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Abstract: The paper shows trend analysis of events in data-flow systems on the example of fraud detection with 
not-covered checks. The analysis is based on Complex Event Processing (CEP) technology. This article 
proposes Algorithm 2 based on BTree and Hash type indexes for extracting a complete chain of events of any 
length formed by insufficient funds check deposits. The paper presents a comparison between the proposed 
Algorithm 2 and the existing Algorithm 1, based on the construction of event trends in the form of graphs. 
The average processing time of one event using the new Algorithm 2 is 56 times less with the number of 
events equal to 100,000. At the same time, the new Algorithm 2 processes about 900,000 events, while the 
existing Algorithm 1 supports only 100,000 events.

1 INTRODUCTION 

Large data amounts processing in real time is an 
important requirement in modern high-load systems. 
Data-flow processing systems are used to solve this 
problem. Data-flow processing has found application 
in retail (Wu et al., 2006), stock exchange (Poppe et 
al., 2017a; Agrawal et al., 2008), fraud detection 
(Luckham, 2011; Agrawal et al., 2008; Poppe et al., 
2017b), passenger transportation (Luckham, 2011), 
computer cluster monitoring (Poppe et al., 2017a; 
Zhang et al., 2014), logistics management (Zhang et 
al., 2014), traffic congestion detection (Poppe et al., 
2017a), video streaming (Piyush et al., 2019) and 
many other areas. 

Nowadays the Complex Event Processing (CEP) 
technology is used to support streaming applications 
(Poppe et al., 2017a; Agrawal et al., 2008). CEP 
systems constantly evaluate events in high-speed 
streams (data is "passed" through the query). There 
are two classes of problems solved by CEP. The first 
class is the aggregation of event trends (calculation of 
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count, avg, sum, min, max by pattern) (Poppe et al., 
2017a; Ma et al., 2022), the second class is the 
analysis of complete event trends (detection of event 
chains by pattern) (Poppe et al., 2017b; Kolchinsky et 
al., 2019). 

In this article, the problem of event trends analysis 
is considered with the example of circular check 
kiting which is used to fraudulently obtain funds 
(Poppe et al., 2017b). This type of fraud is one of the 
most difficult. 

In a simple case, the scheme involves writing a 
check for an amount from an account in Bank A that 
exceeds the account balance; and then writing a check 
from another account in Bank B which also has 
insufficient funds. Moreover, the second check serves 
to cover non-existing funds from the first account. 
The scammers withdraw funds from the Bank A 
account before the banks discover the scheme. There 
were complex variants of this scheme with the 
participation of numerous scammers who posed as 
large entrepreneurs, thereby posing their activities as 
ordinary business transactions. Thus, they persuade 
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banks to ignore the limit of available funds. To 
implement this scheme, fraudsters transfer millions 
between banks using a complex web of useless 
checks. For example, in 2014, 12 people were 
charged with a large-scale fraudulent scheme that cost 
banks more than $15 million (The Press Enterprise, 
2015). 

The CEP system is used to prevent this kind of 
fraud. It constantly monitors events in the flow of 
financial transactions (Poppe et al., 2017b). The event 
stream passes through the following query: 

 
Q1: PATTERN Check+ c[ ] 
WHERE c.type = ‘notcovered’ AND 
c.destination = NEXT(c).source 
WITHIN 1 day SLIDE 10 minutes 

Query Q1 detects a chain (or circle) of any length 
formed by insufficient funds check deposits during a 
day that slides every 10 minutes. The query pattern is 
the Kleene closure (Agrawal et al., 2008; Zhang et al., 
2014; Poppe et al., 2017b) for check deposit events, 
designated as Check+ c[]. Predicates (WHERE) 
require that the checks in the chain are not covered. 
The purpose (destination) of transaction verification 
‘c’ should be the same as the source of the next check 
NEXT(c). It is necessary for identifying the chain. 
Since an arbitrary number of fraudsters, financial 
transactions and banks around the world can be 
involved in this scheme, detecting circular check 
kiting is a computationally expensive task. To prevent 
cash withdrawals from an account that participates in 
at least one check-picking scheme, the query 
constantly analyzes the streams of high-speed events 
with thousands of financial transactions per second. It 
reveals all the trends of receipt compilation in real-
time. 

