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Pollen is an important substance produced by seed plants. They contain the male gametes which are necessary
for fertilization and the reproduction of flowering plants. The scientific study of pollen, palynology, plays a
crucial role in a number of disciplines, such as allergology, ecology, forensics, as well as food-production.
Current trends in climate research indicate an increasing importance of palynology, partly due to a projected
rise in allergies. Pollen detection and classification in microscopic images via deep neural networks has been
studied and researched, however, pollen data is often sparse or imbalanced, especially when compared to
the number of plant species, which is estimated to be between 330,000 and 450,000, of which only a small
percentage is investigated. In this work, we present a solution that does not require a large number of data
samples by employing Few-Shot Learning. Our work shows, that by utilizing Prototypical Networks, an
average classification accuracy of 90% can be achieved on state-of-the-art pollen data sets. The results can
be further improved by fine-tuning the net, achieving up to 98% accuracy on novel classes. To our best
knowledge, this is the first attempt at applying Few-Shot Learning in the field of pollen analysis.

1 INTRODUCTION

Palynology is the scientific analysis of pollen grains,
which consists of classifying, analyzing, and counting
pollen grains to establish their taxonomy. Such tasks
are necessary for various disciplines and applications
such as medicine, food safety, forensics, botany, and
paleoecology. The information that is derived from
a pollen analysis can indicate the geographical origin
of the sample, the plant family, the grains health status
(e.g. abnormal or normal), age, as well as the effects
of climate change. Especially the latter is possible
due to the resistant hull of pollen, the sporoderm. The
need and advantages for an automated solution, such
as time, costs, and workload, have been already es-
tablished in 1996 (Stillman and Flenley, 1996). Typ-
ically, an in-depth analysis requires a laboratory en-
vironment (e.g. to create a sediment or prepare the
pollen sample in other ways) and highly trained paly-
nologists to identify the grains typically via a Light-
Microscope (LM). In melissopalynology, which is the
scientific study of pollen in honey, the pollen grains
have to be classified and counted in order to label the
product correctly and to provide allergy-related in-
formation. The morphological features are the main
distinction between different plants, however, certain
pollen grains can have highly similar visual charac-
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teristics where a clear identification requires years-
long human experience as well as additional extrinsic
knowledge, such as season, origin of the sample, and
visual reference material.

The application of Deep Learning (DL) methods
has made large advantages in recent years and can
offer as of 2022 typical solutions to many Computer
Vision (CV) problems, such as object detection, clas-
sification, and segmentation. Well-established Deep
Neural Network (DNN) architectures, such as ResNet
(He et al., 2016) and VGG-16 (Simonyan and Zisser-
man, 2015), however, require a large number of train-
ing images, typically provided by data sets such as
MSCOCO (Lin et al., 2014) and especially ImageNet
(Russakovsky et al., 2015), which contains more than
14,000,000 images and approximately 20,000 classes.
With regards to palynology, the availability of large
high quality pollen data sets is sparse. Most research
work is performed on proprietary data that is not ac-
cessible and/or have issues regarding class bias, bal-
ance, or overall quality, due to different methods of
image acquisition. Only in recent years, a number
of quality pollen data sets have been published ((Bat-
tiato et al., 2020) (Gongalves et al., 2016) (Sevillano
et al., 2020) (Tsiknakis et al., 2021)) and are publicly
accessible. However, the usability in real-world sce-
narios is often limited, due to the flora of the pollen
which is geographically limited and non-uniform im-
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Figure 1: Overview of our employed method with a typical FSL task split, comprised of a support and query set. The Feature
extractor has the last layer removed, so that it produces a one-dimensional embedding which is then fed into the PN algorithm.
Predictions for each image in the query set are generated by comparing each feature vector to the class prototypes ¢, which
are based on the mean of all k shots from N-classes. The distances are measured via the Euclidean distance.

age acquisition methods remain an obstacle. For fu-
ture prospects, it is important to notice, that from
around 300,000 to 450,000 plant species, only about
10% have been investigated (Scotland and Wortley,
2003).

