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Abstract: Code smells in software systems create maintenance and extension challenges for developers. While many
tools detect code smells, few provide refactoring suggestions. Some of the tools support live detection in an
integrated development environment. We present a tool for the live detection of data clumps in Java with
generated suggestions and semi-automatic refactoring. To achieve this, our research examines projects and
their associated abstract syntax trees and analyzes types of variables. Thereby, we aim to detect data clumps, a
type of code smells, and generate suggestions to counteract them. We implemented our approach to live data
clumps detection as an IntelliJ integrated development environment application plugin. The live detection
achieved a median of less than 0.5 s for the ArgoUML software project, which we analyzed as an example.
From over 1500 investigated files, our approach detected 125 files with data clumps and that of CBSD (Code
Bad Smell Detector) detected 97 files with data clumps. For both approaches, 92 of the files found were
the same. We combined the manual steps for refactoring, resulting in a semi-automatic elimination of data
clumps.

1 INTRODUCTION

Expenses for the continuing development and mainte-
nance of software projects are not negligible aspects
and must be considered during the planning of such
projects. Maintaining software may account for be-
tween 40 % and 75 % of the total costs, according to
(Brown et al., 1998). For software development, these
costs include the time for employees to learn a new li-
brary or the structure of an existing project. However,
a means of lowering the cost of maintenance may
already exist during the setup of a software project
via flexible and future-oriented structures and a clean
code. One such way to maintain software is refactor-
ing, which improves the software quality and, thus,
its maintainability without affecting its recognizable
behavior (Becker et al., 1999). The exact criteria to
identify a clean and good source code are various
and not sharply defined. In contrast, recognition of a
bad source code is easier and is often associated with
the terms “anti-pattern” and “code smell,” the latter
coined by Kent Beck and adopted by Martin Fowler
(Becker et al., 1999). Code smells are places in the
implementation that point to potential errors or main-
tenance problems.

A well-known type of code smell is data clumps.
According to (Lacerda et al., 2020), data clumps
are among the top 10 code smells and are the sec-
ond most common in the web domain (Delchev and
Harun, 2015). Thus, they present a problem in soft-
ware projects that should not be underestimated. Data
clumps are a group of variables that appear together
in different areas in a source code and that point to a
possible new data structure. Due to the distribution
of data clumps across a software project, detection is
difficult for a developer.

Integrated software development environments
(IDEs) for software provide useful tools for a de-
veloper and facilitate the work on software. Sup-
port for the automatic, timely and early detection
of data clumps within an IDE is an important issue
for software development and the associated develop-
ment costs. Already, (Simon et al., 2001), (Gronback,
2003), (Salehie et al., 2006), and (Habra and Lopez
Martin, 2006) have employed metrics to detect code
smells. In addition to detection, an equally impor-
tant point is refactoring the data clumps, for which
manual implementation can be time-consuming and
monotonous. A useful effort, therefore, would be an
automatic or semi-automatic tool for this.

64
Baumgartner, N., Adleh, F. and Pulvermüller, E.
Live Code Smell Detection of Data Clumps in an Integrated Development Environment.
DOI: 10.5220/0011727500003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 64-76
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



In this study, we approach a means of detection
and support for eliminating data clumps integrated in
an IDE to ease the developer’s work. Furthermore,
we demonstrate that the detection of data clumps can
be sufficiently fast so that live code smell detection
is possible. Finally, we evaluate how our approach
performs against comparable tools for detection.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview and background
of the method presented in this study. Section 3 dis-
cusses related approaches, and Section 4 describes
our proposed method for detecting and refactoring
data clumps. In Section 5, we present our evaluation
and results, which are discussed in Section 6, along
with the challenges and limitations of our approach.
Finally, Section 7 presents closing remarks and out-
lines recommendations for future work.

2 BACKGROUND

This section provides the background to our approach.
To develop a form of live code smell detection, we
first focus on the term code smell in Section 2.1. Then
in Section 2.2, we provide a definition of data clumps,
followed by the procedure for refactoring them in
Section 2.3. Subsequently, the abstract syntax tree
(AST), a representation of a source code, is explained
in Section 2.4, followed in Section 2.5 by a definition
of a program structure interface (PSI) built on top of
the AST.

2.1 Code Smell

A code smell is not necessarily a bug but is often an
indicator of a deeper problem (Fowler, 2019). Struc-
tures that must be improved can be identified by
code smells. Various domains can have specific code
smells and, therefore, different impacts on the areas
of architecture, database, design and implementation
(Sharma and Spinellis, 2017). Poor design as a symp-
tom of code smells poses a potential risk for future
bugs and loss of code structure. Additionally, it has
a negative impact on code in terms of understandabil-
ity, testability, extensibility and reusability (Fowler,
2019). As a result, code smells can have a nega-
tive impact on maintainability. A smell can enter a
project in various ways, such as inattention, knowl-
edge gaps, a change in requirements, chosen tech-
nologies and frameworks, work processes, organiza-
tional structure, team culture or poor resource plan-
ning (Sharma and Spinellis, 2017). Each of these
factors can influence a project and increase its costs.
To avoid a reduction in quality, refactoring may be

applied to a software project (Becker et al., 1999).
Fowler designates no fixed time for the refactoring but
states that it may be included in the workflow.