The query refers to the 'Skip till any match' type 
(S3) (Agrawal et al., 2008; Zhang et al., 2014; 
Volkova et al., 2020; Poppe et al., 2019). This is the 
most complex class of queries. In the existing 
methods of solving such problems, Kleene pattern is 
used to detect the required chains of events. (Poppe et 
al., 2017b) proposed a method to solve the problem 
of extracting complete trends of events by cutting the 
graph into graphlets, and then "stitching" them. This 
solution has exponential complexity. This approach 
suffers from both long delays and high memory 
consumption. The processing time of the algorithm 
(pattern) affects the system boot because the data is 
"passed" through the query. The processing time may 
become unacceptably long. Moreover, with a high 
intensity of input data flows, the pattern processing 
link can become a "bottleneck", and the system may 
be overloaded. In this case, the upcoming events will 

be lost (if they are not saved) or their processing will 
be done outside the required screen. 

Kolchinsky et al., 2019 proposes CEP 
optimization methods for processing a stream of 
events according to several patterns. The optimal plan 
is built by reordering patterns and sharing them. In 
this case, these methods cannot be applied, because 
there is only one Check+ c[] patterns in query Q1. 

This article proposes a new method of query 
implementation, which significantly reduces the time 
and memory required for event processing. The 
method is based on the use of a special B-tree based 
index or a hash table. 

2 NOT-COVERED CHECKS 
FRAUD 

Table 1 shows the sequence of events that can occur 
in the process of circular check kiting using fake 
checks (Poppe et al., 2017b). 

The following particulars are given in Table 1: 
 A → B (0) denotes a not-covered deposit event 

from Bank A into Bank B (check of Bank A is 
not covered); 

 B → A (1) denotes a covered deposit event 
from Bank B into Bank A (check of Bank A is 
covered); 

 index N means that the check is not covered 
(Notcovered); for example, 10N means that a 
check for 10 was issued and it is not yet covered 
(cash cannot be withdrawn), and 10 (without 
N) means that the check is covered (cash can be 
withdrawn). 

Table 1 shows that banks have lost (10 + 30 + 20) 
= 60 units due to fraud. 

3 CURRENT FRAUD 
DETECTION METHOD 

To fulfil query Q1, the following method is proposed 
(Poppe et al., 2017b): 

1. When an event e arrives, it is added to the so-
called CET graph. For the above example (see Table 
1), the CET graph looks like the one in Figure 1. The 
mark (C) means that the corresponding check is 
covered. 

2. A graph traversal is performed for each event 
to detect transaction loops. For example, the loop B 
→ C (0), C → B (1) corresponds to the subgraph (C4 
→  C6). It is also required to define chains of 
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transactions with payment of not-covered checks in 
other banks, resulting in the formation of loops. 

It is proposed to use one of the algorithms to solve 
this problem in (Poppe et al., 2017b): the M-CET 
depth first search (DFS), the T-CET breadth-first 
search (BFS) or the hybrid H-CET method. The M-
CET algorithm is more memory efficient; the T-CET 
algorithm is more productive in performance and the 
H-CET algorithm combines the benefits of the two 
previous methods. The H-CET algorithm assumes 
cutting the graph into subgraphs (graphlets) (Andreev 
et al., 2004; Karypis et al., 1995; Tsourakakis et al., 
2012). DFS is used for one part of the graphlets and 
BFS for the others. The problem of cutting a graph 
into graphlets is a non-trivial task. 

The exponential nature of the storage capacity and 
the number of CPU operations remains for large CET 
graphs, even for the hybrid H-CET method (Poppe et 
al., 2017b).  

 
Figure 1: CET graph example. 

Table 2 shows an algorithm for executing query 
Q1 using the Neo4j graph database. 

The CET graph is built at the level of transactions 
between banks in Figure 1. It does not consider that 
the transaction includes not only the name of the 
bank, but also the account and check number. A 
transaction (event) is described by a tuple (source, 
destination, q) in the developed algorithm. Each of 
the source and destination elements has three fields 
(bank, account, check). The feature q has also been 
introduced: q = 0 - a transaction for paying a check in 
another bank, e.g., A → B (0), q = 1 - covering a 
check in another bank, for example, B → A (1). 

