Deep Learning Based Text Translation and Summarization Tool for Hearing Impaired Using Indian Sign Language

Anurag Kumar Jha, Kabita Choudhary and Sujala D. Shetty

Birla Institute of Technology and Science, Pilani, Dubai Campus, DLAC Dubai 34055, U.A.E.

Keywords: Natural Language Processing (NLP), Natural Language Generation (NLG), Bidirectional Auto-Regressive Transformers (BART), Multilingual Bidirectional Auto-Regressive Transformers (mBART), Signing Gesture Markup Language (SiGML), HamNoSys, Indian Sign Language, Transformer-Based Highlights Extractor (THExt), Automatic Text Summarization (ATS), Machine Translation (MT).

Abstract: There have been multiple text conversions emerging with time but there has hardly been any work in the field of sign language. Even in the field of sign language multiple methods have been proposed to convert it into text via image detection, but due to the rarity of sign language corpus not much work has been put into text or speech to sign language. The proposed project intends to create a translation model to convert text or audio into sign language with its designated grammar. The process includes translation of any language to English followed by summarization of a big article or text, removal of stopwords, reordering the grammar form and stemming words into their root form. The translation is performed by mBART model, summarization is performed using BART model, conversion into animation is done via mapping words into a dictionary and replacing words by letters for unknown words. The paper uses HamNoSys (Regina et al., 1989), SiGML, BART, mBART and NLP to form the translation system. The paper aims to establish better means of communication with the deaf, dumb and people with hearing issues.

1 INTRODUCTION

1.1 Sign Language Generation

A large chunk of information on the web consists of visual information which makes it less accessible for deaf people. The problem is less persistent amongst those who lost the hearing capacity in later stages of life but not for those born with the condition. There have been multiple studies (Conrad, 1979; Holt et al., 1996; Allen, 1986) which have depicted a poor reading power amongst deaf children when compared to their peers. Around only 25% of these children are capable of reading at a level above that of a 9-year-old hearing child.

Unlike conventional languages sign language utilizes hand gestures, body movements and facial expressions for conveying any information. Translation systems exist between almost all existing languages using machine learning, but sign language stands as an exception. Even in sign language conversion of text into sign language has seen very little development over the years. The objective of the paper is to create a translation system which converts provided text into animated sign language (Indian Sign Language) using animated human figures.

There has not been much work in the field of sign language computerization and those done are mostly in American (Matthew et al., 2003) or British sign language (E’va Safar, 2003). The underlying architecture for these systems is mostly based on (R. San et al., 2004):

- Direct translation of input into target words.
- The biggest drawback of this system is that output is not grammatically correct and difficult to understand.
- Statistical machine translation which is ruled out in our case because of the lack of a large parallel corpus.
- Transfer based: These include proper grammatical rules in place from proper translation from one language to another.

As discussed before the existing methods have not been developed in terms of Indian Sign Language and our work makes an effort to fix this issue. The proposed method is to create/collect video animation for the entire pool of ISL words which are around 1500 in total. The input text is manipulated to
abide by the grammatical syntax of ISL and then mapped to the dictionary of the video animations. Words not present are broken into letters and shown one by one. These can be for things such as a name or a place.

The method includes displaying sign language using an avatar after translating SiGML to motion data.

A major challenge in the system is the conversion of one language to another with a completely different set of grammatical syntax in place.

Also, the feature of text summarization has been added to deliver large volume of data in smaller amount of time.

1.2 Text Summarization

There is enormous volume of textual content that is generated on the Internet and in the numerous archives of headlines, academic papers, government documentation, etc., automatic text summarization (ATS) has become more crucial. With the enormous amount of textual content, manual text summarizing takes a lot of time, effort, money, and sometimes impracticable (El-Kassas et al., 2021). A variety of tasks can be done using ATS like generation of summary for a scientific paper, news articles, creating summary of audio podcast etc.