Different sources (Zhang et al., 2008) and
(Fowler, 2019) provide various definitions and quan-
tities of code smells, which result from the subjec-
tive definition of a particular code smell (Mäntylä and
Lassenius, 2006). Therefore, a complete list of code
smells is not available. A list of the originally defined
(Fowler, 2019) and most frequently mentioned code
smells can be found in (Lacerda et al., 2020), which
proposes measures to counteract them. Data clumps
are on this list.

2.2 Data Clumps

One manifestation of code smells is data clumps,
which are mentioned in Fowler’s list (Fowler, 2019)
along with countermeasures. Fowler defines them as
data items that “tend to be like children: They en-
joy hanging around together” (Fowler, 2019). These
groups of data items can be found in various places
such as class fields and method parameters.

For a more precise definition, (Zhang et al., 2008)
and (Hall et al., 2014) may be consulted, wherein ex-
perts were asked their explanation of data clumps.
Their resulting definition is divided into two in-
stances: fields and parameters.

2.2.1 Fields Instance

According to (Zhang et al., 2008) and (Hall et al.,
2014) a fields instance of data clumps is present if:

• More than three data fields are shared in two or
more classes.

• The data fields have the same signatures, consist-
ing of names, types and visibility.

• Instance fields are not necessarily found in the
same order and can be distributed over an in-
stance.

An example of data clumps in this instance is pre-
sented in Listing 1, which contains two classes that
both share the same fields: foo, bar and foobar. These
fields may be extracted into another class to eliminate
the code smell.

Listing 1: Fields Instance Example of Data Clumps.
1 p u b l i c c l a s s MyClass {
2 p r i v a t e i n t foo ;
3 p r i v a t e i n t b a r ;
4 p r i v a t e i n t f o o b a r ;
5 p u b l i c vo id method ( ) { }
6 }
7 p u b l i c c l a s s MyOtherClass {
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8 p r i v a t e i n t b a r ;
9 p r i v a t e i n t foo ;

10 p u b l i c vo id method ( i n t c ) { }
11 p r i v a t e i n t f o o b a r ;
12 }

Although the definition requires that the names
must be identical, in our understanding, semantic
equality rather than exact equivalence is more rele-
vant.

2.2.2 Parameters Instance

According to (Zhang et al., 2008) and (Hall et al.,
2014), a parameters instance of data clumps is present
if:

• More than three input parameters are shared in
two or more method declarations.

• The input parameters have the same signatures,
consisting of names, types and visibility.

• Method parameters are not necessarily found in
the same order.

• The same inheritance hierarchy and method sig-
nature should not be present in these methods.

An example of data clumps in this instance is
presented in Listing 2, which contains two classes
that both employ a method in which the parameters
foo, bar and foobar share the same signature. These
parameters may be replaced with a class containing
these parameters to eliminate the code smell.

Listing 2: Parameters Instance Example of Data Clumps.
1 p u b l i c c l a s s MyClass {
2 p u b l i c vo id method (
3 S t r i n g s , i n t foo ,
4 i n t bar , i n t f o o b a r
5 ) { }
6 }
7 p u b l i c c l a s s MyOtherClass {
8 p u b l i c vo id method (
9 i n t bar , i n t x ,

10 i n t foo , i n t f o o b a r
11 ) { }
12 }

2.3 Data Clumps Refactoring

In this section, the procedure to counteract data
clumps described by Fowler in (Fowler, 2019) is ex-
plained briefly. In the first step, Fowler suggests iden-
tifying a data clump. Thereupon, by means of Extract
Class (Fowler, 2019), for example, the data fields are
to be extracted into an object. With Extract Class, a

class with too many fields and methods may be sep-
arated into two classes, which improves the under-
standing of both of them. Then, the input param-
eters of methods must be checked and replaced, if
necessary, such as using Introduce Parameter Object
or Preserve Whole Object (Fowler, 2019). Preserve
Whole Object reduces the size of a parameter list by
passing the whole object to a method instead of only
the necessary parameters. Introduce Parameter Ob-
ject shortens the size of a parameter list by grouping
parameters that always appear together in method sig-
natures into an object. Fowler argues that Introduce
Parameter Object or Preserve Whole Object reveals
the benefit directly apparent through the shortened pa-
rameter lists or simplified method calls.

Fowler addresses the problems and code smells
resulting from the refactoring of data clumps. A re-
sulting code smell from this refactoring is data class,
which Fowler advises is contrary to the production of,
for example, a record structure. The purpose of a data
class is only to store data without further functional-
ity. For refactoring data clumps, it is not problematic
to use only some fields of the new objects, provided
that at least two fields have been replaced with the
new object. After refactoring, it is important to look
for the feature envy type of code smell, which exists
when the purpose of two methods in different classes
is only to communicate with each other. The class
newly created during the refactoring of data clumps
may be enriched with meaningful behavior structures.
This, in turn, helps to avoid many code duplications
and speeds up future development (Fowler, 2019).

To the best of our knowledge, there are only two
different refactoring types for data clumps. The first
involves manual steps for Extract Class, Introduce
Parameter Object and Preserve Whole Object. The
second type involves machine learning, which is not
within the scope of this study.

