
Bank Checks Fraud Detection Based on the Analysis of Event Trends
in Data-Flow Systems

Uriy Grigorev1 a, Yury Shashkin1 b, Andrey Ploutenko2 c, Aleksey Burdakov1 d
and Olga Pluzhnikova1 e

1Bauman Moscow State Technical University, Moscow, Russia
2Amur State University, Blagoveschensk, Russia

Keywords: CEP, Fraud with Not-covered Checks, CET Graph, BTree Index, Hash Index.

Abstract: The paper shows trend analysis of events in data-flow systems on the example of fraud detection with
not-covered checks. The analysis is based on Complex Event Processing (CEP) technology. This article
proposes Algorithm 2 based on BTree and Hash type indexes for extracting a complete chain of events of any
length formed by insufficient funds check deposits. The paper presents a comparison between the proposed
Algorithm 2 and the existing Algorithm 1, based on the construction of event trends in the form of graphs.
The average processing time of one event using the new Algorithm 2 is 56 times less with the number of
events equal to 100,000. At the same time, the new Algorithm 2 processes about 900,000 events, while the
existing Algorithm 1 supports only 100,000 events.

1 INTRODUCTION

Large data amounts processing in real time is an
important requirement in modern high-load systems.
Data-flow processing systems are used to solve this
problem. Data-flow processing has found application
in retail (Wu et al., 2006), stock exchange (Poppe et
al., 2017a; Agrawal et al., 2008), fraud detection
(Luckham, 2011; Agrawal et al., 2008; Poppe et al.,
2017b), passenger transportation (Luckham, 2011),
computer cluster monitoring (Poppe et al., 2017a;
Zhang et al., 2014), logistics management (Zhang et
al., 2014), traffic congestion detection (Poppe et al.,
2017a), video streaming (Piyush et al., 2019) and
many other areas.

Nowadays the Complex Event Processing (CEP)
technology is used to support streaming applications
(Poppe et al., 2017a; Agrawal et al., 2008). CEP
systems constantly evaluate events in high-speed
streams (data is "passed" through the query). There
are two classes of problems solved by CEP. The first
class is the aggregation of event trends (calculation of

a https://orcid.org/0000-0001-6421-3353
b https://orcid.org/0000-0001-9576-9119
c https://orcid.org/0000-0002-4080-8683
d https://orcid.org/0000-0001-6128-9897
e https://orcid.org/0000-0002-4276-8734

count, avg, sum, min, max by pattern) (Poppe et al.,
2017a; Ma et al., 2022), the second class is the
analysis of complete event trends (detection of event
chains by pattern) (Poppe et al., 2017b; Kolchinsky et
al., 2019).

In this article, the problem of event trends analysis
is considered with the example of circular check
kiting which is used to fraudulently obtain funds
(Poppe et al., 2017b). This type of fraud is one of the
most difficult.

In a simple case, the scheme involves writing a
check for an amount from an account in Bank A that
exceeds the account balance; and then writing a check
from another account in Bank B which also has
insufficient funds. Moreover, the second check serves
to cover non-existing funds from the first account.
The scammers withdraw funds from the Bank A
account before the banks discover the scheme. There
were complex variants of this scheme with the
participation of numerous scammers who posed as
large entrepreneurs, thereby posing their activities as
ordinary business transactions. Thus, they persuade

Grigorev, U., Shashkin, Y., Ploutenko, A., Burdakov, A. and Pluzhnikova, O.
Bank Checks Fraud Detection Based on the Analysis of Event Trends in Data-Flow Systems.
DOI: 10.5220/0011727300003482
In Proceedings of the 8th International Conference on Internet of Things, Big Data and Security (IoTBDS 2023), pages 97-104
ISBN: 978-989-758-643-9; ISSN: 2184-4976
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

97

banks to ignore the limit of available funds. To
implement this scheme, fraudsters transfer millions
between banks using a complex web of useless
checks. For example, in 2014, 12 people were
charged with a large-scale fraudulent scheme that cost
banks more than $15 million (The Press Enterprise,
2015).

