Keywords:

Abstract:

DeepCaps+: A Light Variant of DeepCaps

Pouya Shiri®®?* and Amirali Baniasadi
University of Victoria, BC, Canada

Capsule Networks, DeepCaps, Deep CapsNet, Fast CapsNet.

Image classification is one of the fundamental problems in the field of computer vision. Convolutional Neural
Networks (CNN) are complex feed-forward neural networks that represent outstanding solutions for this prob-
lem. Capsule Network (CapsNet) is considered as the next generation of classifiers based on Convolutional
Neural Networks. Despite its advantages including higher robustness to affine transformations, CapsNet does
not perform well on complex data. Several works have tried to realize the true potential of CapsNet to provide
better performance. DeepCaps is one of such networks with significantly improved performance. Despite its
better performance on complex datasets such as CIFAR-10, DeepCaps fails to work on more complex datasets
with a higher number of categories such as CIFAR-100. In this network, we introduce DeepCaps+ as an opti-
mized variant of DeepCaps which includes fewer parameters and higher accuracy. Using a 7-ensemble model
on the CIFAR-10 dataset, DeepCaps+ obtains a an accuracy of 91.63% while performing the inference 2.51x
faster than DeepCaps. DeepCaps+ also obtains 67.56% test accuracy on the CIFAR-100 dataset, proving this

network to be capable of handling complex datasets.

1 INTRODUCTION

Computer vision is a field of artificial intelligence
(AI) that enables computers and systems to derive
meaningful information from digital images, videos
and other visual inputs. Modern solutions rely
on deep learning and convolutional neural network
(CNN) to derive this information.

CNNs have made significant progress in solving
different computer vision problems. Despite their
high performance, CNNs offer limited translational
invariance and lose important information (due to the
max-pooling layer). In addition, they are unable to
understand the spatial relationship among the features
existing in an image. Sabour et al. proposed Cap-
sule Network (CapsNet) (Sabour et al., 2017) to ad-
dress these issues. The base units in CapsNet are cap-
sules (versus neurons in CNNs), which are created by
reshaping the output of a low-level feature extractor
consisting of two convolutional layers. CapsNet does
not include the pooling layers and considers the rela-
tionship between features of different levels in an im-
age by developing a part-to-whole relationship. Cap-
sNet provides higher robustness to affine transforma-
tions compared to CNNs. This is due to the affine
matrix multiplication stage which is performed right
after the capsules are created. CapsNet also performs

(2 https://orcid.org/0000-0002-8037-9481

212

Shiri, P. and Baniasadi, A.
DeepCaps+: A Light Variant of DeepCaps.
DOI: 10.5220/0011728100003417

better than CNNs for images including overlapping
categories.

CapsNet implements classification by employing
only two convolutional layers for extracting the fea-
tures and creating capsules. The first layer of cap-
sules is called Primary Capsules (PCs). CapsNet also
includes one fully-connected capsule layer to reduce
the number of capsules. CapsNet performs well on
small-scale datasets such as MNIST (LECUN and
Y.,) and Fashion-MNIST (Xiao et al., 2017). As
datasets become more complex, (e.g. CIFAR-10 and
CIFAR-100 (Krizhevsky et al., 2009)), CapsNet falls
behind CNNs. There are certain methods for im-
proving the performance of a neural network. One
common approach is increasing the depth of the net-
works by adding more layers, making them complex
enough to handle more complex datasets. However,
there are several issues with stacking up several fully-
connected layers (Rajasegaran et al., 2019). The main
issue stems from the fact that the fully-connected
capsule layer consists of an iterative computationally
intensive algorithm referred to as Dynamic Routing
(DR). Therefore stacking up these layers results in a
huge number of parameters. Rajasegaran et al. (Ra-
jasegaran et al., 2019) introduced DeepCaps in an at-
tempt to make CapsNet deeper.