2.4 Abstract Syntax Tree

For the analysis of source code files, a representation
of the source code in a suitable data structure is help-
ful. An AST is a representation of the source end in
the form of a tree. Here, the individual components
of the code such as expressions, operators, literals and
variables are assigned to groups and appended to the
root node. By means of traversing over the tree, each
place in a program can be addressed in such a way.

2.5 Program Structure Interface

As a layer on top of the AST, a PSI can be used. As a
layer in the IntelliJ Platform, it parses files and creates
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a syntactic and semantic code model. With the PSI
code inside, the IDE can be highlighted. As a result,
the highlighted code may present the developer with
a description of the problem.

3 RELATED WORK

Several proposals have recently examined the detec-
tion and correction of code smells. Many studies and
investigations (dos Santos Neto et al., 2015), (Khrishe
and Alshayeb, 2016), (Mehta et al., 2018), (Palomba
et al., 2018) and (Guggulothu and Abdul Moiz, 2019)
have been performed to identify the optimal sequence
of refactoring steps to remove a code smell. The order
of detecting and refactoring code smells may have an
impact on the resulting software quality. According to
(dos Santos Neto et al., 2015), the literature on code
smells may be categorized into four groups: code
smell detection, code smell correction, code quality
evaluation and preservation of observable behavior.
The primary search for related work is directed at the
first two groups because of the focus of our approach.

In the code smell removal experiments in (Ar-
celli Fontana et al., 2015), no automatic approach is
suggested or named for refactoring data clumps. In-
stead, the recommended refactoring steps align with
those in (Fowler, 2019). To perform these steps,
the following tools are specified in (Arcelli Fontana
et al., 2015): Eclipse (Eclipse Foundation, 2022),
IntelliJ integrated development environment applica-
tion (IDEA) (JetBrains, 2022), and RefactorIT (Aqris
Software, 2016), although the last one does not sup-
port the Extract Class feature.

According to the review in (Lacerda et al., 2020)
of eight scientific databases and the 40 identified
secondary studies between 1992 and 2018, there is
currently no tool for automatic refactoring for data
clumps. To the best of our knowledge, a tool for live
code smell detection with refactoring options for data
clumps remains an innovation of this study, even from
2018 until 2022. Thus, most tools for code smells fo-
cus on detection or visualization, and only a few offer
refactoring suggestions at all. According to (Lacerda
et al., 2020), there are still code smells from Fowler’s
list for which tools with refactoring suggestions do
not yet exist. Below, we present an overview of the
frequently cited tools for code smell detection from
(Lacerda et al., 2020), (Felix and Vinod, 2016), (Pes-
soa et al., 2012) and (Fernandes et al., 2016) extended
by our own experiments with the following tools.

• cASpER (De Stefano et al., 2020) is an IntelliJ
IDEA plugin that aims to assist developers in the
identification and refactoring of code smells ex-

cluding data clumps. The plugin provides visual
and semi-automated support for detecting and re-
moving four different types of code smells.

• CBSD (Code Bad Smell Detector) (Hall et al.,
2013), is a standalone tool that can examine Java
source-code files for five types of code smells.
These code smells may be found in Fowler’s list
(Fowler, 2019), but some have not been studied
thoroughly (Lacerda et al., 2020). CBSD uses an
AST approach to discover data clumps and other
code smells. The results can be viewed in detail
using an extensible markup language (XML) ex-
port or a graphical user interface (GUI).

• CCFinder (CCFinder, 2008) is a standalone code
clone detection tool. It is token-based and uses a
suffix tree matching algorithm. This tool supports
various programming languages such as Java, C,
C++ and others.

• JDeodorant (Mazinanian et al., 2016) is a plu-
gin for Eclipse that detects 5 code smells exclud-
ing data clumps in Java source code and provides
refactoring suggestions. This is one of the few de-
tection tools that supports refactoring suggestions.

• PMD (PMD, 2023) is a tool for static analysis of
Java source code. This tool scans the source code
and looks for possible problems including bugs,
dead code, improvable code, simplified expres-
sions and duplicate code. This tool finds unnec-
essary variables, methods, statements and loops.
PMD can be integrated with a variety of other
tools such as Eclipse, IntelliJ IDEA and many oth-
ers.

• RefactorIT (Aqris Software, 2016) is a plugin
for Eclipse and NetBeans development environ-
ments. It offers the ability to detect and refactor
code smells such as data clumps. RefactorIT has a
limitation in comparison to other refactoring tools
as it does not support the Extract Class refactoring
technique, as reported in (Arcelli Fontana et al.,
2015)

• Stench Blossom (Murphy-Hill and Black, 2010)
uses visual elements to provide developers with a
quick and comprehensive overview of a variety of
code smells in the source code. This tool is avail-
able for Eclipse as a plugin and provides different
views for visualizing eight code smells. Feedback
to the developer is provided via a series of bars,
in the form of petals, at the edge of the IDE ed-
itor, and the size of the petals is used for assess-
ment and relevance to the developer. The plugin
does not offer refactor suggestions. According to
(Felix and Vinod, 2016) it is able to detect data
clumps.
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A detailed description of each tool is beyond the
scope of this paper. These include NosePrints (Parnin
et al., 2008), Borland Together (Micro Focus, 2023),
inCode (Intooitus srl, 2013), inFusion (Intooitus srl,
2012) and FindBugs (Rutar et al., 2004). Some
are outdated, some have low download numbers and
some others cannot be found.