A node z is created corresponding to the new 
event e (2 :). Next, a search is for events Y is 
performed, when the check must be paid or covered 
in the same bank (and account), which is specified in 
e.source (3 :). The set Y is equal to {A → B (0), C → 
B (1)} in the example in Figure 2. Operators 4: -8: 
establish links between node z and nodes from set Y. 

Further along z, a search for a node x is performed 
with which e forms a loop (9 :). That is, for example, 
x = A → B (0), z = B → A (1). A loop is a sign of a 
possible fraudulent transaction. If a loop is found (10 
:), search for all chains leading to the beginning of the 
loop (line 12 :) is in progress. One of them is the loop 
itself. Figure 2 shows an example of the found chain. 

 
Figure 2: Chain for the loop (A→B(0),  B→A(1)). 

4 A PROPOSED METHOD FOR 
DETECTING FRAUD USING AN 
INDEX 

The following features of the flow events can be 
noted: 

1. The right side of the transaction coincides with 
the left side of the next transaction (NEXT) at the level 
of the bank name, account number and check, for 
example, B → C (0) and C → A (0) (see query Q1 ). 

2. A sign of possible fraud is the presence of loops 
when covering checks, for example, A → B (0) and 
B → A (1) (see C1, C2 in Table 1). 

These features allow you to implement query Q1 
using an index (B-tree or hash table). Table 3 shows 
the flow event algorithm. 

Z, y, j are global vars, index1 and index2 are 
indices (B-tree or hash table) in this algorithm. To 
speed up the search, event e is stored in the index as 
two records: (e.source; e.destination, e.q, en1) and 
(e.destination; e.source, e.q, en1), where the first 
attribute is the search key (1: , 2 :). The search keys 
e.source and e.destination may be not unique. The 
next 4 operators determine if there is a loop, for 
example, A → B (0) and e = B → A (1) (see Figure 
2). First, it is determined whether the check is covered 
(4 :). Then events A → B (0 or 1) (5 :) are extracted 
from index 1. And if d (= B) is equal to e.source (= 
B) and q = 0 (8 :), then there is a loop (9 :). The loop 
is stored in x, and the strings are searched for leading 
to the beginning of the loop (10 :). The problem is the 
same as in Algorithm 1, but it is solved in a different 
way. The ‘chains’ procedure is used for this, so let us 
look at it in details. 

The procedure has the following formal input 
parameters: i is the number of the recursive call level 
chains, a is the key value for searching in index 2 
(source), c1 is the final value in the chain 
(destination). Let there be a loop A → B (0) and e = 
B → A (1) (see Figure 2). Then, at the first call to the 
chains procedure, parameters (1, B, A) (10 :) are 
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Table 1: Sequence of events that can occur in the process of circular check kiting. 

Event Transaction Account at 
Bank A 

Account at 
Bank B 

Account at 
Bank C Notes 

C1 A→B(0) 10N (-10) 0 

Writing a check for 10N from Bank А 
account (initially 0 in A) with the 
payment from Bank B account (initially 
0 in B, hence we see (-10)) 

C2 B→A(1) 10 (-10) 10N 0 Writing a check for 10N from Bank B 
account to cover the check in Bank A 

W3  0 (-10) 10N 0 Cash withdrawal 10 from Bank A 
account 

C4 B→C(0) 0 (-10) 10N 20N (-20) 

Writing a check for 20N from Bank B 
account (initially (-10) in B) with the 
payment in Bank C (initially 0 in C, 
that’s why we see (-20)) 

C5 C→A(0) (-30) (-10) 10N 20N (-20) 30N 

Writing a check for 30N from Bank C 
account (initially (-20) in C) with the 
payment from Bank A account, that’s 
why there is (-30)) 

C6 C→B(1) (-30) (-10) 10N 20 (-20) 30N 20N Writing a check for 20N from Bank C 
account to cover the check in Bank B 

C7 A→C(1) (-30) 30N (-10) 10N 20 (-20) 30 20N Writing a check for 30N from Bank A 
account to cover the check at Bank C 

W8  (-30) 30N (-10) 10N 20 (-20)      20N Cash withdrawal 30 from Bank C 
account 

W9  (-30) 30N (-10) 10N (-20)      20N Cash withdrawal 20 from Bank B 
account 

 

Table 2: Algorithm 1 (Graph Database). 