The CEP system is used to prevent this kind of
fraud. It constantly monitors events in the flow of
financial transactions (Poppe et al., 2017b). The event
stream passes through the following query:

Q1: PATTERN Check+ c[]
WHERE c.type = ‘notcovered’ AND
c.destination = NEXT(c).source
WITHIN 1 day SLIDE 10 minutes

Query Q1 detects a chain (or circle) of any length
formed by insufficient funds check deposits during a
day that slides every 10 minutes. The query pattern is
the Kleene closure (Agrawal et al., 2008; Zhang et al.,
2014; Poppe et al., 2017b) for check deposit events,
designated as Check+ c[]. Predicates (WHERE)
require that the checks in the chain are not covered.
The purpose (destination) of transaction verification
‘c’ should be the same as the source of the next check
NEXT(c). It is necessary for identifying the chain.
Since an arbitrary number of fraudsters, financial
transactions and banks around the world can be
involved in this scheme, detecting circular check
kiting is a computationally expensive task. To prevent
cash withdrawals from an account that participates in
at least one check-picking scheme, the query
constantly analyzes the streams of high-speed events
with thousands of financial transactions per second. It
reveals all the trends of receipt compilation in real-
time.

The query refers to the 'Skip till any match' type
(S3) (Agrawal et al., 2008; Zhang et al., 2014;
Volkova et al., 2020; Poppe et al., 2019). This is the
most complex class of queries. In the existing
methods of solving such problems, Kleene pattern is
used to detect the required chains of events. (Poppe et
al., 2017b) proposed a method to solve the problem
of extracting complete trends of events by cutting the
graph into graphlets, and then "stitching" them. This
solution has exponential complexity. This approach
suffers from both long delays and high memory
consumption. The processing time of the algorithm
(pattern) affects the system boot because the data is
"passed" through the query. The processing time may
become unacceptably long. Moreover, with a high
intensity of input data flows, the pattern processing
link can become a "bottleneck", and the system may
be overloaded. In this case, the upcoming events will

be lost (if they are not saved) or their processing will
be done outside the required screen.

Kolchinsky et al., 2019 proposes CEP
optimization methods for processing a stream of
events according to several patterns. The optimal plan
is built by reordering patterns and sharing them. In
this case, these methods cannot be applied, because
there is only one Check+ c[] patterns in query Q1.

This article proposes a new method of query
implementation, which significantly reduces the time
and memory required for event processing. The
method is based on the use of a special B-tree based
index or a hash table.

2 NOT-COVERED CHECKS
FRAUD

Table 1 shows the sequence of events that can occur
in the process of circular check kiting using fake
checks (Poppe et al., 2017b).

The following particulars are given in Table 1:
 A → B (0) denotes a not-covered deposit event

from Bank A into Bank B (check of Bank A is
not covered);

 B → A (1) denotes a covered deposit event
from Bank B into Bank A (check of Bank A is
covered);

 index N means that the check is not covered
(Notcovered); for example, 10N means that a
check for 10 was issued and it is not yet covered
(cash cannot be withdrawn), and 10 (without
N) means that the check is covered (cash can be
withdrawn).

Table 1 shows that banks have lost (10 + 30 + 20)
= 60 units due to fraud.

3 CURRENT FRAUD
DETECTION METHOD

To fulfil query Q1, the following method is proposed
(Poppe et al., 2017b):

1. When an event e arrives, it is added to the so-
called CET graph. For the above example (see Table
1), the CET graph looks like the one in Figure 1. The
mark (C) means that the corresponding check is
covered.

2. A graph traversal is performed for each event
to detect transaction loops. For example, the loop B
→ C (0), C → B (1) corresponds to the subgraph (C4
→ C6). It is also required to define chains of

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

98

transactions with payment of not-covered checks in
other banks, resulting in the formation of loops.