In the approaches examined (Stench Blossom and
CBSD), the focus is only on the detection of data
clumps. In this research, we take it a step further and
demonstrate the possibility of live code data clumps
smell detection as well as support the developers with
recommendations for semi-automatic refactoring.

4 APPROACH

The live code smell detection of data clumps is pro-
posed as a plugin for IntelliJ to provide support to
the development of a software project by means of
live, or at least fast, feedback for the developer. Our
plugin, called Live Code Smell Detection (LCSD) is
Java-based.

In the following passages, the general structure of
our approach is discussed, along with the associated
configuration options. This is followed by a more de-
tailed description of our approach, which consists of
three phases, illustrated in Fig. 1: detecting, report-
ing and refactoring.

Phase 1

Detecting

Phase 2

Reporting

Phase 3

Refactoring

Figure 1: Phases of our approach.

In short, our tool works as follows. After an initial
phase to load the plugin, the first phase, detecting,
passes the project or files to be examined from the
IDE to the tool. After the developer makes changes to
the project, the changed files are examined and com-
pared with other classes, methods and fields that are
of interest for the detection of data clumps. There
is also the possibility of extending the tool to detect
other code smells.

In the second phase, reporting, this information
is presented to the user via the IDE’s interface so
that they can perceive and react to the detection. In
this phase, information about the positions and occur-
rences of possible data clumps is prepared and pre-
sented. If a developer decides to refactor and provides
the necessary input (name for the new class), refactor-
ing is started.

In the third phase, refactoring, the refactoring
proposal accepted by the developer is applied. The

provided name of the new class is used, and the refac-
toring steps suggested by Fowler (Fowler, 2019) are
applied using the IDE’s interfaces.

To realize these three phases our tool needs to
adapt the interfaces provided by the IDE of the tool
we provide the plugin for. For our approach, we
first adapted these interfaces for the IDE of IntelliJ.
Therefore, in the following description, we start gen-
erally from the IntelliJ application programming in-
terface (API), which may be replaced by interfaces
from other IDEs.

The simplified unified modeling language (UML)
diagram of our approach with the dependency on the
IDE is illustrated in Fig. 2. The class diagram has
been simplified for clarity. At the core of our ap-
proach is the class Inspection, which is responsible
for starting the process of detection. In addition, this
class has the task of presenting the detected feedback
to the user.

<<interface>>

IntelliJ Platform API

Visitor Inspection Fix

0..* 1 1 0..*

CacheManager

Utilities

RefactoringService

LocalInspection

Tool LocalQuickFix

JavaElement

Visitor

RefactoringDialog

Figure 2: Class diagram of the general LCSD structure (no-
tation UML 2.5).

At the initial phase to load the plugin, when
opening a project, the CacheManager collects and
prepares information about the entire project. The
CacheManager allows quick access to relevant infor-
mation, such as the list of PSI representations of all
classes. After a change to the source code or after a
scan has been performed, each Visitor component is
presented with the affected code. A Visitor is respon-
sible for scanning the AST of the source code to re-
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veal a particular code smell. The AST is provided by
the IntelliJ IDEA. A Fix class is responsible for per-
forming an action to eliminate a specific code smell.
As both the Visitor and Fix class are highly dependent
on the class Inspection. Therefore both classes are il-
lustrated as a composition. To extend our approach
for a specific code smell, a Visitor and a Fix must be
implemented. Consequently, multiple Visitor and Fix
classes may be illustrated with the one-to-many rela-
tionship to the Inspection class.

After a user selects the feedback displayed by
the Inspection component, they are guided through a
refactoring dialog using the RefactoringDialog com-
ponent. More details about the data clumps found are
then presented, such as names and types of the du-
plicated variables with the affected methods, classes,
and files. In addition, the user can enter a name for the
new class. If the user approves the refactoring pro-
posal, the related Fix component receives the relevant
information and is responsible for manipulating the
AST. There is one Fix component for each of the two
data clump expressions, parameters and fields. The
Fix component uses the data clump refactoring ac-
tions from the RefactoringService component and the
generally supporting methods from the Utilities com-
ponent, such as extracting variables, creating getter
and setter methods or counting common parameters.

4.1 Detection

A correct detection of data clumps depends on the ex-
act definition. For this purpose, Section 2.2 provides
definitions of data clumps. Due to the subjectivity
in detecting data clumps, users may have a different
definition. Therefore, a configuration of parameters
for the definition of data clumps would be useful. To
support various interpretations of data clumps, we in-
cluded a manner to configure the parameters and other
settings in our approach. In our tool, the configuration
can be made using the IDE interface. By default, the
configuration is set according to the improved defini-
tion of data clumps:

• More than three data fields are shared in two or
more classes.

• More than three parameters are shared in two or
more methods.

• If the hierarchy for method parameters should be
considered.

• If the hierarchy for data fields should be consid-
ered.

