
Challenges in Modeling and Unmodeling Emergence, Rule Composition,
and Networked Interactions in Complex Reactive Systems

Assaf Marron1 a, Irun Cohen2 b, Guy Frankel1 c, David Harel1 d and Smadar Szekely1 e

1Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel
2Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, 76100, Israel

Keywords: Modeling, Simulation, Emergent Entities, Rule-Based Specifications, Incremental Development, Evolution.

Abstract: Models of complex systems, both human-made and natural, assist in making critical decisions with regard
to function, safety, economy, the environment and more. In this position paper, we explore the difficulty in
modeling several innate properties of such systems, including: (i) the frequent emergence of new entities (like
group effects and temporal patterns) and the system’s reaction to such emergence; (ii) the essence of the sys-
tem’s reactive behavior as a rich composition of stand-alone rules; and (iii) the vast number of internal and
external interactions that the system engages in. For each of these challenges we propose some implications to
modeling—methodological approaches that can help address it and potential support in modeling languages
and tools. We introduce the concept of unmodeling—formally defining model entities and behaviors that are
excluded from model execution—and discuss how unmodeling enhances model quality, supports incremental
enhancement, and facilitates evaluation. This report emanates from our research and development in modeling
languages and methods and our present research in biological evolution. We believe that analysis and imple-
mentation of these principles have general applicability in model development and assessment.

1 INTRODUCTION

Complex systems, both human-made and natural, are
often studied with the aid of computer models and
simulations (Saprykin et al., 2019; Mencuccini et al.,
2019; Liu et al., 2021). Common uses are explo-
ration and prediction of system behaviors under vari-
ous conditions and the testing of theories about mech-
anisms underlying the system. For an engineered sys-
tem, performing tests on models can enhance overall
testing and validation (Briand et al., 2016). Models
and simulations also play a growing role in education,
in teaching and learning of STEM skills like abstrac-
tion, computational thinking, mechanistic reasoning,
analytical observation and more (Armoni et al., 2021;
Haskel-Ittah, 2022).

When using a model for critical decisions, its
correctness in representing the modeled system is
important. To this end, various techniques are ap-

a https://orcid.org/0000-0001-5904-5105
b https://orcid.org/0000-0002-3906-6993
c https://orcid.org/0000-0001-5809-3455
d https://orcid.org/0000-0001-7240-3931
e https://orcid.org/0000-0003-1361-1575

plied including testing and formal verification of com-
ponents that simulate well-understood system ele-
ments, and checking that model predictions align
with already-known real-world effects (Christin et al.,
2021; Sankararaman and Mahadevan, 2015). How-
ever, system complexity often prevents complete vali-
dation or even measurement of the quality of a model.

Solving modeling difficulties requires recognition
and analysis of specific issues. In this paper, we
document three properties that are common to many
complex reactive systems and argue that even though
these properties are hard to model, they must be cap-
tured in models that are used in critical decisions.
For each of these properties of the modeled system
we propose some techniques that modelers can ap-
ply to deal with the challenge, and we outline possi-
ble features in modeling languages (Including UML,
SysML, Statecharts, Live Sequence Charts, MAT-
LAB/Simulink, NetLogo, etc.) and associated mod-
eling platforms that can help modelers in these tasks.

We focus on three challenges:
Reflective Emergence. Complex systems always
give rise to emergent properties and entities. These
in turn are detected and reacted to not only by exter-
nal observers, but also by the system itself. How can

202
Marron, A., Cohen, I., Frankel, G., Harel, D. and Szekely, S.
Challenges in Modeling and Unmodeling Emergence, Rule Composition, and Networked Interactions in Complex Reactive Systems.
DOI: 10.5220/0011728900003402
In Proceedings of the 11th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2023), pages 202-209
ISBN: 978-989-758-633-0; ISSN: 2184-4348
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



such delayed reactions be programmed in a model?
Diversity of Rule-Composition Semantics. The
mechanisms driving complex reactive systems, and
hence their models, are subject to description or spec-
ification as a set of rules, each specifying a behavior
or a constraint under certain conditions or following
a certain sequence of events. These rules are subject
to complex, diverse, sometimes tacit, composition se-
mantics. Presently, modeling languages may enforce
fixed, universal, ”one size fits all” semantics for all
rule composition. Human-written rule-based descrip-
tions of, or requirements for, systems and models are
rarely associated with any formal semantics. That be-
ing the case, how can a system’s behavior be accu-
rately specified or understood?
Networked Interactions. Complex systems operat-
ing in the real world are part of a vast network of inter-
nal and external interactions. Clearly, not all of these
interactions can be included in one model. How can
stakeholders assess the final choices of what to model
and what to abstract away?

