that one can easily fool a CNN-
based classifier by slightly modifying images so that 
the classifier would misclassify the modified images. 
Almost all CNN-based classifiers are vulnerable to 
adversarial attacks. We generated adversarial images 
of 12 CNN-based classifiers for correctly classified 
validation samples of the ImageNet database. The 
difference between an adversarial image and the 
corresponding original image can be defined as 
follows: 

ori advD I I= −  
where oriI  is an original image after normalization 
and advI  is an adversarial image. We generated 
adversarial images of various distances (D=1, 2, 4, 8, 
16, 32). Figs. 3-8 show some adversarial images of 
the various distances. In particular, as can be seen in 
Fig. 9 (D=1), some adversarial images are 
indistinguishable from the original images. Most of 
the adversarial class images have some similar 
features and these results indicate that the current 
CNN-based classifiers form decision boundaries very 
close to training samples. Several observations can  
be made about the adversarial images. Some 
adversarial image classes have similar characteristics 
whereas others appear to be completely different. As  

 
(a)               (b)                    (c)                (d) 

Figure 3: Class C65 (sea snake) is misclassified as C50 
(American alligator, Alligator mississipiensis).  (a) original, 
(b) adversarial, (c) difference (D=1), (d) representative 
image of C50. 

the distance increase, some artifacts become visible 
and it is more likely that the adversarial images are 
misclassified as completely unlikely classes. 

 
(a)               (b)                    (c)                (d) 

Figure 4: Class C517 (crane) is misclassified as C755 (radio 
telescope, radio reflector).  (a) original, (b) adversarial, (c) 
difference (D=2), (d) representative image of C755. 

 
(a)               (b)                    (c)                (d) 

Figure 5: Class C595 (harvester, reaper) is misclassified as 
C856 (thresher, thrasher, threshing machine).  (a) original, 
(b) adversarial, (c) difference (D=4), (d) representative 
image of C856. 

 
(a)               (b)                    (c)                (d) 

Figure 6: Class C65 (sea snake) is misclassified as C49 
(African crocodile, Nile crocodile, Crocodylus niloticus).  
(a) original, (b) adversarial, (c) difference (D=8), (d) 
representative image of C49. 

 
(a)               (b)                    (c)                (d) 

Figure 7: Class C109 (brain coral) is misclassified as C973 
(coral reef).  (a) original, (b) adversarial, (c) difference 
(D=16), (d) representative image of C973. 

 
(a)               (b)                    (c)                (d) 

Figure 8: Class C23 (vulture) is misclassified as C327 
(starfish, sea star).  (a) original, (b) adversarial, (c) 
difference (D=32), (d) representative image of C327. 
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C948(Granny Smith)→C719(piggy bank, penny bank) 

 
C858(tile roof) → C538(dome) 

 
C573(go-kart) → C561(forklift) 

 
C813(spatula)→ C784(screwdriver) 

 
C861(toilet seat) → C999(toilet tissue, toilet paper, bathroom 

tissue) 

 
C658(mitten) → C911(wool, woolen, woollen) 

 
C484(catamaran) → C977(sandbar, sand bar) 

 
C463(bucket, pail) → C647(measuring cup) 

Figure 9: Indistinguishable adversarial images with very 
small differences (D=1). The first column images are 
original images, the second column images are adversarial 
images, the third column images are difference images, and 
the fourth column images are representative images of the 
adversarial classes. 

3 MODIFIED KNN CLASSIFIERS 

In the conventional kNN classifier, we find the k 
nearest neighbour samples of a test sample and count 
the number of samples of each class (Fig. 10). Then, 
we decide the class that has the largest number of 
samples among the k nearest neighbour samples: 

( ) ( )
( ) .

i i j

i i

Decide X if g X g X
where g X k

ω∈ >

=
 

 

However, it is not easy to use the kNN classfier when 
the number of training samples is very large as in the 
case of the ImageNet database. 

