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Abstract: Turning deficits have been linked to aging and movement disorders and are a common cause of falls and 
fractures. Despite previous works on the automatic identification of turns and on its relation to fall risk, 
different algorithms for turn identification have been used, but their agreement and differences have not been 
investigated. In this study, we compared the two most-used turn-validated algorithms (El-Gohary and Pham) 
using a dataset comprising real-world data from 171 community-dwelling older adults monitored for one 
week with a single wearable sensor. The quantity and quality of turn parameters were calculated and used as 
predictors of future falls. After the analysis, the El-Gohary and Pham algorithms identified 1,063,810 and 
942,845 turns, respectively. The agreement of the algorithms showed a very high to moderate correlation for 
all turn parameters. We found that prospective fallers take longer to perform a turn, and their movements are 
less smooth when compared to non-fallers. A fall risk assessment model built only on turn parameters showed 
reasonable performance for both algorithms (AUC = 0.6). Our results show that differences between turn 
parameters in the algorithms, when averaged at the single-subject level, are less of a concern when looking 
for associations with prospective falls.

1 INTRODUCTION 

Turning represents a major component of everyday 
walking behavior, as between 35 and 45% of steps 
occur within turns (Glaister et al., 2007). However, 
up until recent years, studies only focused primarily 
on straight-ahead walking. Turning requires a 
continuous change of the center of mass and multi-
limb coordination, so it is not surprising that its 
deficits are associated with movement disorders and 
the risk of falling. 

Several studies have noted that turns can 
challenge stability maintenance and increase energy 
expenditure, and that turning time, steps per turn, and 
variability in the number of steps across different 
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turns are valuable features for distinguishing fallers 
from non-fallers (Mancini et al., 2016). Subtle fall-
risk-related gait-based measures may become highly 
effective fall-risk indicators when applied to turns due 
to the increased challenge to stability compared to 
straight walking. Individuals at high risk of falling 
employ different turning methods than healthy 
individuals.  

Assessment of turning is not trivial. Optical 
systems have been widely used in previous studies 
but are cumbersome, expensive, and can only be used 
in controlled environments (Marín et al., 2020; 
Thigpen et al., 2000). Wearable sensors, which can 
measure for days or even weeks, are a promising 
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alternative. Hence, they are ideal in unconstrained 
environments over long periods of time.  

Algorithms for analyzing the turning movements 
of older adults and Parkinson’ disease patients have 
already been published. To the best of our knowledge, 
only two algorithms based on one inertial sensor 
(accelerometer and gyroscope) worn on the lower 
back have been validated against video observation 
(gold standard) with reasonable agreement. These 
algorithms have been and are currently used by other 
studies to extract relevant turning parameters 
associated with movement disorders and the risk of 
falling (Haertner et al., 2018; Leach et al., 2018; 
Roussos et al., 2022; Thierfelder et al., 2022). 
However, using different algorithms increases 
heterogeneity in remote monitoring studies; 
validation and adoption of standardized digital 
mobility biomarkers is an ongoing task being 
addressed by different initiatives. 

In this study, we tested two algorithms to identify 
turns and extract turning characteristics in real-world 
conditions. We aim to compare here the performance 
of the two algorithms and their impact on assessed 
turn quantity and quality during a week of monitoring 
relative to prospective falls. To the best of our 
knowledge, this is the first study characterizing 
different turning biomarkers worn on the lower back 
for fall risk assessment in real-world conditions. 

2 METHODS 

Study Participants and Settings 

The present study is based on data from the 4th wave 
of the “Invecchiare in Chianti” (InCHIANTI) study. 
One hundred and seventy-one community-dwelling 
older adults over 65 (79·7±6·6) years, 50·9% female, 
were monitored for 5–9 days using a smartphone 
(Samsung Galaxy SII), embedded with a tri-axial 
accelerometer and gyroscope with a 100 Hz sampling 
rate, worn on the midsagittal plane of the lower back 
during all waking hours. 

