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Abstract: Autonomous surveillance has several applications which include surveilling calamity prone areas, search and
rescue operations, military operations and traffic management in smart cities. In low visibility conditions
like low-light, haze, fog, snowfall, autonomous surveillance is a challenging task and current object detection
models perform poorly in these conditions. Lack of datasets that capture challenging low visibility conditions
is one of the reasons that limits the performance of currently available models. We propose a synthetic dataset
for Human Action Recognition for search and rescue operations consisting of aerial images with different
low visibility conditions including low light, haze, snowfall and also images with combinations of these low
visibility conditions. We also propose a framework called ExtremeDetector for object detection in extreme low
visibility conditions consisting of a degradation predictor and enhancement pool for enhancing a low visibility
image and YOLOv5 for object detection in the enhanced image.

1 INTRODUCTION

UAV and drones have recently emerged as alternatives
for surveillance in situations where human involve-
ment is dangerous or unfeasible. One such applica-
tion is in search and rescue (SAR) operations during
disasters where drones can identify affected humans
thus aiding in timely rescue. Deep learning models
show good performance in object detection and clas-
sification tasks (He et al., 2016; Szegedy et al., 2015;
Uijlings et al., 2013; Purkait et al., 2017; Girshick,
2015; Ren et al., 2015; Wang et al., 2016) thus mo-
tivating their use for autonomous surveillance. How-
ever, current deep learning models perform poorly in
low visibility conditions such as low light, haze, fog,
snowfall making them unfit for deployment in real-
world scenarios. Furthermore, recent works on im-
age enhancement and restoration (Zheng and Gupta,
2022; Singh et al., 2020; Cai et al., 2016; Zhang et al.,
2021b; Dong et al., 2020; Li et al., 2021; Qin et al.,
2020; Fu et al., 2017) are focused towards enhance-
ment of images with a specific kind of degradation
and don’t take challenging low visibility conditions
and neither their combinations into account. Lack of
publicly available datasets that capture a variety of de-
grading factors and real-world challenging scenarios
is one of the reasons for poor performance of deep
learning models in challenging low visibility scenar-
ios.

In this work, we explore the performance of cur-
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rent object detection models in challenging low vis-
ibility conditions and develop an end to end frame-
work for object detection focusing on Human Action
Recognition in extreme visibility conditions. Our ma-
jor contributions are listed below.

• To the best of our knowledge, existing object de-
tection datasets do not contain images with ex-
treme low visibility conditions and combinations
of them. Furthermore, lack of aerial datasets cap-
turing such scenarios motivates us to generate a
new dataset. Thus, we generate a new aerial im-
ages dataset for for Human Action Recognition
consisting of five low visibility conditions which
include low light, fog, snowfall, combination of
low light and fog, combination of snowfall and
fog.

• We evaluate performance of current object detec-
tion models on the generated low visibility dataset
thus laying groundwork for future research.

• We propose a framework, ExtremeDetector
shown in Figure 2 for object detection in extreme
low visibility conditions including but not limited
to the ones listed above.

2 RELATED WORK

Object detection is a task involving localization and
classification. Current object detection methods can
be classified broadly into two categories - single stage
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Figure 1: Sample images from the dataset with original captured images (column 1), foggy images (column 2), low light
images (column 3), low light+fog (column 4), snowfall+fog (column 5), snowfall (column 6).

Table 1: Number of images in our proposed dataset per ac-
tion class in train and test set.

Action Train Test
Person Standing 11778 1452
Person Sitting 2988 510
Person Handshaking 468 42
Person Running 2490 234
Person Waving 5562 534
Person Lying 1164 132
Person Walking 6900 1002