DeepCaps consists of several capsule layers re-
ferred to as Capsule Cells (CapsCells). These layers

In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5: VISAPP, pages

212-220
ISBN: 978-989-758-634-7; ISSN: 2184-4321

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

include skip-connections to improve the gradient flow
and implement the DR algorithm. To reduce the com-
plexity resulting from the added several layers, DR is
eliminated from the initial layers. Instead, a new rout-
ing algorithm inspired by the 3D convolution is intro-
duced in one of the middle layers. This 3D convo-
lution method is referred to as 3D Dynamic Routing
(3DR). 3DR reduces the number of parameters by pa-
rameter sharing. In this work, we refer to a CapsCell
including a 3DR algorithm as 3DR-CapsCell. Caps-
cells play an important role in creating robust PCs. In
DeepCaps, the primary capsules are a combination of
low-level and high-level capsules (the input and the
output of the 3DR-CapsCell).

DeepCaps performs well on the CIFAR-10 dataset
(92.74% test accuracy). On the negative side, being a
dense network (13.4M parameters) results in slow in-
ference (2.86ms for a single image on a 2080Ti GPU).
Moreover, DeepCaps includes a high number of PCs.
Note that the number of PCs affects the network time
and the number of parameters (Shiri et al., 2020).
Consequently, the network loses accuracy if we re-
duce the number of PCs without proper investigation.
In this work, we propose DeepCaps+ by designing the
Capsule Assembler (CA) module to carefully com-
bine the PCs of DeepCaps and reduce them into fewer
capsules. The CA module provides a linear combina-
tion of PCs and produces fewer capsules capable of
obtaining a very robust representation. DeepCaps+
reduces the number of parameters by 45.5% and to
only 7.4M for the CIFAR-10 dataset. In addition, the
inference is 2.51x faster than DeepCaps. In summary,
our contributions in this paper are:

* We reduce the number of parameters significantly.
DeepCaps+ includes smaller weight matrices in
the affine multiplication stage. Since a separate
matrix is considered for each category, this stage
includes a high fraction of parameters in the net-
work. DeepCaps+ includes only 7.3M parameters
on the CIFARI10 dataset (compared to 13.4M in
DeepCaps).

* We optimize the network inference speed. Our
implementation helps DR finish computations
faster. DeepCaps+ is 2.51x faster in inference for
the CIFAR-10 dataset compared to DeepCaps.

We carefully consider the inference accuracy in
our implementation. Even though there are fewer
capsules in DeepCaps+ compared to DeepCaps,
DeepCaps+ obtains an accuracy of 91.63% us-
ing a 7-ensemble model for the CIFAR-10 dataset
(compared to 92.74% in DeepCaps).

The rest of this paper is organized as follows. Sec-
tion 2 presents the related works. The background of

DeepCaps+: A Light Variant of DeepCaps

this work is explained in detail in Section 3. Section
4 presents our solution. Section 5 reports the exper-
imental results and finally, the paper is concluded in
Section 6.

2 RELATED WORKS

In this section, we review some of the recent studies
on optimizing CapsNet’s performance.

Yang et al. (Yang et al., 2020) introduce an al-
ternative to the capsule network referred to as RS-
CapsNet. This network takes advantage of residual
blocks for multi-scale feature extraction. In addi-
tion, the Squeeze-and-Excitation (SE) block is used
to weigh the features based on their importance. RS-
CapsNet creates a linear combination of capsules im-
proving their representation ability.

Huang et al. introduce another variant of CapsNet
referred to as Dual Attention mechanism Capsule
Network (DA-CapsNet) (Huang and Zhou, 2020).
DA-CapsNet takes advantage of the attention mech-
anism both after the primary capsules and the convo-
lutional layers. DA-CapsNet outperforms CapsNet in
image reconstruction and obtains state-of-the-art ac-
curacy on small-scale datasets.