• The severity level of data clumps (i.e., whether
they should be considered as information, warn-
ing or error).

• Data clumps are detected with a frequency of two
repetitions.

• More than two groups of variables for data fields.

• More than two groups of variables for method pa-
rameters.

In our approach, an AST is used for the actual de-
tection of code smells and, therefore, data clumps.
This AST is already provided by the IntelliJ PSI at
this point. For this, a Visitor component visits the PSI
code element that represents the source code part to
be examined. The Visitor uses methods provided by
the Utilities component. If a method signature is ex-
amined, it is compared with all other methods in the
project in terms of data clumps. However, if a field
in a class is examined instead, the entire class and its
associated fields are compared to all other classes and
their fields in the project with respect to data clumps.
Two types of scans can be distinguished: a live scan
and a full scan.

4.1.1 Live Scan

Rapid feedback to the user about issues and errors
may be helpful and it may be implemented via live
feedback within the IDE. Information about potential
errors is immediately displayed to the user, allowing
this direct feedback to leverage the potential of the
testing effect (Kühl et al., 2019). Live scanning sup-
port is provided using the IDE interface, and continu-
ous scanning leads to an increased load on the system
being executed. Therefore, the live scan begins only
when a new source code file is opened or the user fin-
ished writing code elements that might include data
clumps such as method signatures and class fields.

4.1.2 Full Scan

While a live scan examines only the current file and
the directly associated components in a project, it
might be of interest to identify all data clumps within
the entire project. Therefore, our approach allows the
option for a full analysis, which takes longer than the
live scan due to the larger amount of files to exam-
ine. There are various reasons to have a project com-
pletely analyzed, such as for a performance compari-
son with other tools and their findings, or when an ex-
isting project should be improved. When a user com-
pletes a full scan, feedback is provided within the IDE
via reporting.

4.2 Reporting

An important issue is not to disturb the developer un-
necessarily, and a user should not be overwhelmed
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with information (Murphy-Hill and Black, 2010).
Thus, the references to information, unless explic-
itly desired and requested, should be conveyed to the
user in a subtle manner. Furthermore, a user is more
familiar with managing known workflows. There-
fore, in our approach, IntelliJ’s workflow has been
followed to report issues regarding data clumps. The
code smells detected by our approach are presented
in the identical manner in which dead code or dupli-
cate code is identified by IntelliJ. Our goal is that the
user can employ the tool to detect and remove data
clumps in a familiar way. The affected code parts are
highlighted in the editor according to the designated
severity level.

Furthermore, it is possible for a user to view prob-
lems found in the project as a list within IntelliJ. This
information about the detected issues or warnings is
displayed in the inspection results window, which also
lists other problems such as dead code or spelling
errors. In this window, the occurrences of the data
clumps are highlighted in more detail.

Figure 3 depicts an example of reporting of a class
with two methods data clumps. These methods (ask
and greet) share the three parameters of firstname,
lastname and age. These parameters form a data
clump, which was discovered live by our approach
and is displayed to the user. Fig. 3 presents the hint in
the lower area after the user has hovered their mouse
over the problematic location. The user may then be-
gin the refactoring process by selecting the Extract
method.

4.3 Refactoring

After the tool has detected a code smell or data clump,
the user can act on this report. The tool offers guides
after the decision has been made to fix the problem.
The user is informed about the issue in detail using the
RefactoringDialog component and may enter a name
for a new class and agree to the refactoring. The ac-
tual refactoring is based on the refactoring steps rec-
ommended by Fowler (Fowler, 2019): Extract Class,
Introduce Parameter Object and Preserve Whole Ob-
ject. First, the affected parameters or fields are ex-
tracted into a new class with private visibility. While
a record class would be sufficient for this step, Fowler
explicitly recommends creating a class. For this new
class, a user may identify functions in other parts of
the project that could be moved into the class.

• The extraction requires the new class name ob-
tained from the user via the dialog field. For the
extracted fields or parameters, new getter and set-
ter methods are included in the created class. This
provides access to the private fields.

• In the second step, all affected parameters or fields
in the project are refactored to use an instance of
the class created in the previous step.

• All signatures and bodies of the affected methods
in parameter instances are modified to use the new
class.

• In field instances, the affected fields are replaced
with an instance of the extracted class.

The user can revoke all modifications during the
refactoring in one step, as can be done for any other
action in IntelliJ IDEA.

If this refactoring is performed repeatedly, it may
result in another problem: the creation of duplicate
classes. To prevent this, our approach searches for
suitable classes that are characterized by the fact that
they have fields matching the parameter or field to be
refactored. The user can then decide whether to create
a new class or to use the found class. Such an option
may be helpful for new developers who are involved
in the project.

Fig. 4 depicts an example of refactoring of a data
clump. The starting point was the code from Fig. 3.
During the refactoring dialog, the user provided the
information that the new file is called “Person”. Fig. 4
presents two files: The file on the left corresponds to
the modified original file in which the data clumps
have been replaced by the newly introduced class,
while the file on the right presents the automati-
cally introduced new class with the user-defined name
“Person”. This class was automatically created with
a constructor, private fields and associated getter and
setter methods.

