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In this paper, we introduce the transition-based feature generator (TFGen) technique, which reads general ac-

tivity data with attributes and generates step-by-step generated data. The activity data may consist of network
activity from packets, system calls from processes or classified activity from surveillance cameras. TFGen
processes data online and will generate data with encoded historical data for each incoming activity with high
computational efficiency. The input activities may concurrently originate from distinct traces or channels.
The technique aims to address issues such as domain-independent applicability, the ability to discover global
process structures, the encoding of time-series data, and online processing capability.

1 INTRODUCTION

Anomaly detection in data analysis typically refers
to the discovery of uncommon observations of pat-
terns that differ considerably from the majority of
the data and do not adhere to a well-defined con-
cept of normal behaviour. Chandola et al. (Chandola
et al., 2009) introduce anomaly detection applications
in many areas, such as intrusion detection, fraud de-
tection and industrial damage detection. This paper
will introduce a generic technique for extracting fea-
tures from activity changes (transitions) for use in ma-
chine learning and signal processing.

Our paper is based on the paper from Zhong et
al. (Zhong et al., 2022), which uses a process min-
ing related technique for network intrusion detec-
tion. The technique in (Zhong et al., 2022) is in-
spired by process mining (van Der Aalst et al., 2003;
Van Der Aalst, 2011) algorithms that discover pro-
cess models from event logs. There are procedures
involved in every aspect of our daily lives, from the
operations of large businesses to the management of
private households. In the industrial sector, one can
find both the production of automobiles and the fulfil-
ment of customer orders. The procedure or series of
activities for achieving a goal is known as the process.
We use a network-based intrusion detection system as
an illustration of our technique in the context where a
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network flow of multiple packets is treated as a pro-
cess.

(Zhong et al., 2022) introduced the feature gener-
ation algorithm and the result for intrusion detection
but did not introduce other capabilities of the algo-
rithm. Our paper extends the technique of (Zhong
et al., 2022) and explore deeper into the technique it-
self. This paper adds the generality that enables stan-
dardised input from applications in different domains,
on top of already existing yet introduced capabili-
ties of discovering global process structure that may
aid in anomaly detection in concurrent processes, the
packet-level (event-level) processing for online detec-
tion, and time-series information encoding with rea-
sonable computational complexity.

An intrusion detection system (IDS) is utilised
to detect and classify security policy violations and
attacks. Depending on the purpose of the system,
we have network-based intrusion detection systems
(NIDS) and host-based intrusion detection systems
(HIDS). The NIDS is usually deployed on infras-
tructures like routers and switches to detect intru-
sions by monitoring network activities. The HIDS,
on the other hand, inspects each individual system
for any unauthorised file modifications, abnormal net-
work activities, or suspicious behaviours.

In the following section, we will first explore some
related works that focus on intrusion detection. As
(Zhong et al., 2022) is closely related to the intrusion
detection domain, we will understand the problem
better and discuss what benefits the algorithm from
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(Zhong et al., 2022) provides. Then we summarise
the problems in Section 3 that TFGen is able to solve.
The technical details of TFGen will be presented in
section 4, and finally, we will discuss the possible ap-
plications of TFGen and some known issues of this
technique.

2 RELATED WORK

From the detection method perspective, signature-
based intrusion detection systems (SIDS) and
anomaly-based intrusion detection systems (AIDS)
are typically the two types of intrusion detection sys-
tems. The SIDS uses patterns to detect intrusions,
or machine learning algorithms are trained with la-
belled data and used to classify whether an intrusion
has occurred. Snort (Roesch et al., 1999) is an ex-
ample of a SIDS that detects intrusions using prede-
fined rules. Also, data mining (Lee and Stolfo, 1998;
Borkar et al., 2019; Ashraf et al., 2018), machine
learning (Agarap, 2018; Hsu et al., 2019; Roshan
et al., 2018; Mirsky et al., 2018), and other statis-
tical methods (Vijayasarathy et al., 2011; Lee and
Xiang, 2000; David and Thomas, 2015) exist. The
machine learning models are trained with binary or
multi-class data in the case of SIDS. For the example
of AIDS, Zavrak and Iskefiyeli uses Autoencoder and
Support Vector Machines (SVM) for anomaly detec-
tion (Zavrak and 1skeﬁyeli, 2020); Abdelmoumin et
al. use ensemble learning (Abdelmoumin et al., 2022)
for anomaly detection in Internet of Things (IoT). The
machine learning models are trained with normal data
only (one-class training) in the case of AIDS.