detectors and two-stage object detectors. Single stage
detectors (Lin et al., 2017; Jocher et al., 2022; Liu
et al., 2016) use a single CNN to predict object la-
bels and bounding box coordinates whereas two-stage
detectors (Uijlings et al., 2013; Purkait et al., 2017;
Girshick, 2015; Ren et al., 2015; Wang et al., 2016),
extract regions of interest (RoIs), then classify the
RoIs. Object detection in low visibility conditions
is an insufficiently researched area. Previous works
(Zhang et al., 2021a), (Shan et al., 2019), (Chen et al.,
2018b), (Hnewa and Radha, 2021) address this prob-
lem by viewing object detection in hazy and rainy
scenes as a domain adaptation task. Sindagi et al.
(Sindagi et al., 2020) proposed to reduce weather spe-
cific features using a prior-adversarial loss that uses
additional knowledge about the target domain (hazy
and rainy images) for aligning the source and target
domain features. Liu et al. (Liu et al., 2022) use
a CNN to learn parameters of a differentiable im-
age processing module which takes into account the
adverse weather conditions for a YOLOv3 detector.
Some previous works (Huang et al., 2021) jointly per-
form image enhancement and object detection. Most
datasets used for image enhancement mainly target
at evaluating the difference of enhanced images w.r.t
ground truth images using quantitative metrics like
PSNR, SSIM or qualitatively. Recent datasets in-
clude RawInDark (Chen et al., 2018a), LOL dataset
(Wei et al., 2018) for low light enhancement, Haz-

eRD (Zhang et al., 2017b), IHAZE (Ancuti et al.,
2018), OHAZE (Ancuti et al., 2018) for dehazing,
DIV2K (Timofte et al., 2017), MANGA (Fujimoto
et al., 2016) for image super-resolution, Rain 100L/H
(Yang et al., 2017), Rain800 (Zhang et al., 2019) for
rainfall removal. Challenges in aerial datasets in-
clude small objects, objects in different sizes and with
different orientations. Datasets collected by aerial
vehicles include VIRAT Video Dataset (Oh et al.,
2011), UAV123 (Mueller et al., 2016), and a multi-
purpose dataset (Yao et al., 2007). However, these
datasets are not captured in adverse conditions. Com-
monly used datasets for object detection in adverse
conditions include Foggy-Cityscapes (Sakaridis et al.,
2018), RTTS (Li et al., 2018) for foggy conditions and
ExDARK (Loh and Chan, 2019), UFDD (Nada et al.,
2018) for low light conditions.

3 PROPOSED WORK

3.1 Dataset Creation

We use an aerial Human Action Recognition dataset
(Mishra et al., 2020) to generate realistic synthetic
datasets for 5 low visibility conditions which are - (1)
Low light , (2) Fog , (3) Snowfall , (4) Low light + Fog
, (5) Fog + Snowfall. The dataset in (Mishra et al.,
2020) consists of images of 7 human actions captured
from a drone equipped with a high definition camera
from the height between 10 m to 40 m. The 7 human
actions captured are - Person Standing, Person Sitting,
Person Handshaking, Person Running, Person Wav-
ing, Person Lying and Person Walking. It consists of
a total of 3050 images (split into train and test each
having 2560 and 490 images respectively). Our pro-
posed dataset with low visibility conditions has a total
of 15360 training images and 2940 test images. The
distribution of images for each human action class is
presented in Table 1. Some images from the dataset
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Figure 2: ExtremeDetector. Proposed framework for object detection in low visibility images.

Table 2: mAP@IoU=0.5 of object detection models on proposed dataset. The best results have been highlighted in bold text.

Method Normal Fog Low Light Low
Light+Fog

Fog+Snowfall Snowfall

RetinaNet(Lin
et al., 2017)

0.00027 0.00030 0.00034 0.0004 0.0002 0.00027

Detectron2(Wu
et al., 2019)

0.282 0.182 0.293 0.177 0.246 0.252

YOLOv5(Jocher
et al., 2022)

0.319 0.1899 0.29 0.25 0.31 0.275

IA-YOLO(Liu
et al., 2022)

0.312 0.2984 0.334 0.334 0.339 0.3554

Ours 0.408 0.391 0.386 0.3577 0.3546 0.405

are shown in Figure 1. The process of generating syn-
thetic dataset for each low visibility condition is de-
scribed below.

• Low Light Effect: In order to generate a low-lit
image while preserving the underlying informa-
tion, we follow the pipeline used in (Cui et al.,
2021). We generate images with varying amount
of darkness.