4.4 Extensibility

Some code smell types have common features and are
highly similar, such as long method and data clumps.
Our system architecture aims to further integrate code
smell refactorings. To do so, we moved general func-
tions to the Utilities component so that extensions of
the tool may access them. Furthermore, extensions
may use the CacheManager, in which the PSI repre-
sentations of all classes in a project are maintained
with the information about the super classes and inter-
faces. We have successfully extended our presented
approach for testing purposes: The extension is for
detecting and refactoring global data. We used the
definition and suggestions in (Fowler, 2019) to coun-
teract global data. The methods for generating getter
and setter functions in the refactoring of data clumps
can be reused. Further verification of the accuracy
and measurement of the time required for use as a live
scan has to be made.
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Figure 3: Example of live detected data clumps (before executing the refactoring step).

Figure 4: Result after executing the refactoring step for the Example of Fig. 3

5 EVALUATION

This section discusses detection accuracy. In addi-
tion to accuracy, speed is important in live code smell
detection. All evaluations and tests were performed
on the same computer with an Intel Core i7-6700HQ
CPU and with 16 GB RAM, running a 64-bit version
of Windows 10.

5.1 Accuracy

To assess the accuracy of our approach, we compared
our results with those from (Hall et al., 2014). Stench
Blossom does not support a full scan of entire projects
with a text output, so we have not considered this tool
when checking accuracy. In (Hall et al., 2014), the
CBSD tool was used to search for code smells in three
open-source projects, one of which is ArgoUML (ver-
sion 0.26 Beta). The results for ArgoUML were then
manually reviewed by two people in the study (Fer-
enc et al., 2020) and later were published in the Uni-
fied Bug Data Set (Ferenc et al., 2019), in which the
number of occurrences of data clumps in the corre-
sponding source code files was listed. For the com-
parison between our approach and the data clumps
found by CBSD, the definition of data clumps used

by CBSD has been applied, which can be summarized
as follows: There must be at least three duplicates of
parameters or fields on two different classes, and du-
plicates cannot occur between classes with hierarchi-
cal dependency. During this comparison, we noticed
a challenge regarding the method for counting data
clumps.

This challenge is illustrated in the following ex-
ample: A method shares parameter duplicates in com-
mon with two other methods in different classes.
Thus, the question arises, are all occurrences of the
same duplicated fields and parameters counted as:

1. one data clump?

2. individual data clumps?

3. individual data clumps, where the original is not
counted?

These different counting rules may distort the re-
sults. For the comparison, we only consider whether
a data clump was detected in a file.

In the results from (Ferenc et al., 2020) for Ar-
goUML (version 0.26 Beta), 97 files containing data
clumps were detected using CBSD after we removed
non-existing file entries. Our approach found 125
files with data clumps. However, only 92 files were
the same. We analyzed the 5 files with data clumps
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our approach did not find. For 2 files, based on man-
ual inspection, we are confident that our approach did
not miss any data clumps. For the remaining 3 files,
the decision is not clear after manual inspection. We
examined the 33 additional files in which we found
data clumps. Among them, 2 files contain enums
like classes, for which the decision is unclear whether
these are data clumps. The manual examination of the
remaining 31 files confirmed that the detections were
data clumps. It is worth mentioning that there may
be additional data clumps that are neither detected by
our tool nor listed in the dataset.

Furthermore, our tests revealed several differences
in the detection of data clumps between Stench Blos-
som, CBSD and our approach. We have created
seven files for testing, each containing different data
clumps. The seven tests were for: data clumps in
simple parameters between two classes, data clumps
in simple class fields between two classes, polymor-
phism data clumps where a class extends another,
data clumps in an anonymous class, data clumps
in interfaces, data clumps in inner classes and data
clumps between two methods in a same class. In the
following we will go into the tests for the tools that
were not successful.

Stench Blossom could not detect the following:
data clumps in simple class fields, data clumps in
anonymous classes and data clumps in interfaces.

CBSD could not detect the following: polymor-
phism data clumps, data clumps in an anonymous
class, data clumps in interfaces, data clumps in in-
ner classes and data clumps between two methods in
a same class.

We tested our tool in all those scenarios. Our tool
was able to detect all of the special data clumps cases.

5.2 Speed

For plugins that are meant to support live code smell
detection, the required time is essential. Time delays
could otherwise negatively affect the workflow of a
developer. This is in contrast to the analyses of ex-
isting projects in which live detection may be consid-
ered less relevant. For the measurements, we com-
pared our approach with Stench Blossom and CBSD.
Due to the fact that our approach supports both sce-
narios — live detection as well as a full scan — the
evaluation of the speed was separated into two parts.
The results of the live detection are discussed first,
followed by the measurement results of full scans.

5.2.1 Live Detection

According to (Miller, 1968) and (Nielsen, 1993), re-
action times up to 0.1 seconds are considered instan-

taneous. Response times up to 1 second are defined
as the limit at which a user’s thought processes are
not interrupted, although a delay may be perceived.
Reaction times of 10 seconds are the limit at which a
user’s attention persists. Therefore, for live detection
of code smells, we aimed for a maximum of 1 second.

