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Abstract: The overwhelmingly widespread use of Internet of Things (IoT) in different application domains brought not
only benefits, but, alas, security concerns as a result of the increased attack surface and vectors. One of the
most critical mechanisms in IoT infrastructure is key management. This paper reflects on the problems and
challenges of existing key management systems, starting with the discussion of a recent real-world attack.
We identify and elaborate on the drawbacks of security primitives based purely on physical variations and
– after highlighting the problems of such systems – continue on to deduce an effective and cost-efficient
key management solution for IoT systems extending the symbiotic security approach in a previous work. The
symbiotic architecture combines software, firmware, and hardware resources for secure IoT while avoiding the
traditional scheme of static key storage and generating entropy for key material on-the-fly via a combination
of a Physical Unclonable Function (PUF) and pseudo-random bits pre-populated in firmware.

1 INTRODUCTION

Internet of Things (IoT) has shown a spectacular
growth over the last years and is steadily enter-
ing application domains that are considered security-
critical. Security requirements in IoT systems must
coexist with stringent cost limits and with an exten-
ded attack surface where adversaries can gain phys-
ical access to their components. A critical part of most
secure systems is generation and management of key
material, which includes not only secret keys for use
in encryption and authentication, but also critical se-
curity parameters such as initialisation vectors (IVs),
padding bits or randomness for masking schemes.

In this position paper, we discourse on a solution
that provides an effective and yet cost-efficient key
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management for IoT systems. It extends the concept
of symbiotic security (Bartsch and Huebner, 2019b)
that leverages a combination of software, firmware,
and hardware for secure IoT, but not without up-
holding the principle of resource-constrained secur-
ity. The latter propagates reduction of design com-
plexity in favour of reduced attack surface (Bartsch
and Huebner, 2019a). The derived scheme, con-
sequently entitled Symbiotic Key Management Sys-
tem (SKMS), avoids static key storage, which is vul-
nerable to readout and manipulation especially in IoT
devices accessible to attackers. SKMS generates en-
tropy for key material on-the-fly, using a combination
of Physical Unclonable Function (PUF) and pseudo-
random bits pre-stored in the system’s firmware.

Keys thus derived and encapsulated in a crypto en-
gine API, which offers services like encryption or au-
thentication, but does not communicate actual key bits
to applications. SKMS is designed to support zero-
knowledge protocols for initial enrolment (ZKIE),
for which it removes the need to keep the underly-
ing secret in non-volatile memory whilst also allow-
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ing to replace said secret when compromised. Tra-
ditional schemes based on One-Time Programmable
(OTP) memory, possibly including eFuses or even
PUFs are thus superseded. Moreover, it tightly integ-
rates an Artificial Intelligence (AI) assisted metadata
analysis procedure to detect and prevent intrusions.
The composition of a hardware-based Symbiotic Un-
clonable Function (SUF) and software-level intrusion
detection provides defence-in-depth: even when an
adversary manages manipulating system hardware,
software-level protections stay intact and can, upon
an alert, request regeneration of entropy bits.

The remainder of this paper is organized as fol-
lows. We start with a case study where we discuss a
recent vulnerability in a Trusted Execution Environ-
ment (TEE). For a number of observed aspects, we
point out the precise challenges and discuss strategies
how SKMS can address them. Additionally, we re-
view PUFs and identify observations, challenges and
strategies for them. The resultant security require-
ments in IoT systems are discussed in Section 3. Fi-
nally, Section 4 addresses the SKMS in detail fol-
lowed by the conclusion in Section 5.

2 STATE OF AFFAIRS IN KEY
MANAGEMENT SYSTEMS

This section motivates the need for key manage-
ment approaches beyond today’s standard by dissect-
ing a security flaw in a widely used product. It also
provides background information on PUFs and shows
their potential deficiencies that SKMS should over-
come.

2.1 TrustZone Design Flaws

To support our deduction of the design rationale for
SKMS in Section 4, we analyse a major vulnerabil-
ity (Shakevsky et al., 2022) of a specific implementa-
tion of the original TEE design by ARM. Said Sam-
sung implementation relies on proprietary and undoc-
umented hardware which is a major criticism. We
analyse all essential findings to compare them with
the suggested SKMS idea depicted in Fig. 1.