A strategy to extracting highlights based on a recognized contextualized embedding architecture (Moreno et al., 2022), especially the transformers, is known as a Transformer-based Highlights Extractor (THExt, in short). BART is a sequence-to-sequence model trained as a denoising autoencoder. It is applicable to many types of tasks like sequence classification (categorizing input text sentences or tokens), summarizing text, machine translation like translation between multiple language, question answering. Its pretraining has mainly two phases. Assign corrupted text with an arbitrary noise and sequence-to-sequence model is learned to rebuild the actual text. It is evaluated with a different noise approach as shown in Figure 1, like randomly shuffling the order of the original text and using a novel in-filling scheme (in this scheme length of span of text are replaced with mask token). It is an unsupervised language model which can be fine-tuned to a specific application like medical chatbots, generating summary of meeting, natural language to programming language, language translation etc. As it is already pretrained with very large amount of data, a small data set can be used to fine-tune it.

1.3 Text Translation

The ability to translate moderate languages has significantly improved due to training a universal translation system between different languages (Firat et al., 2016). Recent research (Arivazhagan et al., 2019; Fan et al., 2020) has also shown that multilingual translation models in a single model have a great potential for performance improvement. Using the pretrain and fine-tune approach common to NLP, recent pretrained multilingual sequence-to-sequence (seq2seq) models have made it simple to build neural machine translation (MT) systems (Liu et al., 2020). Pretrained models are excellent candidates for MT domain adaption tasks, where domain-specific bitext is typically less accessible than general bitext, because fine-tuning these models typically requires less data than is required for from-scratch translation models.

For the translation of text from any language to English, we are using mBART (Yuqing et al., 2020). It is a multilingual neural machine translation model. mBART supports up to 50 languages. Initially, the mBART model trains in 25 different languages and is fine-tuned for different tasks. For translation, it was fine-tuned on bitext (bilingual finetuning). Later in mBART50, the multilingual nature of the pretraining is used for fine-tuning the model.
2 BACKGROUND AND LITERATURE REVIEW

About 63 million people, which accounts for about 6.3% of the Indian population, suffer from hearing issues (Indian Census, 2011). A vast majority ranging from 76% to 89% of this population have no knowledge of sign language. The low literacy rate can be attributed to lack of work put into this field and absence of proper translation systems. Compared to this massive population who face this issue, the number of certified ISL translators in India is very less. This huge gap calls for being bridged.

One of the major works in the field of generating animations for English words has been done by (J.R. Kennaway et al, 2007). However, the work is centred around American Sign Language (ASL) and British sign language (BSL). Moreover, the aspect of grammar in sign language has not been taken much into account. We try to address both these issues in our proposed method by forming an algorithm to convert text into ISL grammar syntax and then to corresponding Indian sign language.

Another work more related to ISL was by Khushdeep et al., (2016) conversion of HamNoSys to SiGML for sign language animation. However, this method too failed to take into consideration the grammar aspect of sign language.

There has been some research (Pamela et al., 1999) into machine translation used in other sign languages which are:

- Direct Translation: The architecture works on word-to-word translation. The biggest drawback is the lack of context and meaning. There is no syntactical analysis and grammatical syntax is ignored. There is direct translation without any reordering which has a massive issue in the sense that ordering of sentences is completely different in sign language as compared to English. The format used in the English language is Subject-Verb-Object compared to Subject-Object-Verb in ISL.

- Transfer based (Rule based): In this architecture input is passed through syntactic and semantic transformation to convert it into intermediate text which is then converted into target language using linguistic rules.

- Interlingua based: It is an alternative to the above architectures and is based on Interlingua which is a language independent semantic structure formed by the semantic analysis of the input. This is then used to generate the target language.

As mentioned before, sign language grammar is not similar to conventional languages and has certain distinct features which are as explained in the table 2.
3 BLOCK DIAGRAM OF THE MODEL

The complete sequence for the conversion of any language to Indian sign language is shown in Figure 3.