Below, we first compared our approach with
Stench Blossom. The CBSD tool was ignored here,
as it supports only a complete scan of a project. For
the comparison with Stench Blossom, we have modi-
fied the source code so that only the detection of data
clumps was activated, and a timer was included to
measure the required time.

The open-source project ArgoUML (version 0.26
Beta) was used as the basis for the time measurement
against Stench Blossom. From more than 1500 source
code files, the 20 largest were used for the evaluation.
We assumed that larger classes require more time than
smaller ones. For this time measurement, it should be
noted that the initial time of about 5 seconds to open
the project in the IDE is not considered. To obtain
the results, we repeated the measurements 10 times.
Fig. 5 depicts the results of the time measurement as
a boxplot. In this, the X-axis illustrates the LCSD
(our approach) and Stench Blossom tools, while the
Y-axis displays in seconds the time measured to open
a source code file and analyze it for data clumps.
From the figure, it can be seen that Stench Blossom
produced only small deviations in the required time.
In contrast, our approach revealed larger variations,
reaching values 3 seconds at the upper outliers, which
were caused by the largest files. However, based on
the lower median of our approach, it can be concluded
that less time was required for the data clump analy-
sis for most files. For more than 50 % of all files, the
time needed to scan with our approach was less than
1 second.

Furthermore, we conducted tests to assess the fea-
sibility of live scan file analysis and evaluated the re-
quired time. To gauge its practicality, we analyzed
five open-source projects of varying sizes. The small-
est project, Flyway 8.1, had approximately 26 KLOC
(thousands of lines of code), and the largest project,
Flowable 6.7.2, contained approximately 680 KLOC.
In this analysis, we selected the 20 largest files from
each of the projects and measured the time needed for
the analysis of data clumps. The results are depicted
in Fig. 6 as a boxplot. The figure presents the five
projects along the X-axis and plots the required time
for analyzing a file for data clumps on the Y-axis. The
median remained below 1 second in all projects. In
four of five projects, for more than 50 % of all files,
the required time to scan with our approach was less
than 1 second. It remains open to investigate which
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Figure 5: Time required to scan for data clumps per file
from the 20 largest files in ArgoUML.
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Figure 6: Time required to scan for data clumps per file
from the 20 largest files in each project.

files were responsible for the outliers and what trig-
gered this increased duration in the analysis.

5.2.2 Full Scan

For the investigation of the time for full scan function-
ality, we compared our approach with the CBSD tool.
We did not consider the Stench Blossom tool here,
since it does not support full scans. For the compari-
son, we modified CBSD so that only data clumps are
analyzed, and we included a timer to measure the time
required.

For the time measurement, we considered the
open-source project ArgoUML (version 0.26 Beta),
for which over 1500 Java files were examined com-
pletely for data clumps. To obtain the results, we
repeated the measurements 10 times. For our ap-
proach, we added the initial time needed for build-
ing the cache in each case. The results are presented
in Fig. 7 as a boxplot. The X-axis displays the tools
LCSD (our approach) and CBSD, while the Y-axis
indicates the time needed for each tool in seconds.
The time required for our approach ranged from 29
to 39 seconds, with a median of 32.5 seconds, while
the time needed for CBSD was between 763 and 802
seconds, with a median of 789 seconds. In all repeti-
tions, our approach required fewer than 40 seconds to
scan all files in ArgoUML for data clumps. Thus, we
were able to reduce the time required by CBSD for a
full scan by at least 15 times.
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Figure 7: Time required to scan all ArgoUML project files
for data clumps.

Furthermore, we extended the investigation of the
time required for a full scan to the same five open-
source projects described in Section 5.2.1. How-
ever, we did not succeed in performing the measure-
ments with CBSD, because, for all measurements in
the projects, CBSD stopped and issued errors. Thus,
the following results have limited comparability with
CBSD and are applicable only to our approach, the
timing results for which can be seen in Fig 8 as a
boxplot. The X-axis depicts the various open-source
projects, while the Y-axis displays the measured time
of a full scan for the respective project. The anal-
ysis reveals that the median time for the full scan
of the project Flowable 6.7.2 was 706 seconds, and
for the other projects, it was less than 100 seconds.

Live Code Smell Detection of Data Clumps in an Integrated Development Environment

73



We suspect that the longer analysis time required for
the Flowable 6.7.2 project, compared to the other
projects, is due to the number of lines of code. Flow-
able 6.7.2 has approximately 680 KLOC, whereas the
second-largest project, Apache RocketMQ 4.9.1, con-
tains about 100 KLOC.
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Figure 8: Time required to scan GitHub projects for data
clumps.

6 DISCUSSION

This section discusses several limitations to the valid-
ity of our results and approach. In addition, we further
address the increased usability for developers.

Two groups of users can benefit from the use of
such a data clumps detection tool: inexperienced de-
velopers and experienced developers. The first group,
inexperienced developers, may lack knowledge of
best practices for writing clean code, but with the help
of a data clumps detection tool, they can learn and im-
prove their coding skills by identifying areas for im-
provement. As a disadvantage, this group of develop-
ers faces the challenge of choosing a suitable name for
the new class. The second group, experienced devel-
opers, may still find value in using the tool as a quick
check to confirm their code meets best practices, or to
discover edge cases they may have missed. In either
case, the use of a data clumps detection tool can help
both inexperienced and experienced developers.