It is proposed to use one of the algorithms to solve
this problem in (Poppe et al., 2017b): the M-CET
depth first search (DFS), the T-CET breadth-first
search (BFS) or the hybrid H-CET method. The M-
CET algorithm is more memory efficient; the T-CET
algorithm is more productive in performance and the
H-CET algorithm combines the benefits of the two
previous methods. The H-CET algorithm assumes
cutting the graph into subgraphs (graphlets) (Andreev
et al., 2004; Karypis et al., 1995; Tsourakakis et al.,
2012). DFS is used for one part of the graphlets and
BFS for the others. The problem of cutting a graph
into graphlets is a non-trivial task.

The exponential nature of the storage capacity and
the number of CPU operations remains for large CET
graphs, even for the hybrid H-CET method (Poppe et
al., 2017b).

Figure 1: CET graph example.

Table 2 shows an algorithm for executing query
Q1 using the Neo4j graph database.

The CET graph is built at the level of transactions
between banks in Figure 1. It does not consider that
the transaction includes not only the name of the
bank, but also the account and check number. A
transaction (event) is described by a tuple (source,
destination, q) in the developed algorithm. Each of
the source and destination elements has three fields
(bank, account, check). The feature q has also been
introduced: q = 0 - a transaction for paying a check in
another bank, e.g., A → B (0), q = 1 - covering a
check in another bank, for example, B → A (1).

A node z is created corresponding to the new
event e (2 :). Next, a search is for events Y is
performed, when the check must be paid or covered
in the same bank (and account), which is specified in
e.source (3 :). The set Y is equal to {A → B (0), C →
B (1)} in the example in Figure 2. Operators 4: -8:
establish links between node z and nodes from set Y.

Further along z, a search for a node x is performed
with which e forms a loop (9 :). That is, for example,
x = A → B (0), z = B → A (1). A loop is a sign of a
possible fraudulent transaction. If a loop is found (10
:), search for all chains leading to the beginning of the
loop (line 12 :) is in progress. One of them is the loop
itself. Figure 2 shows an example of the found chain.

Figure 2: Chain for the loop (A→B(0), B→A(1)).

4 A PROPOSED METHOD FOR
DETECTING FRAUD USING AN
INDEX

The following features of the flow events can be
noted:

1. The right side of the transaction coincides with
the left side of the next transaction (NEXT) at the level
of the bank name, account number and check, for
example, B → C (0) and C → A (0) (see query Q1).

2. A sign of possible fraud is the presence of loops
when covering checks, for example, A → B (0) and
B → A (1) (see C1, C2 in Table 1).

These features allow you to implement query Q1
using an index (B-tree or hash table). Table 3 shows
the flow event algorithm.

Z, y, j are global vars, index1 and index2 are
indices (B-tree or hash table) in this algorithm. To
speed up the search, event e is stored in the index as
two records: (e.source; e.destination, e.q, en1) and
(e.destination; e.source, e.q, en1), where the first
attribute is the search key (1: , 2 :). The search keys
e.source and e.destination may be not unique. The
next 4 operators determine if there is a loop, for
example, A → B (0) and e = B → A (1) (see Figure
2). First, it is determined whether the check is covered
(4 :). Then events A → B (0 or 1) (5 :) are extracted
from index 1. And if d (= B) is equal to e.source (=
B) and q = 0 (8 :), then there is a loop (9 :). The loop
is stored in x, and the strings are searched for leading
to the beginning of the loop (10 :). The problem is the
same as in Algorithm 1, but it is solved in a different
way. The ‘chains’ procedure is used for this, so let us
look at it in details.

The procedure has the following formal input
parameters: i is the number of the recursive call level
chains, a is the key value for searching in index 2
(source), c1 is the final value in the chain
(destination). Let there be a loop A → B (0) and e =
B → A (1) (see Figure 2). Then, at the first call to the
chains procedure, parameters (1, B, A) (10 :) are

Bank Checks Fraud Detection Based on the Analysis of Event Trends in Data-Flow Systems

99

Table 1: Sequence of events that can occur in the process of circular check kiting.