While there is much research on model driven en-
gineering and related challenges (Bucchiarone et al.,
2020; Troya et al., 2021), and on modeling and sim-
ulation of complex engineering systems like digital
twins (Liu et al., 2021), we have not seen detailed,
focused discussions of the system properties and en-
suing challenges that are discussed here.

Additional system properties and modeling chal-
lenges that deserve similar treatment surfaced during
our work. We defer such discussions to future work.
These include: (i) The pervasiveness of order, and the
recognition that randomness is at times only a conve-
nient simplifying abstraction; (ii) the unending chains
of causes and effects; (iii) the importance of distin-
guishing individual entities, regardless of how similar
other entities of a given type may be; (iv) The coexis-
tence and interaction of events, actions and processes
that operate at different time scales.

Some modeling requirements can be handled
through unmodeling: documenting, and even repre-
senting as model elements, entities and effects that
are excluded from model execution, model transfor-
mation, etc. Unmodeling is actually a modeling ac-
tivity in which modelers delineate the model’s scope
by detailing what will be included in simulations and
formal analysis and processing and what will be ex-
cluded. By explicitly specifying this scope, unmodel-
ing can reduce accidental omissions of important as-
pects, support planning and incremental development,
and add depth to the assessment of a model’s applica-
bility to a given decision task.

As described in Section 2, this paper was triggered
by our research in modeling biological evolution and

by our engagement with the use of modeling in sci-
ence education. Yet, we believe that the ideas pre-
sented here transcend our specific contexts and can
be applied in systems ranging from the global econ-
omy through transportation and autonomous vehicles
to biological contexts like the immune or nervous sys-
tems of organisms; indeed, the examples throughout
the paper come from diverse domains. Furthermore,
while some of the points we raise may be familiar,
we believe that these challenges deserve additional at-
tention and a more central role in methodologies for
system modeling and in system engineering at large.

2 MOTIVATION

2.1 Modeling Biological Evolution

A key question in natural sciences is how can order
emerge from disorder considering the universal ten-
dency toward disorder dictated by the second law of
thermodynamics (Schrödinger, 1944). Furthermore,
one asks, why did certain forms of order evolve, like
the particular species of our biosphere, and not others.
Study of the respective theories is often supported a
variety of models and modeling methods. Our own
research (Cohen and Marron, 2020; Cohen and Mar-
ron, 2022) is inspired by many questions that the clas-
sical Darwinian theory of natural selection and sur-
vival of the fittest, and its synthesis with genetics,
leave open. We argue that the emergence, sustain-
ment, and evolution of species is driven by the ability
of networks of repeating interactions to retard the in-
evitable destruction of organized structures and pro-
cesses. To put the discussion in context, consider
the dependence of all multi-cellular organisms on a
diverse microbiome (Blaser, 2014), the networks in
which trees and fungi exchange energy, matter and
information (Simard, 2018), and the rich diversity
and symbiosis in a coral colony within and among
species (Rosenberg et al., 2007). The networks are
sustained not only by the value of what is exchanged
or done in each interaction, but by the very repetition
of patterned interactions. When such networks expe-
rience innovations like genetic mutations or environ-
mental changes, they may be reshaped into different
sustained configurations. This is evolution. Further-
more, we show that a process we term natural autoen-
coding is the mechanism by which typed structures
are created, each with its species interaction code, a
set of shared essential interactions that enable indi-
vidual organisms to fulfil their sustaining role in their
internal and external networks. Winning in compe-
titions over limited resources and having reproduc-

Challenges in Modeling and Unmodeling Emergence, Rule Composition, and Networked Interactions in Complex Reactive Systems

203



tive advantages are only part of the picture. The im-
plications of this theory of evolution, extend beyond
pure biology,affecting human social, economic, gov-
ernance and education perspectives.