Shiri et al. (Shiri and Baniasadi, 2021) pro-
pose Convolutional Fully-Connected CapsNet (CFC-
CapsNet). They design a new layer which creates
PCs from the extracted features. The application of
this layer results in reducing capsules while obtaining
higher network test accuracy. The reduction of cap-
sules results in fewer parameters, as well as reducing
the network training and inference times.

Deliege et al. (Deli, 2018) propose HitNet in
which a capsule layer referred to the Hit-or-Miss layer
is used. HitNet consists of a central capsule, which is
hit or missed by input capsules in the training process.
HitNet also consists of a decoder which synthesizes
samples of the input images. The decoder can be uti-
lized as an augmentation tool for avoiding overfitting.
This network also includes a new type of capsule re-
ferred to as the ghost capsule. This new capsule is
used to detect mislabeled data in the training set.

He et al. (He et al.,, 2019) propose a cap-
sule network based on complex values (CV-CapsNet).
CV-CapsNet contains a multi-scale feature extractor
based on complex values. PCs which are created
from the extracted feature, also consist of complex
values. CV-CapsNet modifies the Dynamic Routing
algorithm to comply with the complex domain.

Chen et al. (Chen and Liu, 2020) introduce a deep
variant of CapsNet (DCN-UN) which contains a U-
Net module as the feature extractor to improve the

213

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

Input image
Conv Layer

K=3
3x3,128 D=32
Dim=4

Caps Cell Caps Cell

3D-R Caps Cell

K=3 o Dynamic Routing Output Caps
D=32 oot e 10x16
Dim=8 apsules

Figure 1: DeepCaps architecture. This network contains multiple CapsCell layers followed by a 3D CapsCell layer to generate
the primary capsules. The output capsules are inferred from the primary capsules using the Dynamic Routing algorithm.

performance of CapsNet on complex datasets. DCN-
UN includes a convolutional capsule layer which uses
weight-sharing to reduce the number of parameters of
the network. DCN-UN also introduces an alternative
method for dynamic routing referred to as Mask Dy-
namic Routing (MDR).

Ayidzoe et al. (Ayidzoe et al., 2021) propose
Gabor-CapsNet containing an improved feature ex-
tractor and fewer parameters. A Gabor filter and other
customized blocks are used in the feature extractor,
which results in improved activation diagrams and
better learning of the hierarchical information. Tao
et al. (Tao et al., 2022) introduce Adaptive CapsNet
(AC-CapsNet), which replaces PCs with an adaptive
layer of capsules. The adaptive values hold both the
spatial information of capsules and the local relation-
ship of each dimension of capsules.

In this work, we build on deep networks (Deep-
Caps) and improve performance. We do so by propos-
ing an alternative network with fewer parameters and
faster training and inference.

3 BACKGROUND

In this section, we present the required background
for this work. We slightly reformulate and simplify
DeepCaps and explain the different structures used in
it.

3.1 DeepCaps Architecture

Figure 1 shows the architecture of DeepCaps (exclud-
ing the decoder). This network consists of several
CapsCells. These units consist of several Convolu-
tional Capsule (ConvCaps) layers and a skip connec-
tion (shown in Figure 2). CapsCells have three param-
eters (K, D and Dim) that correspond to the ConvCaps
layers used in them.

The ConvCaps layer is defined as a convolutional
layer with its outputs reshaped to vectors. There are
different methods to reshape a convolutional layer in-
cluding transforming 128 kernels to vectors. For ex-
ample, we can build 32 vectors each with 4 elements

214

(4D vectors). Alternatively, we can reshape the ker-
nels to 16 vectors (8D). Each ConvCaps layer has 3
parameters: K or the kernel size, Dim or the number
of elements for each output vector, and D or the num-
ber of vectors per spatial location of the output feature
map.

The architecture of a CapsCell is shown in figure
2. As the figure shows, this unit consists of consecu-
tive ConvCaps layers and a skip-connected ConvCaps
layer. For 3D-R CapsCells, the skip-connection per-
forms the 3D routing operation.