Participants brought the device home, used it for 
one week, and then returned it to the clinical staff at 
the end of the monitoring period. Telephone 
interviews were used to collect prospective fall 
incidence data between 6 and 12 months after the start 
of continuous monitoring. Participants who did not 
fall were defined as non-fallers [NFs] and participants 
who fell one or more times were defined as fallers 
[Fs]. 

The study protocol was approved by the ethical 
committee of the Italian National Institute of 

Research and Care of Aging and complies with the 
Declaration of Helsinki. All participants received a 
detailed description of the study purpose and 
procedures and gave their written informed consent. 

Turns  

Two validated algorithms for turning detection were 
implemented in Python 3.8  

(El-Gohary et al., 2013) algorithm measures the 
angular rotational rate of the pelvis about the vertical 
axis (𝑤௭). Candidate turns are detected in segments 
where the maxima of the low-pass filtered ( 𝑓 =1.5 𝐻𝑧) 𝑤௭ exceed a threshold of 15°/s. The start and 
end of turns are found when the filtered signal drops 
below 5°/s. The direction of the turn (right or left) was 
defined by the sign of 𝑤௭. 

(Pham et al., 2017) algorithm estimates the 
angular displacement around the vertical axis through 
attitude estimation. The start of a right turn is defined 
by a change from an increase to a decrease of the 
angular displacement, and the end by a change from 
a decrease to an increase of the angular displacement. 
The opposite operation is applied to the definition of 
a left turn. 

Both methods rely on a single inertial sensor worn 
on the lower back to detect turns. Still, different post-
processing cutoffs are suggested to improve the 
performance of the algorithm based on heuristics. The 
thresholds were optimized and validated using video 
observations according to the information reported by 
the authors of the algorithms. Table 1 presents a 
description of both algorithms.    

Table 1: Characteristics of turn algorithms. 

El-Gohary Pham 
Sensor accelerometer 

+ gyroscope 
accelerometer + 
gyroscope

Location Low back Low back
Identification 
method 

Maxima from  
filtered vertical 
angular 
velocity 

Changes in 
vertical angular 
displacement 

Turn 
duration 
threshold*

0.5 – 5 s 0.1 – 10 s 

Turn angle 
threshold*

45° 90° 

* Thresholds Suggested by Authors 

To standardize the comparison of both algorithms, 
turns with angles between 50–200° and durations 
between 0.5–5 seconds were applied in the 
implementation of the algorithms and were analyzed. 
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Turns were divided into three subsets based on turn 
angle (small (50–100°], medium (100–150°], and 
large (150–200°]) to account for different motor 
planning strategies within our analysis.  

Following what was defined in previous studies, 
we calculated different quantity and quality turn 
parameters. Turn quantity was characterized by the 
number of turns per hour (TPH). Turn quality was 
characterized by the turn duration (DUR), turn angle 
(ANG), mean velocity (MV), and peak turn velocity 
(PV)(Caby et al., 2011; Leach et al., 2018), and the 
spectral arc length (SPARC)(Figueiredo et al., 2020; 
Gulde & Hermsdörfer, 2018). 

Statistical Analyses 

The degree of agreement for turn detection between 
the two algorithms was calculated using a correlation 
matrix of quantity and quality parameters of turns. 

Univariate and k-fold cross validation logistic 
regression analysis was used to evaluate the 
association of turn parameters with prospective falls 
for both algorithms. The quantity and quality turn 
parameters were included as independent variables in 
the univariate model. The correlation between 
quantity and quality parameters was used to select a 
set of possible explanatory variables in the 
multivariate model. All analyses were performed 
using Python 3.8. All p values were two-tailed, and p 
< 0.05 was considered significant. 

3 RESULTS 

Cohort and Fall Status 

Table 2 presents demographic and clinical data about 
participants included in the study, labeled as fallers 
and non-fallers. 

Table 2: Cohort characteristics for 12-month prospective 
falls. 