↪→ Observation 2.1.1. The overall complexity
of ARM’s TrustZone concept, where a dedicated
hardware-based keystore or Keymaster Trusted Ap-
plication (TA) already follows the solid principle of
operation of a Hardware Security Module (HSM)
by performing all cryptographic operations within its
confines. Still, Keymaster TA must also entrust user
space applications with the housekeeping of the actual

keys albeit in a “wrapped” form and shape (utilising
its hardware-embedded key).

↪→ Challenge 2.1.1. Android is a full OS with hun-
dreds of applications installed on a single device.
Hence, there is the need for a key hierarchy based
on key wrapping or similar protection as otherwise
the TEE would need to provide considerable protec-
ted storage space for all such keys.

↪→ Strategy 2.1.1. The first conclusion we draw from
this observation is that in the typical IoT space where
the “business logic” is mostly implemented by the
server to minimise the computational load on the end
devices, simplicity is the key both to efficiency and
sustainability given that less complex software is nat-
urally less error-prone and thus the attack surface is
intuitively reduced. In other words, a dedicated firm-
ware incorporating crucial functions such as cryp-
tographic primitives and required security protocols
(e.g., TLS) is unlikely to need hundreds of different
cryptographic keys or a TEE-like key hierarchy. Even
if a business logic does require numerous keys in such
a monolithic and use-case specific firmware, then we
would argue that a similarly monolithic HSM-like
cryptographic co-processor with exclusive access to
key material and encapsulation of all cryptographic
operations within its cryptographic boundary would
reduce the need for key wrapping. In Section 4, we
indicate a possible design of such a module. Also,
if implemented with separate data buses (Harvard ar-
chitecture), specifically at the level of the suggested
co-processor, it would diminish the need for shared
memory or memory mapping. However, that alone
would not remove the natural susceptibility of hard-
ware to reverse-engineering given direct physical ac-
cess – hence the next observation. ■

↪→ Observation 2.1.2. The underlying vulnerability
could only be uncovered and fully exploited through
substantial reverse-engineering. However, the authors
did not have to go so far as to target the secure hard-
ware unit due to the design flaw of the related API
as well as unnecessary exposure through backward-
compatibility which in turn enabled the downgrade
attack. The previous observation and conclusion sug-
gests that this could be fixed by software which is not
immutable (i.e., reverse-engineered software can be
amended).

↪→ Challenge 2.1.2. Present design focuses on a par-
ticular dimension only (e.g., software) and its in-
terfaces while taking the other (here hardware) for
granted or vice versa. Carefully crafted “security by
design” to combine several realms is thus more diffi-
cult to implement later in production.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

584



↪→ Strategy 2.1.2. While software can be extracted
or leaked such that it can then be dismantled separ-
ately, hardware reverse engineering is usually only
possible in an offline state implying direct physical
access and device theft to begin with. The latter is
not too far fetched which is why ultimately a symbi-
otic design strategy could lead to construction of key
material in a way that it neither exists statically in-
side a hardware enclosure, nor relies on software or
firmware alone. Furthermore, design elements that do
not require any subsequent modification like crypto-
graphic primitives (but still need tamper-resistance)
should be encapsulated by a hardware-based crypto
engine including all critical algorithmic parameters,
e.g., IVs. Incidentally, application-controlled IVs
were the root cause of the Samsung vulnerability. So,
if software does not contain or control any secrets
and if hardware does it exclusively, we conclude that
to thwart both software and hardware reverse engin-
eering, key material must not be stored persistently
as opposed to the common root-of-trust approach or
quite specifically here the device-unique, but perman-
ent 256-bit AES key (Root Encryption Key) inside the
crypto engine that the Keymaster TA relies on. ■