DeepCaps also employs a decoder on top of the
output capsules. The decoder used in this network is
explained later in this section.

DeepCaps includes three consecutive normal Cap-
sCells followed by a CapsCell with 3D-Routing (3DR
CapsCell). The output of the 3DR CapsCell creates a
fraction of PCs. The rest of the PCs are created by the
consecutive normal CapsCells only. This is achieved
using a skip-connection from the output of the third
normal CapsCell. The skip connection helps avoid
vanishing gradients while training. It also routes low-
level capsules to high-level capsules.

Caps Cell

Figure 2: The architecture of a CapsCell with (K=3, D=32
and Dim=4). This unit contains several ConvCaps layers
and a skip-connection. For the 3D-R CapsCells, the skip
connection performs the 3D dynamic routing operation.

Pl /i"j
-~ - y
w! T_J _‘ﬁ |
Vv, Vo /’

A1l possible c't!
predictions from 2nd
capsule tensor

DeepCaps+: A Light Variant of DeepCaps

Figure 3: 3D-Routing method. Each capsule in layer I, predicts ¢!t! capsules. As a result, there are ¢! predictions for a

capsule in layer / 4- 1 (Rajasegaran et al., 2019).
3.2 Routing Capsules

One of the important novelties of DeepCaps, is the
3D-Routing method applied to partially generate the
PCs. The conventional DR algorithm routes capsules
globally (all input capsules take part in generating all
output capsules). However, the 3D-Routing method
routes the capsules locally. In other words, only spa-
tially correlated capsules take part in generating a spe-
cific output capsule.

Figure 3 shows how the 3D-Routing method in-
fers the output capsules from the input capsules. Each
capsule in layer /, predicts ¢/*! capsules. As a result,
there are ¢! predictions for a capsule in layer [+ 1.
Initially, all the input capsules are weighted equally
and summed to produce the output capsules. After-
wards, there are several iterations in which the coef-
ficients are updated based on the agreement between
the votes and the output capsules.

3.3 Class-Independent Decoder

The output capsules are fed to a decoder sub-network
for reconstructing the input images. In order to regu-
larize training and tackle the problem of over-fitting,
the decoded images are compared to the input images.
This comparison is used in the loss function (recon-
struction loss). The decoder used in the DeepCaps
network has two advantages over the original one.
First, it includes deconvolution layers, which capture
spatial relationships better than Fully-Connected (FC)
layers using fewer parameters.

The second feature of this decoder is that it is
class-independent. To achieve this it disallows in-
correct capsules from taking part in the reconstruc-
tion process. As a result, only the correct capsule is
kept and the rest of the output capsules need to be
discarded. In the original version of CapsNet, Sara
Sabour et al. (Sabour et al., 2017) masked the incor-
rect capsules with zeros. However, the decoder used

in DeepCaps, discards the incorrect capsules com-
pletely. Different categories (classes) keep a fixed
vector of data and use it for reconstruction. This de-
coder is class-independent as all classes are treated
equally. This results in a more powerful decoder as
earlier work shows (Rajasegaran et al., 2019).

3.4 Loss function

The loss function of DeepCaps is similar to the one
introduced by Sara Sabour et al. (Sabour et al., 2017)
(margin loss). This loss function considers penalties
for incorrect predictions and disregards predictions
with a very high or very low probability:

Ly = Timax(0,m™ — ||Vi||) >+
A(1 — Ti)max (0, ||Vi|| —m~)?

In this equation, L is the loss term for capsule k,
Ty is 0 for incorrect class and 1 otherwise, m™ and
m~ are used to disregard high or low probabilities,
and lambda is used for controlling the gradient at the
start of the training.