The problem of data scarcity can be approached
in a multitude of ways: data augmentation, e.g. the
generation of synthetic pollen images with Generative
Adversarial Networks (GAN) (Viertel et al., 2021),
handmade feature engineering strategies to define the
morphological, textural, and color-based traits, as
well as Domain Adaptation (DA) techniques. Another
method to handle sparse data is Few-Shot Learning
(FSL). It differs from the well-established deep Con-
volutional Neural Network (CNN) approach by re-
quiring only one to five images per class (or even none
in Zero-Shot Learning). While traditional object clas-
sification methods produce a classification score in
the last layer, FSL methods usually utilize the feature
extraction method but rely on other algorithms to ac-
tually predict a class label, e.g. metric-learning-based
methods, which create an embedding, i.e. feature vec-
tor, for each image and calculates the distance in the
feature space via a specific distance measure. Dur-
ing inference, these embeddings are compared and
the closest match yields the corresponding class la-
bel. The feature extractor relies on established CNN
architectures, such as the ones mentioned above.

In this work, we will utilize a metric-based ap-
proach, i.e. Prototypical Networks (Snell et al., 2017),
to evaluate the possibility of classifying pollen grain
images from three state-of-the-art data sets. We will
show, that even without out-of-domain knowledge, a
baseline model performs around 90% on 5-way 5-
shot tasks and the results can be further increased
via Fine-Tuning. Although a metric-based algorithm

is not the only method, in this work, we chose this
approach, due to its well-established success in ap-
plication and inductive approach. Varying methods
for tackling FSL problems are discussed in Section 2.
The method selected for this work is elaborated on in-
depth in Section 3, together with the utilized data and
backbone model as well as the results of our experi-
ments. Finally, in Section 4 we will summarize our
findings and discuss the applicability of our method,
its drawbacks, and how they could be addressed in fu-
ture works. We believe, that this work is an important
step in realizing a feasible solution to an automated
pollen classification system, without requiring large
quantities of labelled pollen grain images. To the best
of the authors knowledge, this is the first attempt at
utilizing FSL in the domain of pollen analysis.

2 RELATED WORK

Although automated pollen classification is an estab-
lished research field, with solutions ranging from Fea-
ture Engineering-based Machine Learning (ML) to
deep neural network applications (Viertel and Konig,
2022), the crucial problem of data sparsity and the
prospect of constantly adding new specimen requires
particular attention. FSL is a paradigm suitable for
problems where large numbers of samples are difficult
or impossible to acquire. Early proposals were made
in the 2000s, based on Bayesian networks (Fei-Fei
etal., 2003) (Fei-Fei et al., 2006), utilizing only one to
five training samples. In general, the methodological
research can be categorized in three groups: metric-
based, model-based, and optimization-based meth-
ods. Unlike traditional CNN methods, FSL methods
usually split the data for a task into a support (consist-
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ing of K images for N classes) and query set (unla-
belled images, that are compared to the support set).
The metric-based approach aims at comparing two
samples in a latent (or metric) space. The idea is,
that samples with the same label are closer to each
other than samples with differing labels. An early
representative of this idea was published in 2015,
with (pseudo)-siamese networks (Koch et al., 2015)
(Zagoruyko and Komodakis, 2015) for one-shot tasks,
trained, and evaluated on the Omniglot data set (Lake
et al., 2015). The output of two identical networks
are jointly trained with a relationship function. It pro-
duces the probability of two images belonging to the
same class. During inference, the input is compared
to all examples from the support set, i.e. every single
image for each class candidate. It does that by en-
coding the images into feature vectors (embeddings).
The generated embeddings are compared pair-wise,
i.e. the L1 distance is calculated and consequently
transformed into a probability. Matching Networks
(MN) (Vinyals et al., 2016) work similarly by creating
an embedding for each image. The embeddings are
typically generated by a CNN, the feature extractor.
MNss use the Cosine distance between the embeddings
to calculate the similarity relationship in the embed-
ding space. (Vinyals et al., 2016) also introduced the
minilmageNet data set, which is a commonly used
data set for benchmarking the performance of new
FSL methods. It is smaller than ImageNet but more
complex than CIFAR10, and therefore, fit for rapid
experimentation. Prototypical Networks (PN) (Snell
et al., 2017) extend the idea of MNs with two major
changes: creating mean label-based embeddings, i.e.
a prototype feature vector for every class ¢ by using
the mean vector of the embedded samples in ¢ and uti-
lizing Euclidean distance instead of Cosine, which in-
creased the accuracy on minilmageNet benchmarks.
(Sung et al., 2018) proposes the addition of a relation
module, therefore called Relation Network (RN). The
feature extractor does not generate one-dimensional
vectors but instead feature maps, which are concate-
nated and fed into the relation module to produce clas-
sification results. However, it is regression-based con-
trary to PNs and MNs. Optimization-based meth-
ods are represented by the Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) algorithm and
its variations. MAML is model and task-agnostic
and aims at training a model (via meta-learning) by a
number of gradient descent updates to adapt quickly
in learning new tasks. Such algorithms are referred
to as gradient-based and model-agnostic, since it puts
no constraints on the choice of the model architec-
ture except to be optimizable by a gradient-based op-
timizer. Further improvements and alternative ap-
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proaches have been introduced since, such as Reptile
(shortest descent) (Nichol et al., 2018) and iMAML
(MAML with implicit gradients) (Rajeswaran et al.,
2019), where each method aims at improving the
core idea by modifying the gradient descent steps.
Model-based approaches encompass CNN architec-
tures that are primarily designed for the paradigm of
FSL, such as (Santoro et al., 2016). FSL methods are
usually inductive, i.e. the goal is to learn a general-
ized model that can be applied onto unseen data and
predict the correct labels. In FSL, that is typically
done by observing one instance after the other from
the query set, transductive methods, however, observe
the query set in its entirety in one episode. The data
is therefore not split into training, validation, or test-
ing, instead the model uses labelled and unlabelled
data together (Zhu and Ghahramani, 2002). It uses a
small subset of labelled data points to propagate them
to the unlabelled points. However, this implies that
such models cannot be used to predict new data and
new input requires a re-training of the entire model.
Since this is the first work exploring FSL in pollen
analysis, practical research work is limited to famil-
iar fields in micro and cellular biology, specifically
histopathology. (Medela et al., 2019) uses a Deep
Siamese Neural Network with a VGG16 backbone.
The authors fine-tuned it via a data set of colon tis-
sue images and evaluate it on a smaller set of colon,
lung, and breast tissue images. A balanced accu-
racy of 90% is achieved and outperforms the trans-
fer learning approach that obtains only 73%. While
the FSL approach required only 20 samples per class,
the transfer learning approach would require 600 im-
ages (130 samples per class) to reach 81%. (Li et al.,
2021) propose a two-stage deep adaptive few exam-
ple learning network for cell counting. At first, a
pre-trained regression network is fine-tuned with a
small set of novel medical images. In the second
stage, an attention module is used to correlate features
and their bounding boxes by exposing the model dur-
ing testing to cell examples. Evaluation on three cell
data sets shows that the proposed method outperforms
baseline approaches. Anomaly or artifact detection
in histopathological images via PNs is successfully
evaluated in (Shaikh et al., 2022), again showing that
it outperforms standard transfer learning approaches.
(Walsh et al., 2022) investigates the possibility of uti-
lizing FSL for automated human cell classification
and utilize best-practice methods. The domain and
its inherent issues described are similar to the ones
encountered in palynology; the dependence on pro-
fessionals to classify biological material and the spar-
sity of data. The authors trained nine different FSL
methods on minilmageNet and evaluate the perfor-