↪→ Observation 2.1.3. The above-mentioned IV re-
use threat was created by allowing app-layer code to
handle IVs without any safety checks. Paired with
the single static platform key, integrity could be com-
promised despite a solid choice of the underlying
cryptographic primitive (AES-GCM). Consequently,
all reliant device security schemes like FIDO2 (pass-
wordless authentication) were completely exposed.
Incidentally, FIDO2 among others also relies on pre-
fabricated static Attestation Keys re-used across all
devices of the same manufacturer. This shows how
predominant the root-of-trust design still is in present
security schemes.
↪→ Challenge 2.1.3. It has long been known that solid
random numbers are best generated in hardware rely-
ing on true sources of entropy like crystal oscillators
(Ergun and Maden, 2021). However, those dedicated
integrated circuits create an additional dependency.
Additionally, software-based Pseudo Random Num-
ber Generators (PRNG) like in Barker and Kelsey’s
study (Barker and Kelsey, 2015) only use a fraction of
‘true’ entropy in their initial seeds. Selecting and cor-
rectly referencing a proper entropy source for seeds is
usually exposed through an API creating a potential
pitfall for high-level application developers. Correct
initialisation and handling of PRNGs at runtime (e.g.,
possible buffer overflows or memory corruption) is
yet another software-induced caveat.
↪→ Strategy 2.1.3. Beyond the beneficial isolation of
critical functions through hardware as discussed in

the previous challenge, there is added value in rely-
ing on an independent cryptographic hardware unit:
as will be discussed in the subsequent section dedic-
ated to the design challenges of a PUF, noise gener-
ated by any PUF can be used beneficially for solid
random numbers. Those can be harvested directly in
hardware and subsequently used on-the-fly for IVs,
SALT, or similar. If implemented as part of the crypto
engine or PUF controller (see Fig. 1), this security-
relevant function is completely out of reach of app-
layer code and its programmers. Furthermore, PUF
noise depending on the underlying hardware elements
like DRAM cells (Miskelly and O’Neill, 2020) can
reach considerable size simply because there will be
most likely several GB of memory on any IoT module
in use today. This ensures not only constant access to
fresh entropy, but can also eliminate the need for soft-
ware PRNGs given the volume of randomness. ■

↪→ Observation 2.1.4. Another aggravating aspect of
the Samsung design shortcoming is the (natural) fact
that their API is “hookable”, which means that soft-
ware calls can be intercepted by a malicious hand-
ler to manipulate critical parameters at will. In this
case, it led to an effective downgrade attack as legacy
key BLOB version could be requested by the ‘hook’
(malicious call handler). This begs the exacerbating
question as to why legacy key BLOBS were allowed
to begin with which according to the authors did not
seem to have any sensible reason.
↪→ Challenge 2.1.4. Software interfaces need to rely
on platform security mechanisms which are less likely
to withstand privileged adversaries, malware, or ma-
jor OS exploits. The latter have been shown (Brand,
2021) to work over a network, undiscovered, despite
low-level protection like kernel/boot-loader integrity
checks based on eFuses.
↪→ Strategy 2.1.4. We have stipulated through the
notion of an isolated crypto engine where security
parameters must not be exclusively handled by high-
level applications. The underlying HSM principle en-
forces isolation such that the client (app-layer code
or firmware in general) either sends over cleartext to
be encrypted or likewise provides ciphertext to be re-
turned upon decryption. Key principle of operation is
that all important keys are generated and kept within
the cryptographic boundary. The symbiotic approach
(see Section 4) extends this by incorporating the PUF
controller into the crypto engine while also making
the PUF dependent on the firmware to make the res-
ulting entropy changeable if compromised. This cre-
ates a symbiotic link between software and hardware
in the secret derivation process at runtime. ■

↪→ Observation 2.1.5. The authors briefly discuss a
supply-chain threat which is possible specifically with
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root-of-trust security schemes. Another considerable
attack vector is patching of the Keymaster Hardware
Abstraction Layer through software.

↪→ Challenge 2.1.5. Even recent specifications like
Cooper et al.’s work (Cooper et al., 2020) stick to
the root-of-trust principle which is highly convenient
from the manufacturer’s perspective. However, at the
very least, they must introduce various sub-protocols
(e.g., Transfer Ownership Protocol 0 through 2), rout-
ing requirements, ownership vouchers, device attest-
ation certificate chains, and other precautions all of
which inflate the complexity. As noted, higher com-
plexity may increase attack surface and is difficult to
maintain both from the trust and technical perspect-
ives. Patching is also hard to avoid as Android’s
history clearly shows. In this non-monolithic state,
weakness of one critical system service is likely to
compromise the others, if not the entire OS.