4 DeepCaps+

The number of PCs used in capsule networks is a
key factor in determining the network’s number of
parameters and also the network training and testing
speed. The primary capsules are multiplied by several
weight matrices. There is a different matrix consid-
ered for each category in the classification task. For
this reason, reducing the number of PCs results in us-
ing fewer matrices leading to fewer overall parame-
ters. In addition, the DR algorithm becomes more ex-
pensive by increasing the number of PCs in the net-
work. This is explained by the fact that the DR al-
gorithm iterates over PCs multiple times to find an
agreement between those capsules.

215

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

Generated Capsules

' &
'
'é

'

S=4

S$=3

S§=2

Fully-Connected

S=5
Primary Capsules
i 4
w
w
Doul

Figure 4: The capsule summarization layer. A total of w x w x 5 generated capsules are summarized into w X w X D, primary
capsules using w X w Fully-Connected (FC) layers. The first FC layer is shown.

4.1 Capsule Summarization

In this work, we propose a method to summarize the
capsules generated by DeepCaps to produce a new
set of PCs. To this end, we introduce a capsule
summarization layer. Figure 4 shows how this layer
works. As the figure shows, the generated capsules
at a specific spatial location are all flattened, and fed
to a fully-connected layer to produce a single cap-
sule. This procedure is repeated for all spatial loca-
tions in the generated capsules. There are a total of the
S x w x w generated capsules each with D;, elements.
For each spatial location (i, j) where i,j € [L,w], a
total of S capsules with D;, dimensionality are col-
lected, flattened and fed to a single fully-connected
layer to produce a single capsule with a different di-
mensionality D,,. It is noteworthy that the figure
shows the procedure for the first spatial location (1,1),
and there are w x w fully-connected layers to summa-
rize the whole set of generated capsules to the primary
capsules. The proposed layer reduces the number of
capsules S times.

Intuitively, each location in the generated capsules
corresponds to a set of spatially correlated capsules.
We reduce all those correlated capsules to a single
capsule using a fully-connected layer. The reduc-
tion process includes weights (contained in the fully-
connected layer) that are improved over the training
process. This results in producing a powerful sum-
mary of capsules.

216

4.2 Capsule Assembler

As mentioned earlier in the background section, the
primary capsules are a combination of capsules gener-
ated by the 3D-R CapsCell (high-level capsules) and
those generated by the normal CapsCells (low-level
capsules). The capsules generated by 3DR are high-
level, as they carry information regarding the agree-
ment between locally correlated capsules. However,
the low-level capsules are transmitted to the PCs’
layer through a skip connection. This separation is
done for all datasets.

We designed the Capsule Assembler (CA) to cre-
ate an improved representation from the high-level
and low-level capsules. In this work, as figure 5
shows, we summarize the generated capsules at dif-
ferent levels separately instead of concatenating cap-
sules and forming the PCs. CapsSum provides an op-
portunity to learn the relationship between each cap-
sule’s neurons while reducing the number of these
capsules. In fact, we produce lower capsules with
more robust neurons in terms of representation. We
concatenate the output capsules produced by the
CapsSum layer to form the alternative PCs. Origi-
nally, on the CIFAR10 dataset there are 8 x 8 x 32 =
2048 capsules generated by the 3D-R CapsCell, and
4 x4 x 32 = 512 capsules generated by the normal
CapsCells each of which includes 8 neurons. We
employ CA and reduce the 2048 and 512 generated
capsules to 8 x 8 = 64 and 4 x 4 = 16 primary cap-
sules respectively. We implement this by flattening all
the spatially correlated capsules of each high-level or

DeepCaps+: A Light Variant of DeepCaps

Table 1: Classification accuracy of some state-of-the-art CNNs (shown on top) and the state-of-the-art CapsNet variants
(shown in the middle) compared to DeepCaps+ (shown on the bottom).