Modeling natural autoencoding, with its empha-
sis on the emergence of patterns subject to numer-
ous laws of nature and the unbounded web of natural
interactions, internal and external to each organism
and species, presents intriguing technical challenges.
In this paper we outline domain-independent method-
ologies for tackling three of these difficulties.

2.2 Tools for Science Education

Our group is also associated with a variety of efforts
in science education (See, e.g., (Armoni et al., 2021);
https://www.iamplethora.com).

Consider the following simplified account of de-
veloping a scenario-based model for educational pur-
poses, using the Plethora Science platform (presently
under development) describing certain aspects of an
ecological niche. Initially the model consists of rules,
or scenarios, that can be summarized as:

1. When the days are longer than hmin hours, flowers
bloom; otherwise, flowers do not bloom.

2. When the temperature is above tmin degrees, bees
are active; otherwise, bees hibernate.

3. For months m1-m12, the number of daylight hours
h1-h12, respectively, is specified.

4. For months m1-m12, the temperatures t1-t12, re-
spectively, are specified.

5. Active bees are attracted to flowers and interact
with them.

Students experiment with various parameters to visu-
alize a range of behavior patterns for bees and flowers.
However, for the model to show that if the tempera-
ture rises above tmin in months when daylight hours
are fewer than hmin, the now active bees die of hunger,
additional rules are needed, like:

6. After interacting with a flower, a bee gains energy.

7. An active bee constantly loses energy.

8. If a bee loses all its energy, it dies.

9. After dying, a bee cannot interact with flowers.

Rule #9, about the implications of dying, is of par-
ticular interest. For a model to be correct, or use-
ful, tacit assumptions must often be explicitly mod-
eled. Through counterexamples to asserted proper-
ties, formal verification of models can help uncover
such missing rules. We also note that the dependency
of flowers on bee pollination is not presently modeled.

Figure 1: A snippet from a scenario-based model of climate
dependent interaction of bees and flowers. Model develop-
ment is an incremental discovery and specification process.
(Image credit: Plethora Science learning platform).

One then asks whether such model completeness
aspects can be supported, at least partially, by model-
ing tools. The coming sections contribute to an affir-
mative answer.

3 REACTION TO EMERGENCE

Assertion: Complex real-world systems detect the
emergence of entities and behavior patterns and react
to it.
Rationale:
A key goal of modeling complex systems is the detec-
tion of emergent properties. For example, modeling
the gravity and inertia affecting a metal rod hanging
diagonally on a nail should yield a swinging pendu-
lum motion with properties like period, amplitude or
trajectory; and, when modeling the behavior of ve-
hicles on a highway, one may be interested in see-
ing where, when and what kinds of traffic jams are
formed. But, if an emergent entity or property P in
a model of a system S is of interest to humans, it
is likely that P affects the world outside of S. It is
thus likely that S will also detect P and react to it,
changing S’s own behavior, and possibly affecting P
too. For example, drivers react to traffic congestion
and change their routes or travel schedules accord-
ingly. Such reactions are themselves emergent entities
that are reacted to; for example, when many drivers
choose the same alternate route to avoid delays, the
detour may become congested as well, and predicting
such secondary congestion may further affect driver
behaviors. In a biological context, the emergent gath-
ering of organisms around a source of food may cause
overcrowding, reduction in populations in other areas,
and other effects, triggering other chains of events that
the model may not have been prepared for, like the ac-

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

204



cumulation of toxic refuse, or limitations in motion or
in reproduction, migration of other organisms, etc.

The modeling challenge here is as follows: If
the emergent entity is planned for in detail, this may
guide and constrain the model, make its predictions
self-fulfilling prophecies, and hinder the perception of
other relevant emergence. But, if the emergent entity
is unexpected, there may be no sensors in the model
for its effects, and it may be missed altogether, along-
side with the reactions to it.