 Non-Fallers 
[NFs] 

(N=142) 

Fallers [Fs] 
(N=29) 

Combined 
(N=171) 

Gender 
(M/F) 

73/69 11/18 84/87 

Age 
(years) 

79.4 ± 6.7 81.1 ± 5.5 79.7 ± 6.5 

Height 
(cm) 

159.8 ± 9.1 159 ± 9.5 159.6 ± 9.1 

Weight 
(kg) 

70.7 ± 13.1 70.2 ± 14.4 70.6 ± 13.3 

MMSE 27.3 ± 1.9 27.1 ± 1.8 27.3 ± 1.8 

Turns Characterization 

A total number of 1,063,810 and 942,845 turns were 
detected from the dataset with El-Gohary and Pham 
algorithms, respectively (Figure 1). 

 
Figure 1: Turns identified during real-world monitoring. 

The average across days was computed for each 
participant. “El-Gohary and Pham algorithms showed 
very high agreement on TPH ( 𝑅ଶ = 0.97 ), high 
agreement on DUR, ANG, and SPARC (𝑅ଶ between 
0.74 and 0.82) and moderate agreement on PV and 
MV (𝑅ଶ 0.51-0.61) (Figures 2-3, Table 3). 

 
Figure 2: Turn quantity correlation identified by turn 
algorithms. 

Table 3 summarizes descriptive characteristics for 
turn quantity and quality parameters. Computed 
DUR, ANG, and SPARC revealed high agreement 
between quality turn characteristics identified by both 
algorithms. MV and PV showed moderate correlation 
among the computed parameters.  

While not reported in the present manuscript, 
outliers were identified in MV and PV, which may be 
responsible for the lower agreement.  
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Figure 3: Correlation (upper) and Bland-Altman plot 
(bottom) for turn duration (s). 

Table 3: El-Gohary and Pham correlation and mean 
difference. 

 Overall means + SD 𝑅ଶ Mean 
diff  El-Gohary Pham 

TPH (/h) 74.87±34.8 66.44±31.71 0.97 8.43
DUR (s) 2.57±0.33 2.61±0.46 0.79 0.04
ANG (°) 86.77±3.88 99.08±4.47 0.74 12.31
MV (°/s) 43.76±7.02 44.8±4.9 0.61 1.04
PV (°/s) 96.04±16.16 92.07±8.4 0.51 3.97
SPARC -2.14±0.09 -2.04±0.07 0.82 0.1

 

Taking physical properties of body movement 
into account, it is expected that some of the quality 
parameters extracted from turns will be correlated 
(angle, velocity, duration). Therefore, to avoid 
collinearity problems in the following multivariate 
analysis, we analyzed potential correlations between 
parameters. Figure 4 shows the correlation matrix for 
all parameters (turn quantity and quality). 

To account for different motor planning strategies 
individuals take when performing a turn, three 
subsets based on turn angle (small (50–100°], 
medium (100–150°], and large (150–200°]) were 
analyzed. As shown in figure 5, despite a high 
agreement in angle estimation of both algorithms, the 
subtle differences in the estimation techniques lead to 
considerable differences when differentiating turns 
based on their angle ranges. 

 

 
Figure 4: Correlation matrix for turn quantity and quality 
parameters. 

 
Figure 5: Turns’ subsets division based on turn angle. 

Turns and Prospective Falls 

To identify associations between turn parameters and 
prospective falls, the fall incidence used in the 
analysis was calculated after  a 6-month (NFs: 157, 
Fs: 14) and a 12-month period (NFs: 142, Fs: 29).  

The odds ratios that quantify the univariate 
associations between turn quantity and quality 
parameters and fall status after 12 months are shown 
in Figure 6. Z-scored was applied for better 
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visualization of the forest plot. The parameters were 
grouped by characteristics according to the algorithm 
used for turn detection and angle-range subsets (the 
prefix 50, 100, or 150 defines the type of subset 
analyzed). 

