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Abstract: Over the past ten years, wearable technologies have continued to evolve. In the development of wearable
technology, smart glasses for augmented and mixed reality are becoming particularly prominent. We believe
that it is crucial to incorporate artificial intelligence algorithms that can understand real-world human behavior
into these devices if we want them to be able to properly mix the real and virtual worlds and give assistance to
the users. In this paper, we present an application for smart glasses that provides assistance to workers in an
industrial site recognizing human-object interactions. We propose a system that utilizes a 2D object detector
to locate and identify the objects in the scene and classic mixed reality features like plane detector, virtual
object anchoring, and hand pose estimation to predict the interaction between a person and the objects placed
on a working area in order to avoid the 3D object annotation and detection problem. We have also performed
a user study with 25 volunteers who have been asked to complete a questionnaire after using the application
to assess the usability and functionality of the developed application.

1 INTRODUCTION

Wearable technologies continued to improve rapidly
with the advances in sensors, communication tech-
nologies, and artificial intelligence over the past
decade. Smart glasses for augmented reality are tak-
ing on an important role in the growth of wearable
devices. The global augmented reality market size
was estimated at USD 25.33 billion in 2021 and is
expected to expand at a compound annual growth rate
(CAGR) of 40.9% from 2022 to 2030. Companies
are putting a strong emphasis on finding ways to ex-
ploit the potential of Augmented Reality (AR) tech-
nology. Providing a unique and interactive experi-
ence to end-users is expected to drive the growth of
the market over the forecast period. The prolifera-
tion of handheld and wearable devices, such as smart-
phones and smart glasses, and the subsequent increase
in the adoption of mobile AR technology to provide a
more immersive experience are expected to contribute
to the growth of the market as well.

Different devices such as Microsoft HoloLens 2,
Nreal, Magic Leap 2 have already been launched in
the market promising to be able to augment our per-
ception of the real world with additional virtual ele-
ments (e.g., holograms, images, videos, audio). All
these wearable glasses provide some standard capa-

bilities such as spatial mapping, plane detection, hand
and gaze tracker which are needed to enable the in-
teraction with virtual elements and can be exploited
to develop mixed reality applications using different
platforms (e. g., Unity1 and OpenXR2).

We argue that, for these devices to really be able
to blend the real and virtual worlds, it is essential to
integrate artificial intelligence algorithms which can
understand human behavior in the real world. In par-
ticular, recognizing human-object interactions from
the first-person perspective allows to build intelligent
systems able to understand how humans interact with
the world and consequently support them during their
daily activities in different domains, including home
scenarios (Damen et al., 2014), cultural sites (Cuc-
chiara and Del Bimbo, 2014; Farinella et al., 2019;
Mazzamuto et al., 2022) and industrial environments
(Colombo et al., 2019; Ragusa et al., 2021). Since
AR devices need to be able to put the real and vir-
tual worlds in the same reference system, a 3D under-
standing of user-object interactions is fundamental.

Wearable systems that recognise human-object in-
teractions in the 3D real world can be useful in work-
places, where they can support workers by provid-
ing a continuos training on how to use a specific ob-

1https://unity.com/
2https://www.khronos.org/openxr/
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ject, or by monitoring the use of a specific machine
to schedule mainteinance procedures and avoid un-
expected machine downtime. This kind of systems
can also support procedural works providing a control
mechanism to monitor procedures and notify missing
actions (Soran et al., 2015).

In this paper, we present a smart glass application
to support workers by recognizing human-object in-
teractions in an industrial context. Modeling human
interactions with real objects in the 3D scene is not
trivial. Current applications such as Vuforia Model
Targets3 implement a full 6 DOF object pose esti-
mation pipeline, for which 3D bounding box labels
around objects are considered. Since annotating ob-
jects with 3D bounding boxes is expensive, it is dif-
ficult to extend these kinds of systems to scenarios in
which new object classes may appear. The time taken
by an annotator to label a box is approximately 7 sec-
onds (Papadopoulos et al., 2017), instead the time
needed to annotate a 3D bounding box is significantly
higher and generally requires the availability of 3D
point clouds. The KITTI dataset (Geiger et al., 2012)
reports that on average, annotating one full batch (240
frames) in 3D took approximately 3 hours. The SUN
RGB-D dataset (Song et al., 2015) reported that 2,051
hours of annotation were required to label 64,595 3D
object instances, around 114 seconds per instance.