↪→ Strategy 2.1.5. If complexity is a concern, then
a ‘clean slate’ solution like (Bartsch and Huebner,
2019b) provides a much more transparent zero-trust
like alternative, especially for an arbitrary supply
chain. A security architecture incorporating zero
knowledge-based bootstrap and over-the-air update
mechanisms conveys provable trust given that end-
devices can be deployed off-the-shelf with just a min-
imal security logic inside (i.e., bootloader, see Fig.
1) that does not contain any embedded secrets. Con-
sequently, every device creates its own unique key
during enrolment which is then used in the zero know-
ledge protocol for mutual pre-authentication and for-
ward secrecy-enabled traffic encryption in absence of
any root of trust. This creates a secure out-of-band
channel for want of (pre-deployed) digital certificates
required in TLS communication mandated by every
cloud-based IoT offering today.

However, end-devices in this scheme still rely on
OTP memory with an alternative eFuse seal. Thus,
a device whose secret has been extracted through a
physical attack cannot be recovered anymore. A re-
medial option implies the use of PUFs to make secrets
volatile, hence we explore their design in the follow-
ing section. This is because PUFs have their own lim-
its and challenges (e.g., noise, temperature depend-
ency, ageing) including the worst case that if a device-
specific pattern has been discovered, such a PUF has
essentially been broken too. Thus, we not only dis-
cuss strategies to integrate PUFs in a symbiotic fash-
ion to make them dynamic when compromised, we
also suggest in Section 4.2 how ML can be utilised
to create an independent integrity control for end-
devices and fulfill the realistic requirement for com-
prehensive analysis against ML-enabled adversaries
in a symbiotic context. Ultimately, we advocate that

a zero knowledge like scheme can be created to pro-
tect the acquisition of the hardware fingerprint of any
device during the ML training phase (initial enrol-
ment) given its secret nature. ■

In summary, the idea of an SKMS that beneficially
utilises all of its essential elements should be much
better poised to withstand the discussed attacks.

2.2 Physical Unclonable Functions

We know from (Neshenko et al., 2019) that not only
is it imperative to create new strategies (both tech-
nical and non-technical) to increase awareness of
IoT threats to reduce the risk of exposure, but also
to work out (external) capabilities to leverage data-
driven measurements and methodologies for detect-
ing exploited IoT devices. IoT and Cyber-Physical
Systems (CPS) are usually part of a larger distributed
infrastructure with scalable computational power for
empirical or analytical needs. With respect to PUFs
in particular, this means the entire distributed archi-
tecture could ideally be utilised to both define/control
the unclonable function and constantly monitor its in-
tegrity/susceptibility to local or physical attacks. This
is especially true in all critical infrastructure suppor-
ted by IoT/CPS which may or may not be directly ex-
posed to a powerful (internal) adversary. Thus, the
“external view” and the spectrum of its added values
can be manifold.