However, despite the perceived limitations for ex-
perienced developers, our findings highlight a crucial
gap in the current research. Specifically, we found
limited data on data clumps, with only the labeled
data set from (Ferenc et al., 2020), we found hardly

any other data. As a result, the significance of our
results is limited with respect to other data. Ac-
cordingly, we see a need for a unified data set and
with manually evaluated data clumps, where again
the problem of subjective judgment arises. Similarly,
in addition to the limited possibility of comparative
data to measure accuracy, we found barely any data
for the time needed to analyze data clumps, which
is essential for the validity of live code smell detec-
tion. (Arcelli Fontana et al., 2015) reported that the
varying definitions of data clumps pose an additional
challenge in comparing the tool with others. One way
to counteract this issue is that an appropriate tool may
support parameters for the various definitions of data
clumps.

The significance regarding the accuracy of our ap-
proach is limited due to the comparison with the other
tools. We achieved a match of over 90 %, which raises
the question of what the differences are, although the
identical definition for data clumps was used as it is
in CBSD. The 33 additional files detected with our
approach were examined manually and found to con-
tain 31 data clumps according to the definition. Con-
sequently, the precise effect of different implementa-
tions for the detection of data clumps remains to be
determined.

The Fig. 5 indicates that Stench Blossom could be
fast enough for live detection of data clumps as it took
less than 1 second in our measurements. The speed in-
crease seen with our approach for live detection could
be due to the use of the (maybe faster) API of IntelliJ
instead of Eclipse.

In our results for timing, we note the possibility
of the live code smell detection of data clumps by a
tool. While in some projects and files the required
response time was greater than the time defined by
(Miller, 1968) and (Nielsen, 1993), at which a de-
veloper’s flow of thoughts is interrupted, the median
was below this threshold for all projects examined,
which, to our knowledge, are not extremely complex
edge cases of classes. All of our measurements were
performed in an isolated test, whereas in reality, it
may well be that other programs or plugins on the
developer’s computer may negatively affect the per-
formance of our approach.

Furthermore, according to (Vidal et al., 2014), the
order in which data clumps are removed is relevant.
It may be helpful to first remove other code smells,
which may fix the issue of data clumps. In this re-
spect, our approach cannot provide any guidance on
the relevance of the detected data clumps and the in-
teraction of code smells.

Another challenge for the detection of data
clumps is the identification of identical variables and
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parameters. In our approach, we assume that these
have the same names, ignoring semantic identity be-
yond naming, based on the data clump definitions (c.f.
2.2). For example, a parameter xVal may have a con-
nection to a variable named xPos, which might be
identical in a semantic way. Therefore, a data flow
analysis would be needed. Given that the serialVer-
sionUID field has been detected in data clumps, it is
advisable to warn the user that automatic refactoring
has its limits.

Finally, despite the subtle way of presenting issues
in IntelliJ’s IDE, we face the question of the extent to
which this type of reporting contributes to distraction.
In this regard, there is a need for further research into
the representation of data clumps. Related to this,
there is still the possibility in our approach to make
the developer more aware of the data clumps found
and the potential problems involved.

7 CONCLUSION

With the approach proposed in this paper, we were
able to demonstrate that live detection of data clumps
is quite feasible in terms of response time. The mea-
surements recorded median times for the analysis of
data clumps below 1 second. Thus, we were able
to confirm our hypothesis regarding the sufficiently
fast detection of data clumps. In addition to the im-
plementation of live detection, we successfully inte-
grated the full scan functionality, achieving a signifi-
cant increase in speed for the ArgoUML project files
compared to CBSD, Stench Blossom, and other tools.

Regarding accuracy, our approach achieved a sat-
isfactory rate of 90 % in detecting data clumps com-
pared to CBSD. Moreover, 10 % of data clumps of
data clumps detected through our approach were not
identified by Stench Blossom or CBSD. Objective
or standardized definitions of data clumps and tools
may facilitate comparability of parameterization in
this regard, along with clarifying how code smells are
counted. Furthermore, a data set for comparing tim-
ing and accuracy, which are manually verified, would
be useful. The comparison of the detection of data
clumps using the files we created with existing data
clumps could be extended. Additional manually cre-
ated test cases could be considered from (Ferenc et al.,
2020). The differences between our approach and
CBSD come from the particular test cases. Since the
accuracy of detection of our approach is 90 % com-
pared to CBSD, the task of investigating where the
differences in detection arise remains.

To the best of our knowledge, implementing live
detection of data clumps is novel to this study. Our in-

novative approach supports both new and experienced
developers in the creation of a project through live de-
tection and direct refactoring suggestions.

Despite these beneficial features and significant
potential in this form of support, we would like to im-
prove our approach to semantic detection of related
parameters and fields. We are planning an exten-
sion or development for the programming language
JavaScript. As for future goals, we aim to provide
better support for inexperienced programmers, who
could increase their knowledge through examples and
solid explanations. Furthermore, there is a need to
consider how experienced programmers could be sup-
ported even further. We can imagine approaches
aligned with continuous integration or continuous de-
livery with refactoring suggestions here.
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