To avoid the 3D objects annotation problem, we
propose a system which needs only 2D bounding box
annotations to understand egocentric human-object
interactions in the 3D real world by leveraging the
common software layer provided by AR platforms.
In particular, the proposed system makes use of a 2D
object detector to localize and recognize the objects
present in the scene and exploits standard capabilities
such as plane detector, virtual object anchoring and
hand pose estimation to recognize human-object in-
teractions.

As a test use case, we implement a system which
can offer additional information regarding the correct
use of that object. We deployed the proposed applica-
tion on Nreal4 smart glasses in the ENIGMA5 labora-
tory, of the University of Catania. We have also orga-
nized a test campaign on the use of the application in
which 25 participants tested the application and com-
piled surveys provide feedback on the functionality
and usability of the system. We have analyzed the re-
sults of the surveys to understand strengths and where
to improve the proposed application.

3https://library.vuforia.com/objects/model-targets
4https://www.nreal.ai/
5https://iplab.dmi.unict.it/ENIGMA/

2 RELATED WORK

The proposed application is related to different lines
of research: human-object interaction detection, and
smart glass software development. The following sec-
tions discuss some relevant works related to these re-
search lines.

2.1 OpenXR

OpenXR is considered as the reference platform when
developing on mixed reality. By allowing apps to run
on a larger range of hardware platforms without hav-
ing to port or rewrite their code, OpenXR aims to
make the creation of AR/VR software easy. Without a
cross-platform standard, VR and AR applications and
engines must use each platform’s proprietary APIs.
New input devices need customized driver integra-
tion. In this work we have used Nreal device. Since at
the moment Nreal does not support development with
OpenXR, in the development of the presented appli-
cation it was decided to use NRSDK.

2.2 NRSDK

NRSDK6 is the platform used by Nreal to develop
mixed reality applications. It provides a series of fea-
tures that can be accessed via a high-level API, sim-
plifying the creation of content. In the proposed sys-
tem we exploited the following capabilities provided
by the API:

• Hand Tracking;

• Plane Detection;

2.2.1 Hand Tracking

The NRSDK Hand Tracking capability tracks the po-
sition of key points of the hands and recognises hand
poses in real time. Hand poses are recognized in the
first-person view and used to interact with virtual ob-
jects immersively in the world. The system can track
hands through the world coordinate system and an-
notate the position and orientation of 23 key points.
Currently, it supports six hand poses (gestures) from
either hand. In the proposed application, the hand’s
keypoint tracking allowed us to estimate the position
of the hands in the 3D environment in order to esti-
mate possible interactions with objects.

2.2.2 Plane Detection

Since Nreal Light is not equipped with a depth sensor
to obtain 3D information on the surrounding world

6https://nrealsdkdoc.readthedocs.io/
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useful to understand the distance of the objects re-
spect the human, we developed an approach which
derived this information using the Plane Detection
feature of the NRSDK. In the proposed system, we
obtain the depth of an object, associating the depth of
the plane in which the object is placed. In this way,
considering the 2D coordinates obtained by the object
detector and the depth approximated with the plane
detection we are able to predict the 3D position of ob-
jects.

We decided to use Barracuda to integrate an object
detector, which we trained, into our application.

2.3 Human-Object Interacion (HOI and
EHOI)

In recent years, many works have focused on the
Human-Object Interaction detection task, considering
both third and first person views. Human-object In-
teraction (HOI) detection strives to locate both the hu-
man and an object as well as identify complex interac-
tions between them. Most existing HOI detection ap-
proaches are instance-centric, where interactions be-
tween all possible human-object pairs are predicted
based on appearance features and coarse spatial in-
formation. The authors of (Gupta and Malik, 2015)
annotated the COCO dataset with verbs to study HOI
detection from the third point of view (V-COCO). The
authors of (Gkioxari et al., 2017) proposed a three-
branch method which estimates the verb of the inter-
action, the human position as well as the possible lo-
cation of the object involved in the HOI exploiting
both humans and objects features. The authors of
(Chao et al., 2017) studied the problem of detecting
HOI in static images, predicting a human and an ob-
ject bounding box with an interaction class label using
graph convolutional neural networks.