In general, SIDS checks for incoming data char-
acteristics that are comparable to known threats,
whereas AIDS analyses the deviation between incom-
ing data and normal behaviour, and the outcome is de-
termined based on whether the outlier score is above
the threshold. Typically, the SIDS accuracy measure-
ment is F-score, while the AIDS accuracy measure-
ment is the receiver operating characteristic (ROC)
and area under the curve (AUC). The ROC curve is
a graph that displays how well a classification model
performs across all classification thresholds. The ad-
vantage of AIDS is that it is capable of detecting zero-
day attacks; however, the disadvantage of AIDS is
that it normally has a higher false positive rate (FPR)
than SIDS.

We must note that although some publications are
proposed to be about AIDS, they do not precisely
adhere to the notion of AIDS. For example, (Althu-
biti et al., 2018) use LSTM for intrusion detection,
and (Anton et al., 2019) use machine learning for in-

trusion detection in industrial network. These tech-
niques produce unreasonably high accuracy and very
low FRP and claim to be anomaly-based, but they are
signature-based. The survey (Khraisat et al., 2019)
shows the concept of AIDS accurately; however, the
majority of the papers to which the survey refers are
not related to AIDS. We can see the same problem in
other surveys (Maseer et al., 2021).

From the detection speed perspective, there are
two types of intrusion detection methods, online and
offline. Online detection monitors network activity
in real time in order to detect threats as quickly as
possible. Offline detection typically examines the
data logged and is executed manually by the admin-
istrator or at a predetermined interval. When dis-
cussing online intrusion detection, we anticipate the
response time between an attack and the activation
of an alarm to be as short as possible, which is why
we consider packet-level detection methods in our ap-
proach. Numerous techniques employ packet-level
detection. However, some techniques, primarily those
based on data mining or machine learning, do not de-
tect packet-level intrusions. The first reason is that the
commonly used popular datasets lack packet-level in-
formation, like the well-known KDD’99 and the im-
proved NSL-KDD datasets (Tavallaee et al., 2009).
These datasets provide statistical values at the flow
level, i.e., the data is generated only after a socket
is closed or timed out. For instance, the Destina-
tion Bytes feature indicates the total number of bytes
transferred from the source to the destination in a sin-
gle socket; obviously, this feature cannot be extracted
before the socket closes or terminates. For interested
readers, (Dhanabal and Shantharajah, 2015) provides
details on all features included with the KDD dataset.
Second, the efficiency of these systems is insufficient
to support packet-level detection.

There are examples of packet-level detection sys-
tems. A good example of packet-level detection is
presented in (Mirsky et al., 2018). Damped incre-
mental statistics are utilised to generate packet-level
feature vectors in real time. By retaining the prior sta-
tistical value, the value can be incrementally updated
with the most recent packet data. In addition to updat-
ing the previous values, the decay function devalues
older data. Statistical information between RX and
TX is also extracted by implementing the 2-D statis-
tics. There also exist pattern-based packet-level IDSs
that examine audit trails for network data, including
(Roesch et al., 1999; Wespi et al., 2000). In general,
these IDSs look for specific activities or a sequence
of activities and then makes a determination based on
the defined patterns. Apart from NIDS, the Variable-
Length Audit Trail Pattern approach proposed by We-
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spi et al. (Wespi et al., 2000) is used for HIDS. It
captures system commands such as file-open and file-
close, then maps them into sequences of characters
based on the translation table. A sequence of char-
acters will then be divided into variable-length subse-
quences using the Teiresias algorithm (Rigoutsos and
Floratos, 1998). The subsequences are compared with
the training sequences for calculating the boundary
coverage. Finally, the algorithm will determine the
intrusion with the longest group of uncovered events.