Algorithm 1 (Q1)  
Input: e – event 
Output: (x, e) – loop, PATH – chains leading to the beginning of the loop 
1: i++  // Number of events 
2: z← CREATE(z:Check{id: i, source: e.source,  destination: e.destination, q: e.q}) RETURN z 
3: Y ← MATCH (y:Check) WHERE y.destination =e.source RETURN y  
4: IF Y is NOT NULL 
5:  FOR n∈Y 
6:   CREATE (n)-[:Next{id1:n.id, id2:z.id}]->(z) 
7:  END FOR 
8: END IF 
9: X←MATCH (x:Check) WHERE x.source= z.destination and z.source=x.destination and x.q=0 and z.q=1 

RETURN x 
10: IF X is NOT NULL  
11:  FOR x∈X 
12:   PATH←MATCH y=(x)-[:Next*]->(z) RETURN relationships(y) 
13:  END FOR 
14: END IF 
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referred to it, and the events A → B (0) and C → B 
(1) (17 :) will be found. For the first event the loop 
will be fixed: y [0] [1 ÷ 0] = (A → B (0), B → A (1)) 
(see 21: -23 :). For the event C → B (1), the chains 
procedure will be called with parameters (2, C, A) (25 
:) and so on. For the event C → B (1), the chains 
procedure will be called with parameters (2, C, A) (25 
:) and so on. Therefore, the chain will be found (see 
Figure 2): y [2] [3 ÷ 0] = (A → B (0), B → C (0), C 
→ B (1), B → A (1) ). Therefore, Algorithm 2 outputs 
a loop and all possible chains y [][] that contain a loop 
formed by not-covered check deposits (A → B (0), B 
→ C (0)), as well as fictitious covers (C → B ( 1), B 
→ A (1)). The loop and chain fall in line with what 
has been obtained using Algorithm 1. 

Operation z [i] ← NULL is necessary because 
other chains may be shorter. In general, recursive 
calls to chains form a tree. 

According to Algorithm 2, the memory estimate 
is O (V), and the CPU estimate is O (V) for a hash 
table and O (V⋅logKV) for a B-index, where K is the 
number of records in the block index, V is the total 
number of records. That is less than for Algorithm 1 
(Poppe et al., 2017b). 

5 EXPERIMENT 

Several experiments were conducted to compare the 
two algorithms. We used a virtual machine running 
the Ubuntu 20.04.02 x64 operating system based on a 
2.3 GHz 8-core Intel Core i9 processor, 8192MB of 
RAM for the experiments. To test Algorithm 1 we 
used the Neo4j 4.3.2 graph DBMS, and for Algorithm 
2 – PostrgeSQL 12.8. We used BTree (B-Tree 
Indexes, 2021) and Hash (Re-Introducing Hash 
Indexes in PostgreSQL, 2021) indexes. 

The source data was generated with the following 
components: 
 Source Bank - the bank from the left side of the 

transaction; 
 Source Account - account number from the left 

side of the transaction; 
 Source Check - check number from the left side 

of the transaction; 
 Destination Bank - the bank from the right side 

of the transaction; 
 Destination Account - account number from 

the right side of the transaction; 
 Destination Check - check number from the 

right side of the transaction; 
 Date and time of the transaction; 

 Direction of the transaction. 
Testing was conducted with 10 transactions per 

second for 1 day. Loops appeared every 30 minutes. 
A smaller dataset was used for Algorithm 1 due to the 
large processing time in the Neo4j DBMS. That is, if 
Algorithm 2 processes about 900,000 events, then 
Algorithm 1 supports only 100,000 events. 

Under the experiments three main indicators were 
measured: Instructions per Cycle (IPC), the amount 
of RAM and the processing time for one event. The 
load on the CPU for Algorithm 2 is much lower than 
for Algorithm 1 (Figure 3, Figure 4). The graph in 
Figure 4 shows that the processor is overloaded, and 
some processes are waiting (when the load is greater 
than 1). 