mance on two human cell data sets to identify best
method candidates. Additionally, the authors varied
the backbone architectures and training schemes to
evaluate potential performance benefits. For all ex-
periments, the authors used 5-way 5-shot sampling.
The two top-performing methods were Reptile and
EPNet (Rodriguez et al., 2020), achieving approx.
40% and 45% accuracy, respectively. EPNets back-
bone (WideResNet) was changed to EfficientNetV2
(Tan and Le, 2021), ResNet-18, and DenseNet (Ian-
dola et al., 2014). However, none of these changes
improved the accuracy compared to EPNets original
backbone. The results indicate that a high perfor-
mance on minilmageNet does not guarantee a similar
performance on out-of-domain data.

3 METHOD

3.1 Data

Three data sets were chosen for evaluation and train-
ing: NzPollen (Sevillano et al., 2020), POLEN23E
(Gongalves et al., 2016), and CPD-1 (Tsiknakis et al.,
2021). All of these data sets contain a large number
of classes, i.e. at least 20 different pollen classes. Fig-
ure 2 shows examples from each data set. Although
POLEN23E contains only 805 images, it has a bal-
anced distribution of images (35 w/ 23 classes). Its
pollen are from the Brazilian Savannah and the im-
ages were captured via a digital Bresser LCD micro-
scope at 40 x magnification and subsequently seg-
mented. The pollen in CPD-1, collected in Crete,
Greece, were dyed with fuchsin to increase the vis-
ibility of textural features and captured at 400 x
magnification!. The pollen were recorded in a dry
state, which is important to notice, due to the harmo-
megathic effect of pollen grains; depending on their
state, dry or hydrated, the morphology, and there-
fore the visual characteristics, can change completely.
This can make pollen from the same class, depend-
ing on their state, incomparable. The set contains 20
classes, with 4,025 images and 22 to approx. 700 per
class. The images in NzPollen, pollen from plants in
New Zealand and the Pacific region, were captured
with a dark-field microscope (DFM). This allows for
the creation of high-contrast images of translucent
samples and thus achieving the same effect as with
the application of dye. DFMs utilize a condenser lens,
which redirects the light away from the objective lens.