3 EXISTING PROBLEMS

We summarise three main issues with some of the
techniques used for intrusion detection. The first is
the lack of ability to perform online detection; the
second is that some packet-level detection techniques
have difficulty applying to encrypted data; third, most
techniques lack the ability to detect the global process
structures.

Usually, packet-level systems are incapable of de-
crypting and analysing encrypted payloads. Exam-
ples include the case-based agent (Schwartz et al.,
2002), which uses case-based reasoning on packet
XML data; the previously introduced Snort, which
uses predefined rules to check for intrusions, and the
technique (Wang et al., 2020), which converts bytes
of packets to grayscale images and then uses hierar-
chical network structure for classification.

Some techniques use recurrent neural networks
for intrusion detection, such as (Hwang et al., 2019),
which uses LSTM to classify a time-series of raw
packets. On small network devices, resources for
training and running LSTM are not always available.
Using flow-level data is another option, but this level
of detection is not what we seek.

Packet-level IDS with the use of historical infor-
mation addresses the issue with encrypted data; how-
ever, we are now facing another issue that may result
in poor performance for attacks such as DoS/DDoS
and brute force attacks. These attacks are possible
with a high number of concurrent connections. Theo-
retically, each connection may appear completely nor-
mal; therefore, the attack cannot be identified if we
focus on the information provided by a single con-
nection. These concurrent connections may be iden-
tical to the previously identified data, and a signature-
based IDS may have good performance; however, any
modification to the network flow will render these
IDSs ineffective.

The motivation is to use a new technique to ad-
dress the issues mentioned above. Process mining
is intended for business process model discovery and
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analysis, which is capable of encoding the global pro-
cess structure. The activities are recorded in the event
log that can be used for process mining in the future.
The obvious problem is that the collection of these ac-
tivities could take days or even weeks, and the event
log is then used to determine the process model. This
may be appropriate for offline intrusion detection, but
it cannot be used traditionally for online anomaly de-
tection. However, we believe the ability to observe
global process structure is essential for detecting at-
tacks such as botnet, DoS/DDoS, and brute force.

Online conformance checking is available in the
later research (van Zelst et al., 2019), but anomaly
detection is limited to conformance checking in the
process mining domain. Zhong and Lisitsa have done
tests in (Zhong and Lisitsa, 2022) as a naive approach
to use process mining on network data and then tried
to detect anomalies with conformance checking. The
results have turned out not promising. An interested
reader may find further experimental results and ex-
planations in (Zhong and Lisitsa, 2022).

4 ONLINE FEATURE
GENERATION ON
CONCURRENT DATA
STREAMS

Here we add a more detailed, accurate and general
version of the algorithm applicable to various types
of streams based on Zhong et al.’s algorithm (Zhong
et al., 2022).

Generally, we attempt to utilise the global flow
discovery capability of process mining but design it
online. As mentioned previously, process mining
analyses the relationships between packets in flows
and encodes the global flow structure into the process
model rather than analysing the flows themselves.
The resulting algorithm will be a transition-based pre-
processor that takes streams of activities as the input
and produces a series of adjacency/transition matri-
ces. These matrices have historical information en-
coded.

Before discussing the algorithm, it is necessary to
re-define the concepts of transitions and event classes,
whose traditional definitions in process mining may
vary slightly.

Given a sequence of events P, we define a transi-
tion in P as a pair of consecutive events (p;, p;) within
the same case. The transition is referred to as the
precedence relation, and P can be treated as the event
log.