Some Implications to Modeling:

Anticipating Emergence. For types of emergent
properties and entities that the modelers expect and
that may persist in the system, add the ability to sense
them and to react to them into the basic model. The
required sensors may be reused from programmed
components that aid in automated simulation analysis.
One still has to model and simulate the system’s reac-
tions to these emergent properties. For example, in
detecting the emergence of traffic jams in transporta-
tion models, the model must be able to detect not only
long lines of slow cars, bit also secondary effects like
route changes or blocked intersections. However re-
action to emergent properties that are undesired or do
not exist in the real system, may not need be mod-
eled. For example, in modeling a chemical reaction
that might cause an explosion, if in simulations ex-
plosions indeed occur, one is likely to change the real
system, or the real environment, or the specification
of the model.
Responding to Emergence. When noticing an emer-
gent entity that was not expected: (i) discover proper-
ties of this entity and interactions and behaviors that
it is capable of; for example, if it is discovered that
certain model entities assemble into clusters, these
clusters have properties like size and speed and they
may interact with other entities, say, by serving as an
obstacle to motion or by creating a shadow; (ii) de-
termine the system’s reaction to these properties and
behaviors. Where applicable, and when not already
implied directly by lower-level rules, the model could
include all these new entities, properties, and behav-
iors. Note that real world processes too often evolve
in such an incremental reactive manner.
Unmodeling Emergence. Such incremental model-
ing may be unbounded, almost Sisyphean, and must
stop at some point. The decision to stop or suspend
this iterative incremental modeling should be justified
and documented; justifications may be related to time
scales or abstraction levels that are larger or finer than
what is necessary for the purposes of the model.

4 REACTIVE RULE
COMPOSITION

Assertion: Specifying or describing the behavior of a
complex reactive system requires composition of self-
standing rules.
Rationale:
Reactive systems respond to stimuli based on the na-
ture of the input and the current system state. For
example, the software for a web application includes
specification of the responses to different combina-
tions of user inputs and system states. In some cases,
the responses are specified in procedural programs,
checking various aspects of the input and the state be-
fore making a choice. However, in models of complex
systems, this may not be possible, since the action is
not a single choice but the result of the composition of
multiple concurrent rules specifying actions and con-
straints. Each such rule has a narrow view of the sys-
tem and the environment, never checking all possible
state variables. Naı̈vely, a rule may seen as stating
“Always, when condition C holds, take action A!” or
“Always, when C holds, forbid A!”. However, despite
the word “Always” (which is often only implied) such
rules are frequently subject to exceptions, probabilis-
tic choice, and overriding priorities.

These rules may be coded in the executable rule-
based and scenario-based specification of a model, or
they may comprise the essence of the requirements
for development or validation of such a model. Such
rules consolidate scientific knowledge about nature,
or expertise in some engineering domain. As such,
knowledge bases are incrementally built, new rules
of reactive behavior may be added in a stand-alone
manner, considering only a small number of other re-
lated requirements. For example, consider regulators,
or QA engineers trying to find out whether an au-
tonomous vehicle (AV) will “always obey a red traffic
light”, “always obey the instructions of a police per-
son”, and “ always put the safety of humans first”. At
various states, these requirements may conflict with
each other, and some priority order or other composi-
tion semantics must be specified, for example:
Collective Execution. This is probably the most stan-
dard composition. All actions triggered by a pro-
gram are eventually carried out in the real world in
some order; for example, consider an AV activating
its signal light, slowing down and turning right, all
at the same time. Documentation of the semantics of
the execution environment, like Rhapsody for state-
charts (Harel and Kugler, 2004), should specify this
execution order, be it sequential (say, by time stamp
of activation command), random, priority-based, or
arbitrary (say, by rule sequence number), etc.