Event Transaction Account at
Bank A

Account at
Bank B

Account at
Bank C Notes

C1 A→B(0) 10N (-10) 0

Writing a check for 10N from Bank А
account (initially 0 in A) with the
payment from Bank B account (initially
0 in B, hence we see (-10))

C2 B→A(1) 10 (-10) 10N 0 Writing a check for 10N from Bank B
account to cover the check in Bank A

W3 0 (-10) 10N 0 Cash withdrawal 10 from Bank A
account

C4 B→C(0) 0 (-10) 10N 20N (-20)

Writing a check for 20N from Bank B
account (initially (-10) in B) with the
payment in Bank C (initially 0 in C,
that’s why we see (-20))

C5 C→A(0) (-30) (-10) 10N 20N (-20) 30N

Writing a check for 30N from Bank C
account (initially (-20) in C) with the
payment from Bank A account, that’s
why there is (-30))

C6 C→B(1) (-30) (-10) 10N 20 (-20) 30N 20N Writing a check for 20N from Bank C
account to cover the check in Bank B

C7 A→C(1) (-30) 30N (-10) 10N 20 (-20) 30 20N Writing a check for 30N from Bank A
account to cover the check at Bank C

W8 (-30) 30N (-10) 10N 20 (-20) 20N Cash withdrawal 30 from Bank C
account

W9 (-30) 30N (-10) 10N (-20) 20N Cash withdrawal 20 from Bank B
account

Table 2: Algorithm 1 (Graph Database).

Algorithm 1 (Q1)
Input: e – event
Output: (x, e) – loop, PATH – chains leading to the beginning of the loop
1: i++ // Number of events
2: z← CREATE(z:Check{id: i, source: e.source, destination: e.destination, q: e.q}) RETURN z
3: Y ← MATCH (y:Check) WHERE y.destination =e.source RETURN y
4: IF Y is NOT NULL
5: FOR n∈Y
6: CREATE (n)-[:Next{id1:n.id, id2:z.id}]->(z)
7: END FOR
8: END IF
9: X←MATCH (x:Check) WHERE x.source= z.destination and z.source=x.destination and x.q=0 and z.q=1

RETURN x
10: IF X is NOT NULL
11: FOR x∈X
12: PATH←MATCH y=(x)-[:Next*]->(z) RETURN relationships(y)
13: END FOR
14: END IF

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

100

referred to it, and the events A → B (0) and C → B
(1) (17 :) will be found. For the first event the loop
will be fixed: y [0] [1 ÷ 0] = (A → B (0), B → A (1))
(see 21: -23 :). For the event C → B (1), the chains
procedure will be called with parameters (2, C, A) (25
:) and so on. For the event C → B (1), the chains
procedure will be called with parameters (2, C, A) (25
:) and so on. Therefore, the chain will be found (see
Figure 2): y [2] [3 ÷ 0] = (A → B (0), B → C (0), C
→ B (1), B → A (1)). Therefore, Algorithm 2 outputs
a loop and all possible chains y [][] that contain a loop
formed by not-covered check deposits (A → B (0), B
→ C (0)), as well as fictitious covers (C → B (1), B
→ A (1)). The loop and chain fall in line with what
has been obtained using Algorithm 1.

Operation z [i] ← NULL is necessary because
other chains may be shorter. In general, recursive
calls to chains form a tree.

According to Algorithm 2, the memory estimate
is O (V), and the CPU estimate is O (V) for a hash
table and O (V⋅logKV) for a B-index, where K is the
number of records in the block index, V is the total
number of records. That is less than for Algorithm 1
(Poppe et al., 2017b).

5 EXPERIMENT

Several experiments were conducted to compare the
two algorithms. We used a virtual machine running
the Ubuntu 20.04.02 x64 operating system based on a
2.3 GHz 8-core Intel Core i9 processor, 8192MB of
RAM for the experiments. To test Algorithm 1 we
used the Neo4j 4.3.2 graph DBMS, and for Algorithm
2 – PostrgeSQL 12.8. We used BTree (B-Tree
Indexes, 2021) and Hash (Re-Introducing Hash
Indexes in PostgreSQL, 2021) indexes.