A trace is a series of event names. A case is a trace
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Figure 1: Generation of features using TET. S represents the SOT (start of the trace) token, while E represents the EOT (end
of the trace) token. The frequent occurrence of an event class within the window causes the weights of nodes and edges to

increase; however, the weights are not reflected in this diagram.

instance that has been executed. A trace, for exam-
ple, is a predefined procedure/process for producing
a certain type of medication. This type of medication
can be manufactured multiple times, resulting in nu-
merous cases. The event log is comprised of the logs
from the production of various types of medications.
The case is also referred to as a flow in this paper.

Here is an example, giving a series of events
P ={p1,p2,p3,Dp4,ps) with two flows #; and r,, where
flow t; = (p1,p3,ps) and flow 1, = (p2, pa), we will
get two transitions for #: (pi, p3) and (p3,ps); one
transition for #,: (py, p4). p1 and p; are two consecu-
tive events; however, these events will not be consid-
ered as a transition as they belong to different flows.

An event class ec(p) is the name of an event p,
and normally it is the concatenated string of non-
numerical attribute data. In the example of network
traffic, it is the enabled flags of packets and whether
the packet comes from the server of the client (Zhong
et al., 2022). An event is the executed instance of an
event class.

The temporal event table (TET), formerly known
as the state table in (Zhong et al.,, 2022), is a
data structure used to prevent the loss of infor-
mation on transitions for historical data not cov-
ered by the sliding window. We call it TET in
this paper to eliminate the confusion. Let us con-
sider a smaller scaled example which has an event
log of 10 events that are involved in 2 concurrent
traces where trace O = (a¢,b¢,ce,do,co,e0) and

trace O = (ag,bO,ag,eq); we have 5 event classes
{a,b,c,d,e} and assuming our sliding window size [
is 3.

The TET has a header, which is typically the case
ID, and the event class is stored beneath the case ID.
In Figure 1, the TET is initialised with the initial win-
dow, and the Last EC value is updated based on the
most recent packet. For each incoming packet, the
system uses the case ID from the incoming packet as
a key to retrieve the previous event. For instance, c
has case ¢, which exists in TET, and the event class
record for ¢ in TET is b; the system creates the rela-
tion (b,c) and then updates the record in TET to the
last observation c. When the traces reach their end
position, the records will be null, and the associated
key/ID in the TET will be removed. TET works in
conjunction with the sliding window, and the result-
ing output is transition matrices with size n> where n
is the number of observed event classes.

TET, in combination with a sliding window buffer
that retains the previous / transitions, eliminates the
need to generate a graph for each window and the
need to search for the previous event with the same
trace ID as the incoming event. TET stores the event
history and maintains an O(1) computational com-
plexity for processing each activity. TET can be ex-
panded to support variable-length historical events
logging, and sliding windows are compatible with
process mining techniques such as trace clustering
and abstraction (Giinther and Van Der Aalst, 2007,
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Song et al., 2008).

The main difference between TFGen and tradi-
tional process mining is that process mining focus on
process model generation and analytical method like
conformance checking on process models, whereas
TFGen is designed for online processing and feature
generation for machine learning. Comparing TFGen
to other feather generators for IDS, not only TFGen
has the potential to address issues that have been men-
tioned, but it also generates features based on non-
numerical data and attributes instead of numerical
data. The TFGen implementation as a Python pack-
age can be found on Github'. This implementation is
capable of processing around 80,000 events per sec-
ond using a single thread of an Intel Core i5-12600K

pI'OCCSSOI'z.

S DISCUSSION

This novel feature generator was originally developed
for NIDS, and the report on its performance can be
found in (Zhong et al., 2022). Some results presented
in (Zhong et al., 2022) show AUC under 0.5, and we
believe this is due to the fact that some transition fre-
quencies stabilise under attack. Therefore, the attack
data have lower variance and may be characterised as
attacks by some outlier detectors.

Further improvements obviously can be made.
Given the generality and flexibility of the algorithm,
the position for our paper is that TFGen may be ap-
plicable to the domain of transition-based problems
or data that can be mapped to discrete space. Here are
some instances.