The input text is first summarized to reduce the volume of content in case the amount of information is huge. This text is then transformed to match the syntax of Indian sign language. Once we have the sequence of words generated in ISL grammar these can be used to generate HamNoSys. HamNoSys is then converted into XML form known as SiGML. This is then processed further to produce the animation. The sequence of steps for animating have been inspired by Khushdeep et al., with the drawback of lacking ISL grammar resolved and feature of text summarization resolved.

An analysis of the table gives the estimate that although videos are more time consuming to create and require a higher amount of memory, they are best suitable for easy understanding.

Hence the final output in the method proposed will be in the format of animated videos. To reduce the time to deliver these in case of huge amount of information we reduce it by text summarization.

5 METHODOLOGY

We have used http://www.indiansignlanguage.org/ to download video clips to map to our English word dictionary. These videos are then manually labelled.

Input is taken in the form of English text. Text parsing is done with the help of Stanford parser (Xu. H et al., 2011) which creates its grammatical phase structure. This is reordered in accordance with ISL. English Language grammar follows Subject-Verb-Object structure which is Subject-Object-Verb in the case of ISL. The irrelevant stop words are removed.

5.1 Solution Structure

- Parsing the input: To carry the translation of one language to another, both their grammatical structure must be known. Parsing
is used to obtain this grammatical structure. For parsing the input Stanford parser (Xu.H et al., 2011) is used which breaks input into part of speech tagged text, CFG and type dependency representation.

- Grammar rules for conversion from English to ISL: The grammatical pattern of ISL varies from that of English language. ISL requires the verb patterns to be shifted after nouns as shown in the table 4.
- Eliminating stop words: The English language includes words which don’t have any meaning in ISL which include modals, foreign words, possessive ending, coordinating conjunction, determiners, adjectives, comparative and superlative, nouns plural, proper plural, particles, symbols, interjections and non-root verbs.
- Stemming and Lemmatization: Stemming is used to convert words into their root form using Port stemmer rules. Each of the words is checked in the dictionary, if it doesn’t exist, it is tagged to its synonym.
- Output generation: Upon the execution of the above steps we receive the ISL equivalent of the input. It is then checked to corresponding keys in our text-animation dictionary. If a word is found it is displayed as video by passing it through a HamNoSys (Regina et al., 1989), generator, otherwise the word is broken, and fingerspelling used to express the word.

Table 4: Grammatical reordering from English to ISL.

<table>
<thead>
<tr>
<th>Verb Pattern</th>
<th>Rule</th>
<th>Input Sentence</th>
<th>Parsed Sentence</th>
<th>Output Sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb + object</td>
<td>VP to NP</td>
<td>Go to school</td>
<td>(VP (VB Go) (TO to) (NP (NN school)))</td>
<td>School to go</td>
</tr>
<tr>
<td>Subject + verb</td>
<td>NP V</td>
<td>Birds fly</td>
<td>(NP (NNS birds) (VP (VBP fly)))</td>
<td>Birds</td>
</tr>
<tr>
<td>Subject + verb + subject complement</td>
<td>NP V NP</td>
<td>His brother became a soldier</td>
<td>(NP (PRPS hi) (NN brother)) (VP (VBD became) (NP (DT a) (NN soldier)))</td>
<td>His brother a soldier became</td>
</tr>
<tr>
<td>Subject + verb + direct object + preposition</td>
<td>NP V NP PP</td>
<td>She made coffee for all of us</td>
<td>(NP (PRP She)) (VP (VBD made) (NP (NN coffee)) (PP (IN for) (NP (NP (DT all))) (PP (IN of) (NP (PRP us))))))</td>
<td>She coffee for all of us made</td>
</tr>
</tbody>
</table>

5.2 Output Analysis

In order to judge the accuracy of the grammar and syntax a total of 100 English sentences were taken, 50 simple and 50 complex. They were passed through our proposed system and output validated by language expert.

The simple sentences fared an accuracy of 100% whereas the complex sentences were 96% accurate. One drawback of the system however is to handle exclamation words like Oh! Alas! Since they don’t have direct translation in ISL. Also, words having more than one parts of speech, example book has both verb and noun form cannot be handled well by the conversion system, since the original input sentence after being parsed and processed is converted into ISL grammar format which does not have a parsing structure, which indeed becomes difficult to identify the nouns and verbs from a given sentence, eventually causing the wrong form of the sentence being selected.