The source data was generated with the following
components:
 Source Bank - the bank from the left side of the

transaction;
 Source Account - account number from the left

side of the transaction;
 Source Check - check number from the left side

of the transaction;
 Destination Bank - the bank from the right side

of the transaction;
 Destination Account - account number from

the right side of the transaction;
 Destination Check - check number from the

right side of the transaction;
 Date and time of the transaction;

 Direction of the transaction.
Testing was conducted with 10 transactions per

second for 1 day. Loops appeared every 30 minutes.
A smaller dataset was used for Algorithm 1 due to the
large processing time in the Neo4j DBMS. That is, if
Algorithm 2 processes about 900,000 events, then
Algorithm 1 supports only 100,000 events.

Under the experiments three main indicators were
measured: Instructions per Cycle (IPC), the amount
of RAM and the processing time for one event. The
load on the CPU for Algorithm 2 is much lower than
for Algorithm 1 (Figure 3, Figure 4). The graph in
Figure 4 shows that the processor is overloaded, and
some processes are waiting (when the load is greater
than 1).

Figure 3: IPC, Algorithm 2.

Figure 4: IPC, Algorithm 1.

The storage capacity is not the most typical
indicator in these tests due to the peculiarities of Neo4j
(Figure 5, Figure 6). It periodically frees memory as
shown in Figure 6. This is due to «garbage collection».

The processing time for one event using
Algorithm 2 is short because the test case is stored in
the RAM and the processing is carried out in the CPU
(Figure 7 and 8). In fact, events are selected from the
stream and the processing time will be longer there. It
is not the absolute values that are important in this
study, but the ratio of the processing time of one event
using Algorithms 1 and 2. The average processing

Bank Checks Fraud Detection Based on the Analysis of Event Trends in Data-Flow Systems

101

time using Algorithm 2 is almost 37 / 0.66 = 56 times
less with the number of events equal to 100,000.

Figure 5: Volume of RAM, Algorithm 2.

Figure 6: Volume of RAM, Algorithm 1.

Figure 7: One event average processing time, Algorithm 2.

Figure 8: One event average processing time, Algorithm 1.

The maximum time for Algorithm 2 fluctuates in
the range of 20-40 msec with a smooth mode of
vibration except for surges up to 100 msec (Figure 9).
The maximum time for Algorithm 1 fluctuates in the
range of 40-90 ms with a stick-slip nature mode of
vibration (Figure 10).

Figure 9: Maximum processing time for one event,
Algorithm 2.

A sliding window was added to Algorithms 1
and 2. No significant changes are observed for
Algorithm 2 (Figure 11). Figure 12 shows that the
processing time for one event begins to increase much
more slowly with a sliding window for Algorithm 1.

Figure 10: Maximum processing time for one event,
Algorithm 1.

Figure 11: Average processing time for one event with a
sliding window, Algorithm 2.

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

102

Table 3: Algorithm 2 (Relational Database).

Algorithm 2 (Q1)
Input: e – event, en1 – event number
Output: (x, e) – loop, y[][] – chains leading to the beginning of the loop
1: index1.add(s=e.source; d=e.destination, q=e.q, n=en1) // key; value – for loops search
2: index2.add(d=e.destination; s=e.source, q=e.q, n=en1) // key; value – for chains search
3: z[0] ← (s=e.source, d=e.destination, q=e.q, n=en1)
4: IF e.q==1 // check coverage?
5: D←index1.search(s=e.destination) // d and q saved into D
6: IF D is NOT NULL
7: FOR (d,q) in D
8: IF d==e.source and q==0
9: x←(e.destination, d) // loop
10: chains(1, e.source, e.destination) // searching for chains
11: END IF
12: END FOR
13: END IF
14: END IF
15: Return
16: chains(i, a, c1)
17: B←index2.search(d=a) // (s,d, q, n) values are saved into B
18: i1←i+1
19: FOR (s,d,q,n) in B && n<z[i-1].n // events in one chain are unique
20: z[i]← (s, d, q, n)
21: IF s==c1 && d==z[0].s && q==0
22: y[j++][]←z[];
23: z[i]←NULL
24: ELSE
25: chains(i1, s, c1)
26: END IF
27: END FOR
28: z[i]←NULL
29: Return