 
Figure 3: IPC, Algorithm 2. 

 
Figure 4: IPC, Algorithm 1. 

The storage capacity is not the most typical 
indicator in these tests due to the peculiarities of Neo4j 
(Figure 5, Figure 6). It periodically frees memory as 
shown in Figure 6. This is due to «garbage collection». 

The processing time for one event using 
Algorithm 2 is short because the test case is stored in 
the RAM and the processing is carried out in the CPU 
(Figure 7 and 8).  In fact, events are selected from the 
stream and the processing time will be longer there. It 
is not the absolute values that are important in this 
study, but the ratio of the processing time of one event 
using Algorithms 1 and 2. The average processing 
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time using Algorithm 2 is almost 37 / 0.66 = 56 times 
less with the number of events equal to 100,000. 

 
Figure 5: Volume of RAM, Algorithm 2. 

 
Figure 6: Volume of RAM, Algorithm 1. 

 
Figure 7: One event average processing time, Algorithm 2. 

 
Figure 8: One event average processing time, Algorithm 1. 

The maximum time for Algorithm 2 fluctuates in 
the range of 20-40 msec with a smooth mode of 
vibration except for surges up to 100 msec (Figure 9). 
The maximum time for Algorithm 1 fluctuates in the 
range of 40-90 ms with a stick-slip nature mode of 
vibration (Figure 10). 

 
Figure 9: Maximum processing time for one event, 
Algorithm 2. 

A sliding window was added to Algorithms 1 
and 2. No significant changes are observed for 
Algorithm 2 (Figure 11). Figure 12 shows that the 
processing time for one event begins to increase much 
more slowly with a sliding window for Algorithm 1.  

 
Figure 10: Maximum processing time for one event, 
Algorithm 1. 

 
Figure 11: Average processing time for one event with a 
sliding window, Algorithm 2. 
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Table 3: Algorithm 2 (Relational Database). 

Algorithm 2 (Q1)  
Input: e – event, en1 – event number  
Output: (x, e) – loop, y[][] – chains leading to the beginning of the loop
1: index1.add(s=e.source; d=e.destination, q=e.q, n=en1) // key; value – for loops search
2: index2.add(d=e.destination; s=e.source, q=e.q, n=en1) // key; value – for chains search
3: z[0] ← (s=e.source, d=e.destination, q=e.q, n=en1)
4: IF e.q==1 // check coverage? 
5:  D←index1.search(s=e.destination) //  d and q saved into D
6:  IF D is NOT NULL 
7:  FOR (d,q) in D
8:   IF d==e.source and  q==0 
9:    x←(e.destination, d)            // loop
10:    chains(1, e.source, e.destination)   // searching for chains
11:   END IF
12:  END FOR 
13:  END IF 
14: END IF 
15: Return 
16: chains(i, a, c1)    
17:  B←index2.search(d=a ) // (s,d, q, n) values are saved into B  
18:  i1←i+1 
19:  FOR (s,d,q,n) in B && n<z[i-1].n  // events in one chain are unique
20:   z[i]← (s, d, q, n) 
21:   IF s==c1 &&  d==z[0].s && q==0 
22:    y[j++][]←z[];  
23:    z[i]←NULL 
24:   ELSE 
25:    chains(i1, s, c1)    
26:   END IF
27:  END FOR 
28:  z[i]←NULL 
29:  Return 

 
Figure 12: Average processing time for one event with a 
sliding window, Algorithm 1. 

6 CONCLUSIONS 

This article offers a new way to detect not-covered 
bank check fraud. This is one of the most difficult 
types of fraud to detect due to the complexity of 

retrieving complete chains of check transactions. This 
problem is solved using Complex Event Processing 
technology (CEP). It is used in tasks of processing 
many events in real time. 

The proposed Algorithm 2 based on indexing 
methods is superior to the existing Algorithm 1. It 
demonstrates better results for the following three 
main indicators of the existing Algorithm 1 based on 
graphs: IPC, the amount of RAM occupied and the 
processing time of one event. 

The considered approach to the analysis of event 
trends is planned to be used for a wider class of 
queries as a part of the future work. 
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