Traditional PUFs derive entropy from unique
characteristics of hardware in order to generate reli-
able ‘storage-less’ key material and/or unique device
identifiers (Pappu, 2002), (Gassend et al., 2002). In
and of themselves, PUFs are naturally limited in re-
gard to symbiotic architectural design as they collect
such uniqueness from a single immutable dimension.
Given ideal properties, a PUF would be suitable to
shoulder the majority of the security burden with re-
gard to authentication or key management, wherein
the manifestation of reliable, unpredictable, just-in-
time cryptographic data would reinforce what has the
potential to be the weakest link in a secure system.
Such a PUF could be deployed almost as a ‘silver
bullet’ hardware unit to solve the problem of suffi-
ciently secure ultra-lightweight systems. Much of the
literature surrounding the application of PUFs take
these ideal properties as an assumption at the hard-
ware level, which is seldom the reality. Currently,
PUFs continue to fall short of the mark in many as-
pects, often introducing promising features at the ex-
pense of bringing new vulnerabilities/performance is-
sues to light. Resultantly, there is scepticism sur-
rounding the idea that a true PUF is even at all pos-
sible. We identify issues regarding PUFs and argue
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that while various PUFs are highly limited in their
role as primary security element in a given system,
they still may play an ideal role as a component in
more comprehensive symbiotic security design, such
that no one PUF feature is overly emphasised, yet
each is utilised by its strength. We identify current
challenges surrounding modern PUF design, and de-
termine how each could be mitigated/exploited by
symbiotic security design.
↪→ Observation 2.2.1. A PUF would ideally be en-
tirely reliable, where environmental conditions do not
affect the PUF to output the exact same output for
every measurement. With the primary means of en-
tropy deriving from sub-atomic variations in the PUF
material, noise is an inevitable feature that must be
dealt with to reduce measurement instabilities.
↪→ Challenge 2.2.1. Commonly, issues regarding
PUF reliability are tackled with various forms of er-
ror correction as an accepted resource overhead, yet
it has been shown that publicly known helper data
required for error correction can provide adversaries
with sufficient information to successfully comprom-
ise the security of PUFs (Delvaux and Verbauwhede,
2014), (Strieder et al., 2021). It is well known that
environmental conditions, most notably temperature,
have dominant effect on the physical characteristics,
such as, e.g., the clock skew of a processor. If one
learns and knows this dependency, it is possible to
filter it out and determine a stable value which can
enable identification. A sensor, however, is required
to measure a given environmental condition which re-
quires additional equipment and is often unfeasible in
the targeted scenarios. A method which does not re-
quire explicit knowledge of the environmental condi-
tion would solve this problem. This introduces new
concerns on how best to manage the noisy nature of
PUFs given a sufficiently strong (and very reasonable)
threat model.
↪→ Strategy 2.2.1. Common or comparable AI-
assisted techniques can help overcome environmental
variance issues in PUFs to improve reliability with re-
gard to the resulting entropy (Wen and Lao, 2017).
In addition, environmental effects on physical sys-
tems – hence what originally causes a reliability prob-
lem – can be exploited as a benefit, enabling anom-
aly/intrusion detection and device identification based
on known individual behaviours in various operat-
ing conditions, provided training processes can be
offloaded to server computation within the scheme.
Therefore in essence, environmental effects on hard-
ware characteristics can be eliminated by consider-
ing their dependency and adjusting the correspond-
ing characteristic value based on the sensed condi-
tion. Since such sensors are not present in most off-

the-shelf devices, we propose a strategy which elim-
inates such dependencies without explicit knowledge
of the sensor value. The idea is to learn legitimate
combinations of hardware characteristics under dif-
ferent conditions (reflected by measurements at dif-
ferent times). This can be done by considering several
devices at the same time, or alternatively, using dif-
ferent, statistically independent, physical parts of one
device (e.g., part of a PUF). The practicability of this
idea was demonstrated by Lanze et al (Lanze et al.,
2014), where the effect of temperature variations on
clock skew enable physical device fingerprinting for
identification of wireless access points. In that work,
the authors applied one-class SVM to learn legitimate
combinations of devices at a particular location. ■

↪→ Observation 2.2.2. Arguably the most import-
ant feature to be provided by a PUF is unpredictabil-
ity/unclonability, such that it is impossible for an ad-
versary to generate a ‘copy’ of the target which ex-
hibits identical behaviour. Failure to ensure this com-
promises PUF secrets, enabling an adversary to im-
personate devices or decrypt collected encrypted net-
work traffic. PUFs are popularly proposed in a lim-
ited variety of use cases, such as for authentication
token generation or repeatable key storage. For gen-
erating unique authentication tokens, a Strong PUF is
required (strong not indicating the security properties
of the PUF, rather its ability to generate unique tokens
exponentially with PUF size), where each token is
discarded after use to prevent replay attacks.

↪→ Challenge 2.2.2. Novel Strong PUF designs
are commonly proven to be insecure against Ma-
chine Learning Modelling Attacks (ML-MA), creat-
ing rightful skepticism on whether a truly attack res-
istant Strong PUF implementation is possible given
enough data (Rührmair et al., 2010). Once the PUF
is compromised in common PUF-based security pro-
tocols, the entire scheme is compromised, leaving de-
signers with little room to enhance threat models suf-
ficiently for a realistic IoT threat environment.