Turn measures were associated with prospective 
fall status when analyzing all turns for both 
algorithms. Despite some differences, both 
algorithms identified the same parameters that were 
strongly associated with future falls. More TPH, 
longer DUR, and less smooth movements (SPARC) 
were associated with the risk of falling (Figure 6). PV 
and MV demonstrated similar trends to DUR, which 
is in agreement with findings in the turns 
characterization section (correlation matrix, figure 4). 
Finally, specific angle-range subsets (e.g., (150–
200°] TPH) seemed to provide stronger evidence for 
turn associations with prospective falls. 

 

 

Figure 6: Forest plot of univariate analysis for turn 
parameters associated with 12-month prospective falls, El-
Gohary (top), Pham (bottom). 

For multivariate analysis, we then performed a 
selection of parameters based on the univariate 
analysis and previous results from the correlation 
matrix analysis. Since PV and MV were moderately 
and highly correlated with DUR in the El-Gohary and 
Pham parameters, respectively, both parameters were 
removed from the following multivariate analysis.  

The results of the ROC curve analysis using TPH, 
DUR, ANG, and SPARC to classify fallers vs. non-
fallers over a 6-month and 12-month period are 
shown in Figure 7. A different set of parameters (e.g., 
based on specific angle ranges) was also analyzed and 
was found to only marginally improve the 
performance of the classifier. 
 

 

 
Figure 7: ROC curve for 6-month (top) and 12-month 
(bottom) prospective falls. 

4 CONCLUSIONS 

In this study, we compared two wearable-based turn 
detection algorithms and assessed their importance in 
real-world fall risk assessment. 

Although both algorithms are based on the same 
“principle” (e.g., estimating turns based on the 
rotation of the pelvis around the vertical axis), 
different processing steps to identify turn events lead 
to significant differences in the number of detected 
turns and angles estimated by both algorithms. The 
readings from the gyroscope (i.e., the angular speed) 
are generally very accurate; however, drift might 
occur when integrating gyroscope readings over 
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longer periods, such as in continuous monitoring 
experiments. Future studies could apply available 
techniques to avoid drifting, such as the integration of 
data coming from the orientation sensor (magnetic 
plus acceleration) and data coming from the 
gyroscope. The use of additional sensors combined 
with data fusion techniques could improve accuracy 
in the identification of turns while increasing 
computational and power costs. 

Despite some differences and potential errors in 
estimating some quantity and quality parameters, 
both algorithms showed a moderately to very high 
correlation. We hypothesize that the differences 
among turn parameters at the single-subject level are 
less of a concern when looking for associations with 
prospective falls. In line with this discussion, we 
could summarize a pipeline-process: turn detection, 
calculation of turn parameters at the single-turn level, 
and calculation of the average over turns of each 
subject to extract turn parameters at the subject level. 
The last two steps downstream (probably, the average 
step in particular) attenuate the discrepancies, making 
the two algorithms exchangeable. Initial evidence for 
this statement is given by the similar performance of 
the logistic regression model built on the identified 
turning parameters with both algorithms.  

All in all, the results and parameters presented 
here are in line with previous research studies and 
with current clinical standards tests. In fact, turning 
ability is a fundamental aspect of several walking 
tests, including the Timed Up and Go Test (TUG), 
which is used to discriminate fallers from non-fallers. 
Other cohorts could also be explored in prospective 
longitudinal studies, it should be noted that the 
percentage of fallers after 6 and 12 months in this 
cohort was significantly lower than the global 
statistics for falls in older adults. 

Last but not least, a quick review of the literature 
shows an exponential increase in reports related to 
wearable-based monitoring for fall prevention. 
However, despite several efforts to use this 
technology for assessments of both healthy and 
pathological movement patterns, the high level of 
heterogeneity in the use of wearables (e.g., sensor 
location and extracted gait parameters) makes it hard 
to yield conclusive results. While some ongoing 
initiatives aim to establish the clinical validity of 
digital mobility biomarkers in different cohorts, some 
real-world characteristics, such as turning, deserve 
deeper analysis. 
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