Challenges in Modeling and Unmodeling Emergence, Rule Composition, and Networked Interactions in Complex Reactive Systems

205



Aggregate Execution. Multiple actions are carried
out in a way that their effects are joined or summed
up. For example, consider two AVs joining forces in
pulling a load in the same direction. The effect expe-
rienced by the load is the sum of the two forces.
Exclusionary Execution. Only one of a set of tenta-
tive actions is carried out. For example, an AV may
have to choose between stopping at a red traffic light,
or driving forward in response to a concurrent police
person directive; or, two collaborating robots that in-
tend to remove the same faulty widget from a con-
veyor belt, may have to decide which of them should
act, and which one should retreat. Such choices may
be based on priorities, probabilities, vote counting,
and more. A variant of exclusionary execution is uni-
fication. Two nearly identical actions are triggered
by different rules or software components, only one
of them is executed, but both components continue as
if “their” action was executed, unaware that the two
actions were unified into one. For example, two com-
ponents concurrently delete a database record; the
record is deleted once, but each component proceeds
as if ”its own action” was successful.
Intersection of Conditions. Self-standing rules may
specify multiple conditions that should be in effect
concurrently. For example, specifying for an AV mul-
tiple constraints for minimum and maximum speeds,
minimum and maximum distances from certain ob-
jects, etc., and all have to hold at the same time.
Meta Specifications. Rule specification may include
references to other rules. For example, a rule R1 may
specify that when unit U2 is in state failed other units
should not comply with rule R2 associated with U2.

The details of composition semantics may be crit-
ical for model correctness and/or usefulness. For ex-
ample, in the physical world, when two equal oppos-
ing mechanical forces operate on an object, the object
remains at rest; in a model, depending on the time
scale and synchronization and visualization of pro-
cesses, the forces may appear to work one at a time,
causing the object visualization to wobble.

In theory, one would need to specify the composi-
tion semantics between each pair, or even each set,
of rules in the model’s specification. This applies
both to the executable specifications that drive actions
in a simulation run, and to descriptive or interpretive
specifications explaining to stakeholders like model-
ers, customers, users, and regulators, what the system
does or should do under different conditions.

When domain experts examine a model, they need
to be convinced that their requirements and assump-
tions are implemented in a manner aligned with their
domain knowledge. Also, for every behavior ob-
served in a simulation, one needs to know if it has

been programmed directly or has emerged from pro-
gramming of other entities.

Some Implications to Modeling:

Pairwise Rule Composition Analysis. Consider all
actions that the system may trigger and all constraints
that it may impose. For every pair, or set of such ac-
tions and/or constraints, determine and document how
they should be composed if they occur together.
Defining Concurrency. As a sub-task of the above,
for every such pair or set, document what ”occurring
together” means. Various possibilities include: (i) for
systems that have synchronization points, being ini-
tiated at the same synchronization point; (ii) for ac-
tions and conditions that have a non-zero duration,
having some of their duration overlap; (iii) for serial
actions that may be queued or delayed, being queued
and awaiting execution at the same time.
Group-Wise Rule Composition Analysis. Organiz-
ing rules in groups (say, based on common effects,
or common resources) may reduce the complexity of
rule-composition analysis. Since examining all possi-
ble pairs of actions may be impractical, determining
fine grain composition only within each group, and
for each pair of groups, coarse-grain composition for
all pairs of actions that belong to these two groups.
Semantics Refinement. The varieties of composition
semantics listed above (concurrent, aggregate, exclu-
sionary, intersection and meta specification) do not
cover all possibilities and variants within these cat-
egories can also be formalized. For example, con-
sider logical operations between rules (AND, OR, and
fuzzy logic), weighted voting, maximum or minimum
consensus, Etc.

5 NETWORKED INTERACTIONS

Assertion: Complex real-world systems participate
in a vast number of networked interactions. Many in-
teractions will be unmodeled.
Rationale:
Almost by definition, a model that is implemented
in a computer program represents a closed system.
When the environment of that system is included in
the model, this environment is regularly subjected to
a limited number of behavioral assumptions, and the
system of interest and its environment are modeled as
a closed system. However, any system that operates
in the real world, interacts with numerous other sys-
tems. For example, an AV is exposed to other road
users, weather conditions, road wear and tear due to
environmental conditions and due to use and abuse

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

206



by other vehicles, construction projects, etc.; further-
more, such a vehicle leaves its own mark on its en-
vironment: most importantly, its presence and behav-
ior affects the behavior of other road users; then there
are the wear and tear, pollution, and noise that it cre-
ates; and, we should not forget the effects of stalled
vehicles (including the modeled vehicle), accidents,
commands imposed by passengers and external con-
trollers, effects of changing fuel costs, and more.