Model CIFAR-100 | CIFAR-10 | SVHN | FMNIST
DenseNet (Huang et al., 2016) 82.4% 96.40% 98.41% | 95.40%
RS-CNN (Yang et al., 2020) 61.14% 90.15% 95.56% | 93.34%
BiT-M (Kolesnikov et al., 2019) 92.17 % 98.91% - -
DA-CapsNet (Huang and Zhou, 2020) - 85.47% 94.82% | 93.98%
CapsNet (7-ens) (Sabour et al., 2017) - 89.40% 95.70% -
Cv-CapsNet++ (He et al., 2019) - 86.70% - 94.40%
CFC-CapsNet (Shiri and Baniasadi, 2021) - 73.15% 93.29% 92.86%
HitNet (Deli, 2018) - 73.30% 94.50% | 92.30%
DCN-UN MDR (Chen and Liu, 2020) 60.56% 90.42% - 93.33%
Gabor CapsNet (Ayidzoe et al., 2021) 68.17 % 85.24% - 94.78%
AC-CapsNet (Tao et al., 2022) 66.09% 92.02% 96.86% -
RS-CapsNet (Yang et al., 2020) 64.14% 91.32% 97.08% | 94.08%
DeepCaps (7-ens) (Rajasegaran et al., 2019) - 92.74% 97.56% | 94.73%
DeepCaps+ 61.88% 89.63% 96.14% | 94.52%
DeepCaps+ (7-ens) 67.56% 91.63% 96.82% | 94.90%

OOO
i Caps Sum
eie
8
L
LH’J 8

8

Figure 5: Capsule Assembler Module. Low-level and high-level capsules are summarized separately using CapsSum layers,

and the outputs are concatenated.

217

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

low-level category and summarising them into a sin-
gle more robust capsule. It is noteworthy that these
spatially correlated capsules have the same position
in the different 32 groups of the capsule-based fea-
ture maps. The Capsule Assembler improves accu-
racy as produces less but more robust high-level and
low-level Capsules.

S EXPERIMENTS AND RESULTS

In this section, we explain the experiments and the
corresponding results.

5.1 Datasets

There are certain datasets used for testing a new im-
age classifier. It is still not possible to test CapsNet
on real-world high-scale datasets including a high
number of categories such as ImageNet (Deng et al.,
2009). This is due to the structure of capsule-based
networks. These networks receive a tremendously
high number of parameters and also become signif-
icantly slow as the number of categories and image
size increases. We test DeepCaps+ against the regu-
lar datasets used for testing CapsNet and its variants:
Fashion-MNIST (FMNIST), SVHN, CIFAR-10 and
CIFAR-100. Note that testing CIFAR-100 is possible
due to the significant reduction of the number of pa-
rameters achieved by using CA. For SVHN, CIFAR-
100 and CIFAR-10 datasets, the input images are re-
sized from 32 x 32 x 3 to 64 x 64 x 3 and for the rest
of the datasets, the original images are used through-
out the experiment. We do the resizing because the
images in these datasets include rich features.

5.2 Experiment Settings

We implement DeepCaps+ on top of the Keras imple-
mentation of DeepCaps !. We use an NVIDIA 2080Ti
GPU for the experiments. We follow the “hard train-
ing” method implemented in DeepCaps. Specifically,
after the network is trained for 100 epochs, the bounds
of the loss function are restricted (different values m™
and m™), and the network is trained for another 100
epochs. The experiments are repeated 5 times and due
to the little variation in the results, we report the aver-
age values. We used the Adam optimizer with starting
learning rate of 0.001. We use an exponential decay
(Y= 0.96) and batch size of 128.

Uhttps://github.com/brjathu/deepcaps

218

5.3 Network Accuracy

Table 1 provides a comparison of the network classi-
fication accuracy of our proposed network with some
state-of-the-art CNN networks (shown in the top part
of the table), and some recent networks based on cap-
sules (shown in the middle of the table). DeepCaps+
and other recent CapsNet variants are still behind
powerful CNN networks such as BiT-M (Kolesnikov
et al., 2019).