1400 x is a typical magnification strength. It is in the
recommended range set by the German DIN NORM 10760
to analyse and count pollen grains in a honey sediment anal-
ysis for producing a correct label.

Metric-Based Few-Shot Learning for Pollen Grain Image Classification

As CPD-1, NzPollen is also imbalanced. It contains
19,667 images with 46 classes. Each class is made up
of 45 to approx. 1,500 images. The information is
summed up in Table 1.

Figure 2: Various pollen grain samples from all three data
sets. From left to right: CPD-1, POLEN23E, and NzPollen.

3.2 Prototypical Networks

Metric-based FSL tasks can be described as N-way
K-shot classification tasks. N indicates the number
of classes in the support set S and K the number of
samples (shots) per class k, with K being typically
<= 10. In addition to the support set, FSL tasks re-
quire a query set Q. Q contains a number of unla-
belled images, for which the model has to predict the
correct label by comparing the class prototypes, cal-
culated from S, with each feature vector in Q. A PN
is typically trained via the Meta-Learning paradigm
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Table 1: Composition of the three data sets used in this
work in comparison. The NzPollen set was recorded via
a DFM, the others with a LM. The CPD-1 set is colored
with Fuchsin, which is a common dye used in palynology
that colors the pollen grains pink and highlights the textural
features. DFM images tend to provide the same effect.

Data set Classes | Lotal number | Imags.
of imgs. p. class
45 to
NzPollen 46 19,667 1,500
POLENZ3E | 23 805 35
22 to
CPD-1 20 4,025 100

which consists of a fixed number of episodes, where
in each training iteration N classes with K labels are
randomly selected and serve as the support set S,
which can be defined as: S = {(x;,yi),..., xn,Y8) }+
where x;,y; are the input-output pairs. x; € R? is the
D-dimensional feature vector, with y; € {1,...,K} be-
ing the corresponding label. Q is defined analogous:
0 = {(xj,yj)}. This method simulates the known
training/test split. The goal of Meta-Learning is to op-
timize the net, i.e. the creation of fitting embeddings.
This can be done by replacing the Fully-Connected
output layer with a Flatten layer to reshape the output
into a one-dimensional vector encoding. This output
is fed into the PN which creates the class prototypes
¢y, 1.e. the feature vectors by averaging the embed-
dings from all images (x;) of the specific class. We
can define this as Sk, the set of support images with
label &, then ¢y, is defined as:
1
% =15 Y folx) (1)
(xi,yi) €Sk

with f, : R? — RM being the embedding function,
with the learnable parameter ¢, that computes the M-
dimensional representation of each class. The embed-
ding for each Q image is compared to the class proto-
types via a Euclidean distance measure d. The largest
probability indicates the predicted label for j. This

can be defined as:

p(ﬁzk\ﬁ,S): exp[ d(fq’(x):Ck)]
Yy exp [—d(fo(£),cv)]
To get the class predictions, a softmax is performed
on the computed distances. The shortest distance to
a prototype c indicates the sample belonging to that
specific class. The original learning phase consists
of a log-softmax loss J(¢) = —log(pe(y = k|x))) of
the true class k via stochastic gradient descent. The

architecture of this method is displayed in Figure 1.
In order to optimize the method, we evaluated a
number of CNNs to improve the accuracy. State-of-
the-art pretrained models on ImageNet, without addi-
tional out-of-domain training, were evaluated on all

2
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Table 2: Comparison between different feature extractors.
Each CNN backbone+PN is pretrained on ImageNet and
evaluated without out-of-domain training on all three data
sets. There is no network that performed best across all
data sets.

Feature 5-way 5-shot (Acc.%)
Extractor Nz- POLEN

Pollen | 23E CPD-1
ResNet-18 93.5 90.4 78.2
ResNet-34 93 92 80
ResNet-50 93.2 92.1 81
ResNet-101 91 90 84
EfficientNetV2s | 86.1 77 80.2
DenseNet-121 94.4 89.7 81.3
WideResNet-50 | 93.9 92 82.2
SqueezeNet 1.1 | 90.3 79.1 63.2
ConvNeXt tiny | 93.3 90.4 83.3
GooglLeNet 95.4 90.1 80.5

Table 3: Performance based on minilmageNet compared to
ImageNet. Each trained model was evaluated without out-
of-domain knowledge on all three data sets. Preprocessing
was applied to all data sets accordingly. The model trained
on minilmageNet performs significantly worse than the one
on ImageNet.