In order to solve this problem, we modified the 
kNN classifier. For each test sample, we choose k top-
ranking classes. For each chosen top-ranking class of 
the k classes, we find m samples closest to the test 
sample. Then, we compute the average distance as 
follows: 

1

1 1,...,
m

class j
class j test i th closest

i
D I I j k

m −
=

= − =  

where class j is the j-th ranking class for the test 
sample. Finally, we choose the class with the 
minimum average distance. Using this modified kNN 
classifier, we only need to compute the distances of 
the test samples and kxL training samples where L is 
the average number of training samples of each class. 
In case of the ImageNet database, the value of L is 
about 1281. 

 
Figure 10: kNN classifier (1NN). 

4 EXPERIMENTAL RESULTS 

We generated adversarial images of various distances 
(1, 2, 4, 8, 16, 32) using the 12 models (MnasNet, 
VGG, DenseNet, MobileNet, Inception, GoogleNet, 
ShuffleNet, ResNext, WideResNet, ResNet50, 
ResNet101, ResNet152). The adversarial images of 
all the models are very similar to the original images 
when the distances are small and all the models 
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showed similar characteristics in that such adversarial 
images can be easily generated.  

 
Figure 11: Performance comparison of modified kNN 
classifiers. Top 5 classes were chosen and the average 
values of 7, 9, 10 nearest samples were used. 

 
Figure 12: Performance comparison of modified kNN 
classifiers. Top 10 classes were chosen and the average 
values of 7, 9, 10 nearest samples were used. 

Fig. 11 shows a performance comparison of modified 
kNN classifiers (top 5 classes were chosen and the 
average values of 7, 9, 10 nearest samples were used). 
Fig. 12 shows a performance comparison of modified 
kNN classifiers (top 10 classes were chosen and the 
average values of 7, 9, 10 nearest samples were used). 
It can be seen that using top 10 classes or top 5 classes 
produced very similar performance. Thus, we used 
top 5 classes to classify the adversarial images. 
Compared to the conventional CNN-based classifiers, 
the modified kNN classifiers produced slightly lower 

performance (errors increased by about 3-4% as can 
be seen in Figs. 11-12). 

 

 

 
Figure 13: Performance comparison of modified kNN 
classifiers against adversarial images (MnasNet, VGG, 
DenseNet, MobileNet). The original CNN-based classifiers 
misclassified all the adversarial images. 
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Figure 14: Performance comparison of modified kNN 
classifiers against adversarial images (Inception, 
GoogleNet, ShuffleNet, ResNext). The original CNN-
based classifiers misclassified all the adversarial images. 

In Figs. 13-15, top 5 classes were chosen and the 
average values of 5, 7, 9 nearest samples were used 
for the modified kNN classifier. The original CNN-
based classifiers misclassified all the adversarial 
images as expected.  

 

 

 

 
Figure: 15: Performance comparison of modified kNN 
classifiers against adversarial images (WideResNet, 
ResNet50, ResNet101, ResNet152). The original CNN-
based classifiers misclassified all the adversarial images. 

For images with  small distances (D=1, 2), the 
classification accuracy of the proposed kNN 
classifiers is 0.187~0.415 (D=1) and 0.125~0.329 
(D=2). For images with large distances (D=1, 2), the 
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classification accuracy of the proposed method is 
0.046~0.129 (D=16) and 0.044~0.116 (D=32). It is 
noted that the classification accuracy of the original 
CNN-based classifiers is zero (100% error) for the 
adversarial images. 

5 CONCLUSIONS 

In this paper, we proposed modified kNN classifiers 
for the output vector space of CNN-based classifiers 
to provide robust performance against adversarial 
attacks. To reduce the complexity problem of 
conventional kNN classifiers when the number of 
training samples is very large, we propose a modified 
kNN classifier for CNN-based classifiers. The 
proposed method was evaluated using 12 models and 
showed noticeable improvement in reducing the 
classification error caused by adversarial attacks. By 
applying the kNN classifier in the middle layers, it 
may be possible to further improve performance. 
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