There are only a few networks based on CapsNet
capable of supporting the CIFAR-100 dataset. For
datasets with a high number of classes, the number
of parameters can be very high and DR may take a
long time to infer the output capsules out of the in-
put capsules. We use a 7-ensemble model of Deep-
Caps+, where 7 instances of the network are trained
and the classification results of the networks are av-
eraged. With 67.56% accuracy for the 7-ensemble
DeepCaps+, our proposed network stands in the sec-
ond rank compared to state-of-the-art CapsNet-based
networks.

5.4 Number of Parameters

Table 2 shows the number of parameters for the net-
works listed in table 1. Since the SVHN and the
CIFAR-10 datasets share the same image format, they
result in the same number of parameters and hence the
SVHN dataset is removed from the table. DeepCaps+
is built on top of DeepCaps, and reduces the number
of parameters by 85%, 45.5% and 18.8% for CIFAR-
100, CIFAR-10 and F-MNIST datasets, respectively.
Some recent and powerful CapsNet and CNN vari-
ants employ novel solutions for reducing the number
of weights and achieve significantly fewer number of
parameters.

5.5 Network Training and Inference
Time

The CA module results in significant speedup, as it
makes it easier for the DR algorithm to infer the
output capsules. Rajasegaran et al. (Rajasegaran
et al,, 2019) have reported the network test time
for DeepCaps on a NVIDIA V100 GPU. CapsNet
takes 2.86ms for a 32 x 32 x 3 image and Deep-
Caps takes 1.38ms for a 64 x 64 x 3 image. Using
a NVIDIA 2080Ti GPU, DeepCaps takes 4.30ms for
a 64 x 64 x 3 image while DeepCaps+ does the same
job in 1.71ms resulting in a significant 2.51x speedup
compared to DeepCaps.

DeepCaps+: A Light Variant of DeepCaps

Table 2: The number of network parameters for networks shown in Table 1. The SVHN dataset is removed because it gets the
same number of paramters as the CIFAR-10 dataset.

Model CIFAR-100 | CIFAR-10 | FMNIST
DenseNet (Huang et al., 2016) 15.3M 15.3M 15.3M
RS-CNN (Yang et al., 2020) 2.8M 2.TM 2.TM
BiT-M (Kolesnikov et al., 2019) 928M 928M 928M
DA-CapsNet (Huang and Zhou, 2020) - - -
CapsNet (Sabour et al., 2017) - 11.7M 8.2M
Cv-CapsNet++ (He et al., 2019) - 2. TM 2.5M
CFC-CapsNet (Shiri and Baniasadi, 2021) - 5.9M 5. M
HitNet (Deli, 2018) - 8.9M 8.OM
DCN-UN MDR (Chen and Liu, 2020) 4.8M 1.4M -
Gabor CapsNet (Ayidzoe et al., 2021) 22.6M 10.4M -
AC-CapsNet (Tao et al., 2022) 4.12M 1.26M -
RS-CapsNet (Yang et al., 2020) 16.8M M SM
DeepCaps (Rajasegaran et al., 2019) 72.4M 13.4M 8.5M
DeepCaps+ 10.9M 7.3M 6.9M

Comparison of Validation Loss

—— DeepCaps
0.4954 ~ — FastDeepCaps

0.4454
0.3954 -
0.3454 -

SS

S 020544 |
0.2454 4
0.1954 -

0.1454 AV
MM
0.0954 -

0 20 40 60 80 100
Epochs

Figure 6: Comparing the validation loss between DeepCaps and DeepCaps+. DeepCaps+ results in a smoother convergence,
and the final loss is slightly higher than DeepCaps.

219

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

5.6 Network Convergence

Figure 6 plots the network validation loss during the
training process for DeepCaps and DeepCaps+. The
validation loss is the sum of the decoder (reconstruc-
tion) loss and the margin loss. As the figure shows,
both networks converge almost at the same epoch. In
the meantime, training DeepCaps+ is more stable than
DeepCaps. In addition, DeepCaps+ shows a slightly
higher final loss value compared to DeepCaps.