• Fog effect: We use Foggy and Hazy Images Sim-
ulator (FoHIS) (Zhang et al., 2017a), a framework
based on an atmospheric scattering model which
can simulate both fog and haze effects at any ele-
vation in an image. Our dataset consists of images
with variation in amount of fog.

• Snowfall effect: Image editing tools like Adobe
Photoshop were used to add snowfall effect
through random layered masks supporting vary-
ing amounts of snow and falling angle in each im-
age. Further, blue channels of each image were
enhanced in order to simulate a more realistic

winter effect.

• Low light + Fog: We generated images with fog
followed by addition of low-light effect using the
approaches discussed above.

• Snow + Fog: Fog effect was added to images with
snowfall using the above approaches.

3.2 Framework

The proposed framework shown in Figure 2 consists
of a degradation predictor module that identifies the
degradation in the image and accordingly passes the
image into selected models from a pool of pre-trained
models specialized to remove a specific degradation.
A Laplacian filter for edge enhancement (available in
Python Imaging Library) is then applied on the im-
age to improve action recognition. A YOLOv5 (Ultr-
alytics 2020) (Jocher et al., 2022) detector then uses
the enhanced image to detect and identify the action.
Since our dataset consists of images with extreme
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Figure 3: Detection results of IA-YOLO (Liu et al., 2022) (column 3) and our framework (column 4) on augmented low
visibility images (column 1) along with their corresponding original images (column 2). Each row correspond to the 5 low
visibility conditions - fog (row 1), low light (row 2), low light+fog (row 3), snowfall+fog (row 4), snowfall (row 5).

darkness, fog, snowfall and combination of these con-
ditions, we leverage SOTA models specialized to en-
hance specific degradation.

3.2.1 Enhancement Pool

Our enhancement model pool consists of Zero-DCE
(Li et al., 2021) for low light image enhancement,
FFA-Net (Qin et al., 2020) for removing fog and
Deep Detailed Network (Fu et al., 2017) for remov-
ing snow. Pre-trained Zero-DCE model was used to
enhance low light images. FFA-Net and Deep De-
tailed Network models were fine-tuned using a subset
of foggy images and snowfall images respectively and
their corresponding clean image pair.

3.2.2 Edge Enhancement Filter

Edge enhancement filter (Laplacian filter) increases
the contrast of the pixels around edges thereby mak-
ing them prominent, aiding the use of object and pat-
tern recognition. The kernel shown below (denoted
by EE) is applied on image output from the enhance-
ment pool.

EE =
−1 −1 −1
−1 10 −1
−1 −1 −1
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3.2.3 Degradation Predictor Module

We use a degradation predictor to identify degradation
in input image and enhance them accordingly for bet-
ter feature extraction during object detection. The im-
age is resized to 256x256 before passing to the degra-
dation predictor module. The degradation predictor
module is composed of five convolutional blocks, two
fully-connected layers followed by a sigmoid layer.
Each convolutional block consists of a 3 × 3 convo-
lutional layer with stride 2 and a leaky ReLU activa-
tion. The module outputs 3 values each in the range 0
to 1 which correspond to the probability for the con-
dition that would be present in the input image. We
use a threshold of 0.5 to determine the target enhance-
ment model(s), if any, from the enhancement pool. To
train the module, we use supervised learning based on
manually determined degradation classes of the im-
ages. Binary cross entropy loss (denoted by LBCE in
Equation 1) is used where the target output value is set
to 1 if corresponding degradation is present in image,
otherwise set to 0.

LBCE =
1
N

N

∑
i=1

−(yilog(xi)+(1− yi)log(1− xi)) (1)

In the above equation, N is number of models in en-
hancement pool. We use 3 models in the enhancement
pool. xi refers to output value of degradation predic-
tor module and yi refers to target value corresponding
to the degradation type label of image.

3.2.4 Object Detection

We choose YOLOv5 (Ultralytics 2020) (Jocher et al.,
2022) for object detection because it is suitable for
deployment due to fast inference and train it using the
enhanced images. The YOLOv5 architecture consists
of three parts - (1) CSPDarknet backbone, (2) PANet
neck, and (3) YOLO Layer. The enhanced images are
first input to CSPDarknet for feature extraction, and
then fed to PANet for feature fusion. Finally, YOLO
Layer outputs detection results (class, score, location,
size).