* It is applicable to HIDS based on system calls or
kernel operations (Liu et al., 2018; Byrnes et al.,
2020; Kadar et al., 2019). The calls are provided
as events, and each process will generate a distinct
case. With a larger-scaled environment, agents
can be deployed on multiple systems for concur-
rent data collection from a cluster of hosts; TFGen
is ideally applicable as long as cases can be mod-
elled and the lengths of cases are finite.

Computer vision and sensor-based security sys-
tems (Ding et al., 2018; Luo et al., 2018) that de-
tect and monitor a series of activities for health
and safety measurement. Instead of using the cur-
rent approaches, the series of classified activities
can be modelled as cases where each case can be
produced by specific personnel. Each case con-
sists of events that have several attributes, such as

Thttps://github.com/yinzheng-zhong/TFGen
2Using the provided NIDS dataset on Github
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gesture, department and gender. The benefit could
be better overall performance, and the behaviours
of multiple personnel are encoded.

e Anomaly detection in the operation of critical
infrastructure (Gauthama Raman et al., 2019),
where TFGen can be used in conjunction with nu-
merical sensor readings to encode time-series ac-
tivity data.

These applications are based on the hypothesis that
TFGen supports all standard event logs as long as pro-
cesses can be converted to an event log, and the per-
formance and practicability of using TFGen in these
areas can be open research questions for future work.

To demonstrate this, we conduct a quick experi-
ment to evaluate the performance of HIDS using the
dataset of API calls captured by Cuckoo Sandbox
(Nunes, 2018; Nunes et al., 2019). Since the dataset
does not include a native event log, event logs are
generated based on the timestamps and API names.
Events are extracted from logs of all processes, then
combined and sorted based on the timestamps.

To reduce the dimensionality, we only generate
transition matrices based on a limited number of the
most frequent event classes out of over 260 observ-
able event classes. We call the event classes that fall
within the limited range of visible (frequent) event
classes, and we call other event classes hidden (in-
frequent) event classes. Hidden event classes are
counted into the default event class ”Other” for fre-
quency calculation. the setups are available below.

* t100-ipca0: Limiting the visible event classes to
100.

* t50_ipca0: Limiting the visible event classes to 50.
 t25_ipca0: Limiting the visible event classes to 25.
* t10_ipca0: Limiting the visible event classes to 10.

Figure 2 is the result of utilising the Convolutional
Autoencoder for unsupervised learning on data gen-
erated by TFGen. The outlier factor of a case is deter-
mined by the event with the highest outlier factor. The
Convolutional Autoencoder is able to process over
28,000 events/s during inference using batch size 32
on a single RTX 2070S graphics card. Details of the
constructed event logs and the implementation can be
accessed on Zenodo®. The link also provides a docu-
ment that shows extensive details of this experiment,
including other experimental setups and performance
benchmarks.

Further analysis and experimentation will be con-
ducted, and a better dataset containing native event
log data may be utilised. In contrast to a native event

3https://doi.org/10.528 1/zenodo. 7154396
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Figure 2: Performance using Convolutional Autoencoder.

log, this generated log may not provide a true repre-
sentation of concurrent processes.

These are disadvantages of TFGen, for instance,
a smaller window size may result in sparse matri-
ces, necessitating an adjustment of the window size
based on the problem and anomaly detector. When
event classes contain numerous attributes, such as the
HIDS dataset used in (Zhong et al., 2022), the output
matrices may be of high dimension. Using dimen-
sion reduction techniques such as incremental princi-
pal component analysis (IPCA) or a limited number
of event classes is possible.

To clarify, the purpose of this research is not to
demonstrate the high accuracy and low FPR of any
experiment but rather to demonstrate that the gener-
alised approach has the potential to function in other
domains. Due to the fact that a high FPR is associated
with the poor practicality of existing AIDS in general,
this algorithm may provide an alternative strategy.
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