Base 5-way 5-shot (Acc.%)
training w/ Nz- POLEN
ResNet.18 | Pollen | 23E (SR
ImageNet 93.5 90.4 78.2
minilmageNet | 76.2 79 60

three data sets. We selected a number of nets that
performed well in related use cases (see Section 2),
as well as different sizes of ResNet to validate the
perception that deep nets perform worse in FSL. The
complete results are shown in Table 2. First, we
performed the experiments as 5-way 5-shot tasks for
1,000 sampled tasks. We assume that the candidates
perform similarly for larger Ns. Although most FSL
methods utilize minilmageNet as well as small CNN
architectures, our approach differs in both points: the
image size in minilmageNet is 84 x 84, while e.g.
CPD-vl and POLEN23E have a mean image size of

Table 4: Baseline performance (w/o Fine-Tuning) of
WideResNet-50+PN with different task sizes. A larger N
decreases the performance, due to more prototypes in the
feature space.

Nz- POLEN

Pollen | 23E CPD-1
10-way
5-shot 89.5 86 74
(Acc.%)
20-way
5-shot 83.4 78.55 66.2
(Acc.%)




132 x 132 and 285 x 278, respectively. Therefore,
our preprocessing and model evaluation is based on
ImageNet, i.e. 224 x 224. In the worst case, up-
scaling can increase the amount of redundant infor-
mation, however, down-scaling can possibly lead to
information loss. In the case of pollen, visual distinc-
tions can be subtle and their classification can ben-
efit from any visual information available, as shown
in conventional pollen object classification (Sevillano
et al.,, 2020). To support this decision, we trained
a PN with ResNet-18 on minilmageNet. We used
64 classes for training, 16 for validation, and 20 for
testing (each class contains 600 images; 60,000 im-
ages in total). We performed episodic training for 200
epochs, with 500 tasks per epoch consisting of 5-way
5-shot tasks and Q = 10. For testing we used 1,000
tasks with the same shape. We achieved an accuracy
of 68% on the test set after 130 epochs. We used a
learning rate of 0.01 and a momentum of 0.9. After
100 epochs we reduced the learning rate by a factor of
10. However, our results show that it performs signif-
icantly worse than a pre-trained model on ImageNet:
On NzPollen, POLEN23E, and CPD-1 it yielded an
accuracy of 76.2% (-17.3) , 79% (-11.4), and 60% (-
18.2), as shown in Table 3.

As stated earlier, all tests are performed as 5-way
5-shot tasks. Such a task is shown in Figure 3. When
we changed the tasks to 10-way and 20-way, the ac-
curacy dropped, as shown in Table 4. This problem
is rather obvious, it is a well-encountered problem
with many clustering algorithms, such as k-means;
the larger the number of prototypes is, the more dif-
ficult it becomes to create a distinct, clear assignment
based on a distance metric.

0 support images

200 400 600 BOO 1000

Figure 3: 5-Way 5-shot task from the CPD-1 data set. The
query sets Q consists of 10 images, for each class that is
represented in the support set S. Preprocessing was applied
according to the CNN architecture and training: resizing,
using bilinear interpolation, and normalized pixel values.