4 EXPERIMENTAL RESULTS

We trained the object detection models on a hybrid set
of images from the five low visibility conditions along
with the original ambience. The degradation predictor
was trained using Adam optimizer with weight decay
1e-5 and learning rate 1e-4. We use PyTorch for our
experiments. We evaluate the performance of these
well established object detection models- RetinaNet

(Lin et al., 2017), YOLOv5 (Jocher et al., 2022), De-
tectron2 (Faster RCNN X101-FPN) (Wu et al., 2019)
and IA-YOLO (Liu et al., 2022) on our proposed
dataset. The evaluation metric used is mean aver-
age precision (mAP) at Intersection over Union (IoU)
threshold of 0.5. If the ratio of the intersection of a de-
tected region with an annotated object is greater than
0.5, a score of 1 is assigned to the detected region,
otherwise 0 is assigned.

4.1 Discussion

Results in Table 2 show that our proposed framework
shows a significant increase in mAP over current ob-
ject detection models which include RetinaNet, De-
tectron2 and YOLOV5 in all conditions. This indi-
cates that degradation in images hinders extraction of
relevant features. Thus, enhancement/restoration of
degraded images is essential before detection in ex-
tremely low visibility conditions. Our framework also
has a better mAP than IA-YOLO (Liu et al., 2022) in
all conditions. Further, Figure 3 shows that IA-YOLO
has very poor image enhancement especially in fog
and low light+fog images. The visual results indicate
that the differentiable filters proposed in (Liu et al.,
2022) are insufficient for enhancement of images with
extreme degradation thus leading to poor extraction
of relevant features for object detection. Our frame-
work shows better image enhancement resulting in
better object detection. Additionally, our approach
has detection results for multiple degradation condi-
tions (combination of fog & snowfall, combination of
low light and fog) at par with single type of degrada-
tion without additional enhancement models for these
conditions thus making our framework robust to mul-
tiple degradation. We study the impact of using edge
enhancement filter (EE filter) and report the results
in Table 3. The results indicate that applying edge
enhancement filter on the images output from the en-
hancement pool has a significant improvement in de-
tection results in all conditions. The mAP values of
the methods shown in Table 2 are below 0.45 in all
conditions which indicates that our proposed dataset
is challenging and there is room for further improve-
ment in detection models to be fit for deployment in
challenging scenarios.

Our work is a step in the direction of exploring
the challenges of several types of degradation, hos-
tile weather conditions with varying intensities in ob-
ject detection. Lack of real-world datasets capturing
these conditions, varying heights of captured objects
and their sizes in aerial images add to the challenges.
Going forward we aim to distillate the specialised
image enhancement/restoration models into one and
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Table 3: Ablation Experiment. Evaluation of mAP@0.5 of our framework with and without edge enhancement filter. Best
values are in bold text.

Method Normal Fog Low Light Low
Light+Fog

Fog+ Snow-
fall

Snowfall

Ours w/o EE
filter

0.384 0.238 0.3 0.32 0.341 0.368

Ours 0.408 0.391 0.386 0.3577 0.3546 0.405

get a lighter framework for the task. In addition to
this, with the increasing popularity and applications
of Transformers in Computer Vision research, we also
intend to explore the possibilities of equipping Trans-
formers in such extreme low-visibility conditions for
Object Detection.

5 CONCLUSION

In this work, we have proposed a new dataset with
challenging low visibility conditions. We also pro-
posed a framework for object detection that is ro-
bust to different low visibility conditions (low light,
fog, snowfall and their combinations). We perform
benchmarking experiments on our generated dataset
and surpass the detection results of some of the well-
researched object detection architectures. However,
the computational overhead of specialized deep learn-
ing models for each degradation limits the scalability
of our framework. Our work motivates further re-
search in developing a single lightweight model for
object detection in images captured in such extreme
low visibility conditions with performance at par with
favourable visibility conditions.
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