Figure 12: Average processing time for one event with a
sliding window, Algorithm 1.

6 CONCLUSIONS

This article offers a new way to detect not-covered
bank check fraud. This is one of the most difficult
types of fraud to detect due to the complexity of

retrieving complete chains of check transactions. This
problem is solved using Complex Event Processing
technology (CEP). It is used in tasks of processing
many events in real time.

The proposed Algorithm 2 based on indexing
methods is superior to the existing Algorithm 1. It
demonstrates better results for the following three
main indicators of the existing Algorithm 1 based on
graphs: IPC, the amount of RAM occupied and the
processing time of one event.

The considered approach to the analysis of event
trends is planned to be used for a wider class of
queries as a part of the future work.

REFERENCES

Agrawal, J. et al. (2008). Efficient pattern matching over
event streams. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of
data.

Bank Checks Fraud Detection Based on the Analysis of Event Trends in Data-Flow Systems

103

Andreev, K., Racke, H. (2004). Balanced graph
partitioning. In SPAA- 2004.

B-Tree Indexes. (2021). https://www.postgresql.org/
docs/11/btree.html

Karypis, G., Kumar, V. (1995). Multilevel graph
partitioning schemes. In Parallel Processing.

Kolchinsky, I., Schuster, A. (2019). Real-time multi-pattern
detection over event streams. In Proceedings of the
2019 International Conference on Management of
Data.

Luckham, D. C. (2011). Event processing for business:
organizing the real-time enterprise. In John Wiley &
Sons.

Ma, L., Lei, C., Poppe, O., Rundensteiner, E. A. (2022).
Gloria: Graph-based Sharing Optimizer for Event
Trend Aggregation. In Proceedings of the 2022
International Conference on Management of Data.

Piyush, Yadav, Edward, Curry (2019). VidCEP: Complex
Event Processing Framework to Detect Spatiotemporal
Patterns in Video Streams. In 2019 IEEE International
Conference on Big Data (Big Data).

Poppe, O., Lei, C., Rundensteiner, E. A., Maier, D. (2017a).
GRETA: Graph-based Real-time Event Trend
Aggregation. Proceedings of the VLDB
Endowment, 11(1).

Poppe, O., Lei, C., Ahmed, S., Rundensteiner, E. A.
(2017b). Complete event trend detection in high-rate
event streams. In Proceedings of the 2017 ACM
International Conference on Management of Data.

Poppe, O. et al. (2019). Event Trend Aggregation Under
Rich Event Matching Semantics. In Proceedings of the
2019 International Conference on Management of
Data.

Re-Introducing Hash Indexes in PostgreSQL (2021).
https://hakibenita.com/postgresql-hash-index

The Press Enterprise (2015). http://www.pe.com/articles/
checks-694614-people-bank.html

Tsourakakis, C. E. et al. (2012). Streaming graph
partitioning for massive scale graphs. In Technical
report.

Volkova, M.M., Antonova, P.V., Shameeva, A.R. (2020).
High-Performance Complex Event Processing. In 2020
International Multi-Conference on Industrial
Engineering and Modern Technologies (FarEastCon).

Wu, E., Diao, Y., Rizvi, S. (2006). High-performance
complex event processing over streams. In Proceedings
of the 2006 ACM SIGMOD international conference on
Management of data.

Zhang, H., Diao, Y., Immerman, N. (2014). On complexity
and optimization of expensive queries in complex event
processing. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data.

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

104