6 CONCLUSION

In this work, we present DeepCaps+ as a powerful
variant of Capsule-based Network, as an extension
of DeepCaps. This network performs competitively
compared to the state-of-the-art CapsNet-based net-
works. DeepCaps+ includes the 3D Dynamic rout-
ing and the class-independent decoder introduced by
Rajasegaran et al. (Rajasegaran et al., 2019) and in-
troduces the novel Capsule Assembler module in or-
der to reduce the primary capsules to speed up the
network and reduce the number of parameters while
maintaining the test accuracy. Using a 7-ensemble
model, DeepCaps+ obtains an accuracy of 91.63% for
the CIFAR-10 dataset using 7.3M parameters while
taking 1.71ms to test a single image. With 67.56%
test accuracy on the CIFAR-100 dataset, DeepCaps+
is among the few variants of vector-based CapsNet
that can process this dataset providing acceptable re-
sults.

ACKNOWLEDGEMENTS

This research has been funded in part or completely
by the Computing Hardware for Emerging Intelligent
Sensory Applications (COHESA) project. COHESA
is financed under the National Sciences and Engineer-
ing Research Council of Canada (NSERC) Strategic
Networks grant number NETGP485577-15.

REFERENCES

Ayidzoe, M. A., Yu, Y., Mensah, P. K., Cai, J., Adu, K., and
Tang, Y. (2021). Gabor capsule network with prepro-
cessing blocks for the recognition of complex images.
Machine Vision and Applications, 32(4).

Chen, J. and Liu, Z. (2020). Mask dynamic routing to com-
bined model of deep capsule network and u-net. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 31(7):2653-2664.

220

Deli, A. (2018). HitNet : a neural network with capsules
embedded in a Hit-or-Miss layer , extended with hy-
brid data augmentation and ghost capsules. pages 1—
19.

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, and Li
Fei-Fei (2009). ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 248-255.
IEEE.

He, J., Cheng, X., He, J., and Xu, H. (2019). Cv-
CapsNet: Complex-valued capsule network. [EEE
Access, 7:85492-85499.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. (2016). Densely Connected Convolutional Net-
works.

Huang, W. and Zhou, F. (2020). DA-CapsNet: dual atten-
tion mechanism capsule network. Scientific Reports.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J.,
Gelly, S., and Houlsby, N. (2019). Big Transfer (BiT):
General Visual Representation Learning.

Krizhevsky, A., Nair, V., and Hinton, G. (2009). CIFAR-10
and CIFAR-100 datasets.

LECUN and Y. THE MNIST DATABASE of handwritten
digits. http://yann.lecun.com/exdb/mnist/.

Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara,
H., Seneviratne, S., and Rodrigo, R. (2019). Deep-
Caps: Going Deeper with Capsule Networks.

Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic
Routing Between Capsules. (Nips).

Shiri, P. and Baniasadi, A. (2021). Convolutional Fully-
Connected Capsule Network (CFC-CapsNet). InACM
International Conference Proceeding Series.

Shiri, P, Sharifi, R., and Baniasadi, A. (2020). Quick-
CapsNet (QCN): A Fast Alternative to Capsule Net-
works. In Proceedings of IEEE/ACS International
Conference on Computer Systems and Applications,
AICCSA, volume 2020-Novem.

Tao, J., Zhang, X., Luo, X., Wang, Y., Song, C., and Sun, Y.
(2022). Adaptive capsule network. Computer Vision
and Image Understanding, 218:103405.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms.

Yang, S., Lee, F., Miao, R., Cai, J., Chen, L., Yao, W.,
Kotani, K., and Chen, Q. (2020). RS-CapsNet: An
Advanced Capsule Network. /EEE Access.