And, the biological realm, as mentioned in Sec-
tion 2 the biosphere consists of countless rich net-
works. When modeling a cell in an organism, a ma-
jor factor is its dependence on the function of var-
ious organs for providing nutrients, water and oxy-
gen, removing outputs and refuse, maintaining tem-
perature, exchanging sensory information, and much
more. Furthermore, within the cell, innumerable bio-
chemical processes concurrently operate (Karr et al.,
2015).

Even a seemingly closed human-made real-world
system, say, of gas in an insulated tank, is subject to
wear and tear, leaks, fluctuations of external tempera-
ture, presence of contaminants, and more (Woodward
and Pitbaldo, 2010). Stated differently, everything in
nature, in the real world, is connected.

The modeling challenges presented by these un-
bounded interaction networks include the sheer num-
ber of different types of interactions, the variability
and unpredictability of many of the parameters of
these interactions, and, the multiple time scales within
which they operate.

Some Implications to Modeling:

Cataloging Interactions. A model cannot use a blan-
ket assumption that all external influences are ac-
counted for. All assumptions about internal and ex-
ternal influences and interfaces with other systems
should be documented, detailing which ones were in-
corporated and which ones were ignored or abstracted
away, with proper justification.
Outward Effects. In incremental development of the
above interaction catalog, the model should document
how the modeled system affects other entities, includ-
ing additional instances of itself, and how these ef-
fects can in turn affect the system in new ways.
Fixed Conditions. A preprogrammed condition that
stays fixed throughout a simulation, may point at a
reductive or simplified assumption about the environ-
ment. Identifying and documenting such conditions
can help identify overlooked external interactions.
Frame Management. In models that are simulated
within some frame or canvas, behaviors around the
frame of the model should receive special attention—
checking what entities, energy and information may

pass through the frame, how agents interact with the
frame itself (like bouncing back, or departing from the
model), and whether and which properties throughout
the model area depend on distance from the frame.
For example, when the temperature of the system is
regulated by an external source, the temperature may
still vary within the modeled space.
Multi-Model Integration. When models for relevant
entities outside of the system, or of components of the
system, are available, modelers should consider con-
necting the model at hand to such external models.
When this is not practical, summaries and abstrac-
tions of the behaviors of these distinct models should
be added to the model as separate agents. For ex-
ample, a model of a truck platoon may be connected
to larger traffic models, to models of individual other
vehicles and of individual trucks, and to additional in-
stances of itself.
Incremental Interaction Development. It is imprac-
tical to cover all the interactions of a given real-world
system in any one modeling project. While some of
the above steps may trigger unmodeling, others may
draw attention to interactions that were omitted but
that should be programmed and incorporated later.

6 LANGUAGE AND TOOL
SUPPORT

Once the methodological implications and use cases
of such issues are well established, modeling lan-
guages and tools can be enhanced to help deal with
the challenges. The tool-support examples below may
provide some directions and may also shed light on
the manual processes described in previous sections.
These directions can be more systematically extended
and refined by examining each modeling issue in the
light of each step in accepted modeling methodolo-
gies.
Unmodeling Support. Going beyond ordinary doc-
umentation, the language and modeling platform
should accommodate entities that do not participate
in the simulation. These may range from brief topic
headings to detailed object specifications with prop-
erties and method names. Detailed unmodeling can
help detect aspects that should be modeled after all,
preventing them from “falling through the cracks”.

Support for Reacting to Emergence:

Dynamism and Reflection. Many programming and
modeling languages support dynamic entities: from
forking a new process through creating new object in-
stances in defined classes to creating new classes or

Challenges in Modeling and Unmodeling Emergence, Rule Composition, and Networked Interactions in Complex Reactive Systems

207



changing properties of classes at run time. Reflection
allows the running programs to examine their current
definitions. Such dynamism and reflection would be
mandatory in any modeling platform for almost all
model entities.
Write-Only Variables. Modeling platforms should
enable listing modeled variables or properties that are
computed, but that no behavioral rule takes as input.
Such data fields may represent emergent properties
whose effects on the system should be specified.
Catalog Anticipated Observed Emergence. Model-
ing platforms should prompt the modeler to formally
document, or even program as test cases, modeling
goals and questions that successful simulation runs
should answer, and then suggest adding related emer-
gent entities and properties.
Automated Detection of Emergence. Modeling
platforms should provide built-in components for the
detection of patterns and trajectories. For example, a
model for an AV that maps a certain terrain and col-
lects soil samples should be able to automatically de-
tect when the vehicle is moving in circles—revisiting
certain areas while missing others—or that in long
runs or in large areas the vehicle runs out of fuel or
its sample container fills up before the task is done.
Modelers may be able to direct the tools to data fields
whose behavior should be monitored.