3.3 Fine-Tuning for Unseen Classes

Although the results without any out-of-domain
knowledge are already of high quality, we evalu-
ated the possibility of increasing the results via fine-
tuning. Since the domain shift is significant, we de-
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cided to update the entire network in combination
with a low learning rate of 0.0001 and the Adam adap-
tive gradient optimizer. We used the NzPollen data
and split the 46 classes into 30 for training, 8 for val-
idation, and 8 for testing. The typical Meta-Learning
approach works by emulating the evaluation method,
i.e. splitting the training and test examples into S and
0 to recreate the behavior for a N-way k-shot task
during training time. This is done in episodes, coin-
ing the term episodic-training. However, recent re-
search (Laenen and Bertinetto, 2021) suggests that
this is not optimal. Classical, non-episodic train-
ing, by simply utilizing a cross-entropy loss on the
meta-training classes, i.e. the dedicated training set,
performs better. The authors state, that the separa-
tion between S and Q during the episodes negatively
affects the distances, which are contributing to the
loss. Therefore, we used a non-episodic approach
for training our model with the aforementioned loss-
function. We choose ResNet-18, since it performed
already well on the data set and is smaller in design
than e.g. DenseNet-121. We trained 100 epochs and
validated after every 10th epoch on the validation set.
The 30 training classes contain 11,994 images. Dur-
ing validation 500 5-way 5-shot tasks were sampled
from the pool of 8 classes with 3,831 images. For
testing, we performed 1,000 tasks of the same shape
from the remaining 8 testing classes, in total 3,842 im-
ages. On this data, an accuracy of 98% was achieved.
Furthermore, we increased N to 8, the max. num-
ber of classes in the test set, which also yielded 98%
accuracy. The original authors reported the same ac-
curacy of 98% in their work (Sevillano et al., 2020),
however, via different means: by averaging a 10-fold
cross-validation (90% and 10% of the images for each
class for training and testing, respectively). In con-
trast to our experiments, the imbalanced classes were
also filled with augmented images to match the num-
ber of images of the class with more samples. Due
to the split and without counting augmentation, each
fold contained approx. 17,700 training images (from
all 46 classes). It is important to notice, that during
training, our network was not exposed to any classes
that were in the test set. All of the 8 test classes during
testing are unknown to the net.

Based on the idea, that the learned features are
transferable on the other pollen data sets, due to
shared visual characteristics, we evaluated the fine-
tuned net on CPD-1 and POLEN23E. However, the
accuracy declined, with 69% and 84.2% accuracy, re-
spectively. Decreasing the learning rate from 0.001 to
0.0001 already improved the accuracy significantly,
but the results are still subpar when compared to the
baseline performance. The results are shown in Ta-
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Table 5: Evaluation results of ResNet-18 backbone on all
three data sets, with and without Fine-Tuning on nzPollen.
All tests are 5-way 5-shot. On 8-way 5-shot tasks (max.
number of classes in the test set of nzPollen), the fine-
tuned model achieved 98% as well. However, the fine-tuned
model on nzPollen does not produce better accuracies when
tested on POLEN23E and CPD-1.

Nz- POLEN

Pollen | 23E CPD-1
Baseline
(Acc.%) 93.5 90.4 78.2
¥1i:11r?ge 98 84.2 69.4
(Ace.%) (+4.5) | (-6.2) (-8.8)

ble 5. We deduce the results from the visual dif-
ferences in image quality, as seen in Figure 2, due
to varying capturing methods and use of dye. We
assume, the same pattern occurs when training and
cross-evaluating with POLEN23E and CPD-1.

4 CONCLUSIONS

In this work, we investigated the applicability of FSL
in the field of pollen image classification. It was
shown that FSL, specifically PNs, can compete with
the results of traditional CNN classification methods,
with the advantage of predicting novel classes that
were not included in the training process. The base-
line models, which have no information about pollen
grain images, achieved accuracies up to 95%. Fine-
Tuning can increase the accuracy on novel classes up
to 98%. The choice of feature extractor cannot be
conclusively answered, since each model performed
differently, depending on the data set and its specific
method of image acquisition and pollen preparation.
No model achieved best results on all three sets, we
can not recommend a definitive net. Each data set
yielded a different result for each backbone. On prac-
tical terms, if the acquisition and processing method
of pollen grain images are uniform, only a subset
of the data would be required for fine-tuning, while
novel classes can be classified with a small number
of labelled images for the support set. This can dras-
tically reduce the dependency of data being steadily
collected and labelled in large quantities.

However, the problem in the feature space for a
large number of classes in the support set, i.e. pro-
totypes, requires further attention. The accuracy suf-
fers due to the close proximity of the prototypes. An
obvious solution would be to increase the number of
images per class in the support set (increasing from 5
to e.g. 10-shots). However, one has to be careful not
to leave the paradigm and advantage of FSL, if incor-

424

porating and effectively depending on a large amount
of data. For future work, the applicability of this
method depends on the conditions and requirements
that exist for a pollen analysis. Depending on the use-
case, the number of class prototypes can be grouped
or limited by a set of factors, that predetermine a lim-
ited set of candidates. E.g. a typical lab-report for
a honey pollen analysis includes grouping by genus
(e.g. Brassica® being the genus, of which rapeseed
(Brassica napus) is the species). Furthermore, the
candidates can be limited due to the geographical ori-
gin of the honey sediment and season. This can re-
duce the number of prototypes in FSL tasks.
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