↪→ Strategy 2.2.2. We argue that the PUF entropy
may be exploited as a single hardware entropy unit to
be integrated tightly with – not on top of – a coincid-
ing software-based entropy solution. Such integration
creates a dependency between both sources, relieving
some pressure for per-bit unpredictability as adversar-
ies should be required to simultaneously model the
software entropy, hardware entropy, and the depend-
ency between both. ■

↪→ Observation 2.2.3. The superposition of physical
hardware component fingerprints can be used to as-
sess the integrity of the system.
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↪→ Challenge 2.2.3. It is to design, if possible, a non-
intrusive method for fingerprinting hardware compon-
ents for detecting deviations, e.g., when a hardware
component is replaced.

↪→ Strategy 2.2.3. We propose to use methods of
physical device fingerprinting to learn characterist-
ics of the devices and detect replacement of them,
or, any anomalies in the environment. The emphasis
is on the methods allowing stable fingerprints that,
from one side, would allow for unique identifica-
tion of the hardware in the environment and, from
another side, would not interfere with regular func-
tionality and communication. Hence, we propose to
use passive remote hardware fingerprinting methods
to achieve this goal. ■

↪→ Observation 2.2.4. Even encrypted communica-
tion channels can be used for traffic analysis purposes.
The goal of traffic analysis is to extract particular in-
formative patterns from the traffic without breaking
the encryption. The communication patterns, as a
side-channel, can be further applied to detect attacks
with the network traffic.

↪→ Challenge 2.2.4. Perform passive traffic analysis
and learn with the help of ML techniques a reliable
representation of the communication in the system.

↪→ Strategy 2.2.4. Similar to the suggested resol-
ution of the temperature variations with the help of
ML, AI-assisted meta data analysis can be utilised to
observe the communication behaviour of IoT devices
with the rest of the infrastructure (back-end) in an
non-obtrusive way. Techniques like traffic analysis
can be used to learn regular communication patterns
and to detect any deviations from the learned patterns.
Approaches for this kind of anomaly detection have
been successfully applied in CPS (Schneider and Böt-
tinger, 2018). The focus is hence shifted towards data
in transit security and resilience by using the same re-
sources and a similar technique. ■

↪→ Observation 2.2.5. As many common PUF
designs consist of custom arrangements of logic com-
ponents (e.g., Arbiter PUF variants (Gassend et al.,
2002)), they must either be synthesised directly into
the end device early in the supply chain, or, integrated
onto the end device later in the supply chain.

↪→ Challenge 2.2.5. Both approaches incur a man-
ufacturing overhead, as custom integration must be
included at some level. Additionally, this feature af-
fects the flexibility of integration of a PUF solution,
further affecting backward compatibility across mul-
tiple generations of devices, a key feature also identi-
fied for a coinciding software-based entropy module
in Strategy 2.1.4.

↪→ Strategy 2.2.5. We suggest designers consider
the use of software PUFs which utilise already on-
chip resources to generate physical entropy, such
as memory-based or processor PUFs (Miskelly and
O’Neill, 2020), (Tsiokanos et al., 2021). The implic-
ations of integrating such PUFs enable the hardware
entropy unit to become more modular and thus inde-
pendent of the supply chain. ■

↪→ Observation 2.2.6. Due to the mentioned ML-
MA vulnerabilities, there exists a requirement to in-
clude an ML-capable adversary in the threat model
when including PUF-based primitives in a symbiotic
security system in order to evaluate against such ML-
based modelling attacks.

↪→ Challenge 2.2.6. Most modelling attacks are per-
formed using linear ML methods suitable for mod-
elling (mostly) linear PUFs (Rührmair et al., 2010).
Certain PUFs were proposed with enhanced non-
linearity to counter modelling attacks, which were
shortly after shown to be insecure to ML algorithms
better suited for non-linear function approximation
such as PAC learning and Evolutionary Algorithms
(Ganji et al., 2016) (Delvaux, 2019). As a result,
more exploratory ML methods are likely required to
fully evaluate the PUF-based aspects of the symbiotic
design such that it is proven sufficiently secure.