Support for Rule-Composition Semantics:

Visibility of Composition Semantics. Fine opera-
tional semantics of modeling languages and execution
environments are often specified in arcane documen-
tation, or have to be learned through experimentation.
Instead, they should be clearly documented with exe-
cutable examples.
Plug-In Compositional Semantics. Modeling plat-
forms should accommodate and assist modelers in
specifying, documenting and generating examples for
extensions and refinements to the platform’s compo-
sition semantics.
Dependency Analysis. Modeling platforms should
support listing model variables/fields that are affected
by more than one action or function and resources that
are used by multiple rules. Prompt the modeler to
specify composition semantics for related rules.
Concurrency Experimentation. Manually program-
ming test cases to force concurrent triggering of cer-
tain actions and conditions is difficult. Modeling plat-
forms should support specifying such simultaneity,
and pace parallel execution of test cases such that the
specified events indeed occur together.

Support for Modeling Interaction Networks:

Catalog of Initial Conditions and Fixed Fields.
Modeling platforms should automatically highlight
variables and conditions that, once set, do not change,
and prompt the modeler to check if they represents
closed-system assumptions that should be replaced,
or justified, or elaborated upon in unmodeling.
Separation of Model Observation. Modeling plat-
forms should clearly distinguish model entities that
are part of the modeled system, model entities that
simulate the environment of the modeled system, and
entities that only help humans observe the model.
Domain Knowledge. The modeling platform should
include domain specific expertise, like physical laws
or traffic regulations, and enable modelers to incor-
porate these into the models, specify how the system
is affected by these environmental characteristics, or
unmodel the related effects.
Rule-Based Summaries. Regardless of whether the
underlying execution engine is rule based or not, the
modeling platform should enable modelers to create
rule-based model specifications or descriptions at var-
ious abstraction levels (with the necessary rule com-
position semantics). This will support development,
validation and use of the model, and streamline inte-
gration of model components and of gained knowl-
edge into other models.

7 CONCLUSION AND FUTURE
WORK

We have shown that unbounded interaction with the
environment, reaction to emergence, and the differ-
ent ways that driving mechanisms are composed are
important properties of complex systems that can
greatly influence the outcome and usefulness of mod-
els. When a given model is not able to predict ob-
served results, handling of these properties should be
among the issues that are closely examined.

Even with extensive tool support, the sheer num-
ber of entities and interactions that must be addressed
is a key challenge. This may be tackled by combi-
nation of: (i) abstraction: handling of entities and
interactions in groups that share common traits; (ii)
scalable artifacts: additional tool support for scalabil-
ity, like databases, or hierarchical diagrams, adopting,
among others, techniques from genetics and biochem-
istry that facilitate dealing with myriad sequences,
molecules and interactions; (iii) sharing and reuse:
many of the real-world issues that a complex system
must contend with are likely to be relevant in other
systems too; sharing domain expertise and model ar-

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

208



tifacts can help streamlining and accelerating model
development; (iv) training, and ”mind set” on behalf
of engineers, domain experts and other stakeholders,
recognizing in advance the magnitude of the mod-
eling task, and the number and size of the artifacts
involved; (v) building domain specific solutions and
tools as a step toward more general solutions.

Future tasks include the study additional such is-
sues and challenges, some of which are listed in Sec-
tion 1, and the development of complex models sub-
ject to the informally documented approaches and
techniques; these can serve as proofs-of-concept to
the incipient modeling methodologies.