However, since less research has been carried out in this field, there are many pitfalls that needs to be worked on and some scenarios which needs to be thought of.
6 BART ARCHITECTURE

The purpose of a NLP model is to not only understand the whole text given to read but also to understand the sequence of the text, like what comes before and after a token. The sequence of input tokens plays a very important role. For example, let’s say the statement is, “We are going to the theatre to watch a movie.” So if we mask “theatre” by adding some noise and pass it to the model like: “We are going to the [mask] to watch a movie.” The BART model should read thoroughly the provided text and also understands the sequence of words to predict the masked word.

6.1 Architecture

BART modifies ReLU activation functions to GeLUs and it utilizes the conventional sequence-to-sequence Transformer architecture. There are 6 layers in the encoder and decoder in basic model and 12 layers for encoder and decoder in large model.

The architecture is very similar to that of BERT, with the following exceptions: (1) Each layer of the decoder performs cross-attention over the final hidden layer of the encoder in addition (as in the transformer sequence-to-sequence model); and (2) Unlike BART, BERT employs an additional feed-forward network prior to word prediction. BART has approximately 10% more parameters overall than BERT model of the same size.

6.2 Pre-Training BART

In Bart, training is done by masking or corrupting the data in different ways, and then optimizing the loss for reconstruction. Cross entropy is calculated between the decoders output and original data.

Bart used different noising schemes for masking, such as:

- **Token masking:** Some random tokens are replaced with masks in a sentence and the model is trained to predict the single token based on the rest of the sequence.
- **Token deletion:** Some random tokens are deleted in a sentence and the model learns to find the deleted token and from where it was deleted.
- **Text Infilling:** Some contiguous tokens are deleted and replaced with a single mask and the model learns the missing token and the content.
- **Sentence permutation:** Sentences are permuted, and the model learns the logical implication of the sentence.
- **Document Rotation:** Here the documents are rearranged randomly. This helps the model to learn how the documents are arranged.

For a NLP model, it is imperative to completely read the sentence and understand each and every token in context of their sequence. Such a case, the input sequence can be interpreted by using a bi-directional approach.

Bart uses the bi-directional approach as shown in Figure 5 to find the masked token. Hence the first part of the BART model is to use bi-directional encoder of BERT to find the best representation of its input sequence. In the second part it uses an autoregressive model which uses only past input sequences to predict the next word.
Table 5: Example of translation using mBART.

<table>
<thead>
<tr>
<th>Language</th>
<th>Text to translate</th>
<th>Translated Text in English</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>Chaque semaine, recevez toute l’actu étudiante et nos conseils avec nos newsletters Etudiant et Choisiss ton orientation.</td>
<td>Each week receive all the current student information and advice with our Student and Select Your Orientation newsletters. in Syria</td>
</tr>
<tr>
<td>Spanish</td>
<td>Desde que compró Twitter en octubre, Elon Musk ha introducido muchas novedades en la plataforma. El millonario está en una fase hiperactiva, con mil ideas bullendo en su cabeza</td>
<td>Since he bought Twitter in October, Elon Musk has introduced many new features to the platform.</td>
</tr>
<tr>
<td>Hindi</td>
<td>पिछले कुछ दिनों से ChatGPT पर खुद चर्चा हो रही है. कुछ लोग इसे मूल्य का किंतर तो कुछ इसानों के लिए खतरा बता रहे हैं.</td>
<td>There has been a lot of discussion on ChatGPT in the last few days. Some people call it Google's killer or a threat to some people.</td>
</tr>
</tbody>
</table>

Table 6: Example summaries from the BART model on News article.