↪→ Strategy 2.2.6. Tying PUF-based entropy closely
with software mechanisms will likely provide strong
non-linearity to the overall PUF function, yet not
necessarily prevent modelling attacks given enough
data. We propose system designers to consider ML
attacks which act upon exploration and exploitation
in their iterative learning such that PUF entropy can
be ensured. State-of-the-art Adversarial Reinforce-
ment Learning (ARL) based approaches will likely be
useful/required to truly evaluate the modelling resili-
ence of the SUF, such that given sufficient data, any
information leakage (and thus correlative properties
between different inputs and outputs) is detected. ■

3 REQUIREMENTS & DESIGN
OBJECTIVES

Connected and physically exposed IoT systems op-
erate at an intersection of physical and cyber do-
mains. Consequently, they are more affected than,
e.g., servers accessible by authorised personnel only.
Security requirements for IoT systems must guaran-
tee their resistance against software-based attacks; at-
tacks over network connections; and physical attacks
against their hardware components. Moreover, the
threat model must consider ML-MA against PUFs as
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discussed in Strategies 2.2.2 and 2.2.6. Symbiotic se-
curity also requires defence-in-depth, i.e., the ability
of one range of protections to compensate for cases
when an adversary has overcome other defences. In
the context of key management, SKMS should be
able to provide an acceptable residual security even
if some key material has been compromised and re-
place that key within an adequate period of time. This
gives rise to the following design considerations:

• The system should be distributed, rather than
monolithic, to withstand a concentrated attack.

• Its unique information (such as IDs or crypto-
graphic keys) must be adaptive, rather than im-
mutably static, such that it can be replaced in the
case of a partially successful attack.

• The secret handling should be as transparent
and dynamic as possible, using zero-trust or
even zero-knowledge principle of operation to
avoid exposing key material. Examples are
enhanced bootstrap-like mutual authentication
schemes such as ZKIE.

• Protections must cover not only static data-at-rest
(e.g., stored in memories), but also data-in-transit
during their processing.

• The system must support external monitoring
and/or self-observation. AI-assisted metadata
analysis can play a crucial role here, and an inter-
esting open question is whether it can be applied
to encrypted data in transit.

In the following section, we make a proposal for an
approach that fulfills the listed requirements.

4 SKMS DESIGN RATIONALE

In this section, we summarise all essential strategies
discussed thus far in Fig. 1. The depiction of SKMS
covers its fundamental communication paths to out-
line the relationship between the secure IoT module
incorporating such an SKMS and the core services
hosted by a cloud back-end originally introduced and
discussed in Bartsch and Huebner’s work (Bartsch
and Huebner, 2019b).

4.1 Core Building Blocks

SKMS uses an unclonable function to eliminate the
static key storage need whilst overcoming its natural
limitation of being immutable as far as the hardware-
based characteristics are concerned. This shall be
achieved by an interplay of hardware and software
such that a monolithic firmware implements only the

necessary device logic. Cryptographic functions shall
be used by said firmware through a dedicated API ex-
posed by the low-level HSM-like Crypto Engine as
part of the SKMS forming an essential SSC.

Key material is produced through a resultant set of
entropy within an isolated part of the volatile memory
(Isolated RAM) which can only be read out by the
Crypto Engine via a dedicated data bus. Alongside
its Crypto Engine API, the Crypto Engine shall also
expose a Secrets/Entropy Selector interface such that
the high-level application can address certain areas of
the overall entropy space (i.e., byte array) for purpose-
bound cryptographic keys (e.g., 256 bits for AES en-
cryption). The resulting entropy is created at run time
by the Entropy Multiplexer (a dedicated hardware
unit) to collect hardware-based entropy and combine
it with the firmware-intrinsic entropy through a suit-
able unkeyed one-way function. The firmware itself
shall only be the carrier of entropy without any hard-
coding in source code. Thus, a Firmware Dispenser
would process the firmware to add an ‘entropy layer’
to it. Following the principle of Zero Trust or Zero
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Figure 1: Symbiotic Key Management System.