Such research and development should contribute
to the methodologies, languages and tools of model
development and model assessment, and hence, to the
usefulness of models in science and society.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insight-
ful comments and suggestions. This work was par-
tially supported by a research grants to David Harel
from the Estate of Harry Levine, the Estate of Avra-
ham Rothstein, Brenda Gruss and Daniel Hirsch, the
One8 Foundation, Rina Mayer, Maurice Levy, and the
Estate of Bernice Bernath, a grant 3698/21 from the
ISF-NSFC joint to the Israel Science Foundation and
the National Science Foundation of China, and a grant
from the Minerva foundation.

REFERENCES

Armoni, M., Gal-Ezer, J., Ittah, M. H., Marelly, R., and
Szekely, S. (2021). Computational problem solving in
plethora. In Informatics in Schools: Situation, Evolu-
tion, and Perspectives, ISSEP.

Blaser, M. J. (2014). The microbiome revolution. J. of
Clinical Investigation, 124(10):4162–4165.

Briand, L., Nejati, S., Sabetzadeh, M., and Bianculli, D.
(2016). Testing the untestable: model testing of com-
plex software-intensive systems. In ICSE Companion,
pages 789–792.

Bucchiarone, A., Cabot, J., Paige, R. F., and Pierantonio, A.
(2020). Grand challenges in model-driven engineer-
ing: an analysis of the state of the research. Softw.
and Sys. Modeling, 19(1):5–13.

Christin, S., Hervet, É., and Lecomte, N. (2021). Going fur-
ther with model verification and deep learning. Meth-
ods in Ecology and Evolution, 12(1):130–134.

Cohen, I. R. and Marron, A. (2020). The evolution of
universal adaptations of life is driven by universal
properties of matter: energy, entropy, and interaction.
F1000Research, 9.

Cohen, I. R. and Marron, A. (2022). The biosphere com-
putes evolution by autoencoding interacting organ-
isms into species and decoding species into ecosys-
tems. arXiv preprint arXiv:2203.11891.

Harel, D. and Kugler, H. (2004). The rhapsody seman-
tics of statecharts (or, on the executable core of the
UML). In Integration of Software Specification Tech-
niques for Applications in Engineering, pages 325–
354. Springer.

Haskel-Ittah, M. (2022). Explanatory black boxes and
mechanistic reasoning. Journal of Research in Sci-
ence Teaching.

Karr, J. R., Takahashi, K., and Funahashi, A. (2015). The
principles of whole-cell modeling. Current opinion in
microbiology, 27:18–24.

Liu, M., Fang, S., Dong, H., and Xu, C. (2021). Review of
digital twin about concepts, technologies, and indus-
trial applications. Journal of Manufacturing Systems,
58:346–361.

Mencuccini, M., Manzoni, S., and Christoffersen, B.
(2019). Modelling water fluxes in plants: from tissues
to biosphere. New Phytologist, 222(3):1207–1222.

Rosenberg, E., Koren, O., Reshef, L., Efrony, R., and
Zilber-Rosenberg, I. (2007). The role of microorgan-
isms in coral health, disease and evolution. Nature
Rev. Microbiology, 5(5):355–362.

Sankararaman, S. and Mahadevan, S. (2015). Integration
of model verification, validation, and calibration for
uncertainty quantification in engineering systems. Re-
liability Engineering & System Safety, 138:194–209.

Saprykin, A., Chokani, N., and Abhari, R. S. (2019). Gem-
sim: A GPU-accelerated multi-modal mobility simu-
lator for large-scale scenarios. Simulation Modelling
Practice and Theory, 94:199–214.

Schrödinger, E. (1944). What is life? The physical aspect of
the living cell and mind. Cambridge University Press
Cambridge.

Simard, S. W. (2018). Mycorrhizal networks facilitate tree
communication, learning, and memory. In Memory
and learning in plants, pages 191–213. Springer.

Troya, J., Moreno, N., Bertoa, M. F., and Vallecillo, A.
(2021). Uncertainty representation in software mod-
els: a survey. Software and Systems Modeling,
20(4):1183–1213.

Woodward, J. L. and Pitbaldo, R. (2010). LNG risk based
safety: modeling and consequence analysis. John Wi-
ley & Sons.

Challenges in Modeling and Unmodeling Emergence, Rule Composition, and Networked Interactions in Complex Reactive Systems

209