<table>
<thead>
<tr>
<th>Text</th>
<th>BART Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid reflux troubles many people. It can lead to difficulties or problems like heartburn. How much stomach acid is produced affects you. To manage the acid reflux, it is necessary to choose the right food to eat. In an Instagram post, the nutritionist, Lavnit Bhatra, has shared 5 foods that can help control and avoid acidity. She writes, “Unhygienic eating can still make you experience acidity, while atrazide and other OTC products can exacerbate stomach acidity. Dietary changes will help control symptoms of acidity and relieve acid reflux.”</td>
<td>Nutritionist Lavnit Bhatra has shared 5 foods that can help control and avoid acidity. Unhygienic eating can still make you experience acidity, she writes. Dietary changes will help control symptoms of acidity and relieve acid reflux.</td>
</tr>
<tr>
<td>A message was sent to Prime Minister Narendra Modi through the first major political rally in Srinagar after the redrawal of statehood and special status from Jammu and Kashmir to restore statehood and hold elections without delay. Thousands of people attended the rally organized by Jammu and Kashmir's own party (JKAP) on Saturday morning at Srinagar’s Sher - e - Kashmir International Cricket Stadium. The party's chief, Altaf Bukhari, said he wanted a large crowd to fulfil the promises made to the prime minister.</td>
<td>Thousands of people attended the rally organized by Jammu and Kashmir's own party (JKAP) The party's chief, Altaf Bukhari, said he wanted a large crowd to fulfil the promises made to the prime minister.</td>
</tr>
<tr>
<td>The participants, as per an official statement, will discuss and deliberate on ways to increase the number of women in higher echelons of teaching, research and industry, along with trying to find ways to provide women with equal access to STEM (Science, Technology, Engineering, Mathematics) education, research opportunities and economic participation. A special programme to showcase the contribution of women in science and technology will also be held, which will also witness lectures by renowned women scientists, it added.</td>
<td>The participants will discuss and deliberate on ways to increase the number of women in higher echelons of teaching, research and industry. They will also try to find ways to provide women with equal access to STEM education, research opportunities and economic participation.</td>
</tr>
</tbody>
</table>

HuggingFace provides us the platform to use Bart model for both pretrained and fine-tuned version. We can also use the API for models to summarize text and translate in some other language as well. For our model we are using the “facebook-bart-large-cnn” model for text summarization and the “facebook/mbart-large-50-many-to-many-mmt” model for text translation.

- By using huggingface api, we are summarizing text. In table 6 there are some examples for text summarization that is done by using BART.
7 DATASET SUMMARY

7.1 Bart

Bart is fine-tuned with CNN, Daily mail dataset which has 300k news articles and all are unique sets, those are written by journalists at CNN and Daily Mail. It supports both type of summarization that are abstractive and extractive summarization.

7.2 mBART

Initially the mBART.cc25 checkpoint (Yinhan et al., 2020) available in the fairseq library is (Myle et al., 2019) to continue the pretraining process. The monolingual data from XLMR (Alexis et al., 2019) is used to extend the pretraining to a set of 25 languages in addition to the 25 languages mBART model. To be consistent mBART, 250K sentence piece model which was trained using monolingual data for 100 languages from XLMR is used, and thus already supports languages beyond the original 25 mBART was trained on. For pre-training, mBART50 was trained for an additional 300K updates with a batch size of 1700 tokens.

- By using huggingface api, we are translating text into English as shown in Figure 7.

![Image of sample text-translation from Hindi to English](image)

Figure 7: Sample of text-translation from Hindi to English.

Translation examples are shown in table 5, where we are translating Spanish, French, Portuguese, Hindi language to English.

8 CONCLUSION

We demonstrate that we can translate and summarize any text to English and transform the generated text into Indian sign language. This system can be used to benefit the hard hearing people having communication difficulties. Additionally, due to the feature of text summarization a large volume of information can be delivered in lesser time which helps them to keep pace with everyone else. For translation and summarization, the language generation model is used from the huggingface platform. The future scope of this project is gathering information from an audio and video file and converting it into sign language.

REFERENCES

Moreno La Quatra, Luca Cagliero. (2022). Transformer-based highlights extraction from scientific papers. Knowledge-Based Syst. 2022, 252, 109382.