Knowledge even, every SoC/IoT module shall be de-
livered to its designated environment with just a prim-
itive Embedded Bootloader inside. On arrival, the IoT
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module shall establish an encrypted and mutually au-
thenticated Out-of-Band (OOB) channel through that
bootloader. The latter leverages the Crypto Engine
and a subset of entropy to generate the Zero Know-
ledge secret as well as execute the protocol as such.
The Zero Knowledge Initial Enrolment (ZKIE) con-
tainerised logic unit shall then look up a use case spe-
cific firmware for the device in question and deliver it
back to the requester via the secure OOB channel.

4.2 AI Services

To ensure continuous operational stability and to
implement an external hybrid Intrusion Detection
scheme (IDS), a Metadata Analyser/AI Service shall
on the one hand receive the initial device helper
data/fingerprint to be followed up by regular updates
thereof (e.g., by means of Out-Of-Distribution or
OOD data). On the other hand, this service shall
also acquire the initial and regular samples of en-
crypted device traffic to be able to conduct (real-time)
metadata analysis of data in transit past the AI train-
ing phase. The ultimate goal is to detect data leak-
age or malicious modification both at the device level
(data at rest integrity) and at the network level (data
in motion integrity). Ultimately, if an alert is is-
sued, the device shall be instructed to self-erase and
more importantly receive a fresh subset of entropy
through a new firmware image to form a new res-
ultant set of entropy and to go through yet another
ZKIE life cycle. In other words, compromised mod-
ules must no longer be decommissioned thanks to the
full wipe and key rollover mechanism implemented
in this way. To also ensure the robustness of this
hybrid IDS approach over time and make it gener-
alised against OOD data (e.g., as a result of zero-
day attacks), further research is needed to devise suit-
able error-based concept-drift detectors as part of the
backend infrastructure which will also ideally suggest
when both the anomaly-based and signature-based in-
trusion detector models need enhancement over time.
In this regard and in this proposal, Adversarial Rein-
forcement Learning (ARL) frameworks could prove
to be beneficial as they have been shown to enhance
the performance of IDS for imbalanced and evolving
data environments such as in 6LoWPAN (Pasikhani
et al., 2022), which is similar to the suggested archi-
tectural constraints.

4.3 Discussion

The proposed scheme addresses the above-mentioned
observations and challenges as follows. It supports
simple firmware and does not require non-trivial

memory mapping (↪→ 2.1.1). It relies on software
and hardware, thus complicating reverse engineering
(↪→ 2.1.2). An independent hardware unit in charge
of generating random bits isolates critical resources
such as IVs (↪→ 2.1.3) from incorrect app-level us-
age; it avoids hookable APIs (↪→ 2.1.4), and enables
ZKIE (↪→ 2.1.5). The SUF component incorpor-
ates AI-enabled temperature compensation (↪→ 2.2.1)
and is protected against attacks on multiple levels:
hardware-software integration overcomes modeling
attacks (↪→ 2.2.2, 2.2.6) and supply-chain threats (↪→
2.2.5); fingerprinting detects manipulation attempts
(↪→ 2.2.3); AI-assisted meta-data analysis identifies
anomalous usage. In summary, SKMS has the poten-
tial to provide defence-in-depth security in resource-
restricted IoT environments.

5 CONCLUSION

In this paper, we analyse critical issues and threats
in current KMS through a broad discussion of sub-
stantial vulnerability of the Samsung implementation
of ARM’s original TEE design. Following the obser-
vations and derived strategies around this attack, we
postulate security requirements and deduce a novel
SKMS for IoT. Our idea extends the symbiotic se-
curity concept introduced in an earlier study that uses
software and hardware for designing efficient yet se-
cure IoT. In this proposal, we avoid attack-prone static
key storage and generate entropy for key material
on-the-fly through a combination of functions based
on physical variations and pseudo-random bits pre-
deployed in the system firmware. Furthermore, the
derived keys are encapsulated in a crypto engine API
offering encryption or authentication, while the actual
key bits remain completely invisible to applications.
The resulting design of a hardware-based SUF and
software-level protections ensures that the system re-
mains intact even if one of the hardware- or software-
level protection mechanisms is attacked. Lastly, we
briefly discuss the notion and importance of an AI-
based hybrid IDS to create an outside view of the end
device regarding its susceptibility to relevant attacks
which are best detected by external components.
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