Other works look at the task of HOI detection
from an egocentric perspective (EHOI) which is in-
creasingly studied. The authors of (Nagarajan et al.,
2018) proposed an approach to learn human-object in-
teraction “hotspots” directly from video in a weakly
supervised manner. The authors of (Nagarajan et al.,
2020) introduced a model for environment affor-
dances that is learned directly from egocentric video,
linking the environment with the action performed.

To study this task from the egocentric point of
view, many datasets have acquired and labeled con-
sidering different scenarios.

The authors of (Grauman et al., 2022) recently re-
leased EGO4D, a massive-scale egocentric data set
and benchmark suite collected in 74 locations around
the world and 9 countries, with over 3,670 hours of
video of daily activities.

Figure 1: Nreal Light smart glass.

The authors of (Ragusa et al., 2021) proposed
the MECCANO dataset as the first dataset of ego-
centric videos to study human-object interactions in
industrial-like settings. This dataset has been ac-
quired in an industrial-like scenario in which subjects
built a toy model of a motorbike.

Since collecting and labeling large amounts of
real images is challenging, the authors of (Leonardi
et al., 2022) proposed a pipeline and a tool to generate
photo-realistic synthetic First Person Vision (FPV)
images automatically labeled for EHOI detection in
a specific industrial scenario.

In this paper, we propose a system which com-
bines a 2D object detector, hand tracking and plane
finding modules in order to detect EHOIs.

3 PROPOSED SYSTEM

In this Section, we first discuss the hardware on
which the proposed system has been developed (Sec-
tion 3.1), then we present the application pipeline of
the system (Section 3.2).

3.1 Hardware

Nreal Light (shown in Figure 1) is a smart glasses de-
vice for augmented and mixed reality created by the
Nreal company for consumer users. Since the com-
putation is done on an external unit (i.e., a comput
unit provided by Nreal or an Android smartphone),
this device is lighter and more comfortable with re-
spect to other AR headsets. Software development
on the Nreal glass was done via the Nebula plat-
form. Nreal Light features several sensors, including
two grayscale cameras for spatial computing, an RGB
video camera for capturing frames with a resolution
of 5 MegaPixel, microphones, speakers, accelerom-
eter, gyroscope, sensor ambient, and proximity light
(to detect if the glass is worn by the user). We opted
for the adoption of this smart glass in this work for
these features and given the high lightness and versa-
tility of the device.
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(a) mAp@50 of the trained
detector.

(b) Loss of the trained de-
tector.

Figure 2: Loss and mAp of the detector.

Figure 3: Relationship between 2D and 3D object coordi-
nates.

Figure 4: Examples of classes composing the dataset.

3.1.1 Compute Unit

Nreal provides Nreal Light Developer Kit, which con-
sists of the Computing Unit and the Controller. The
unit weights 140g, is equipped with a Qualcomm
Snapdragon 845 SoC, an 8 Qualcomm Kryo 385 64-
bit core CPU and a Qualcomm Adreno 630 GPU. The
storage is 64 GB, the operation system is Android 8.
A OnePlus 8 was used to deploy the application as an
alternative to the compute unit.

3.2 Application Pipeline

The proposed system includes five modules, which
are described in the following subsections: 1) Frame
Acquisition, 2) 2D Object Detection, 3) Plan detec-

tion, 4) 3D Object Tracking, 5) Hand Tracking and 5)
Interaction Detection. Figure 5 shows the architecture
of the proposed system.

3.2.1 Frames Acquisition

The acquisition of frames is performed through the
RGB video camera every T seconds, through the Get-
Texture() method of the NRRGBCamTexture class,
provided by the NRSDK suite. Each frame is ac-
quired with a resolution of 1920x1080 pixels. The
acquisition period T is set empirically considering the
computational time required to perform the objects
detection in a frame. We set T=3 on the compute unit
and T=2 on the One Plus 8 device.

3.2.2 2 D Object Detection

The proposed system needs to recognize objects wich
can be manipulated by the user. Training a standard
2D detector is less demanding than training a 3D de-
tector in terms of both computational time needed for
the training phase and time and costs for the annota-
tion process. Moreover, unlike data annotated with
3D Bounding boxes, there are many public dataset
available with 2D annotations which allows to train
2D object detectors. We used a Tiny YOLOv47 ob-
ject detector, which allows fast and accurate recog-
nition of objects. Given an image, the model pre-
dicts a tuple (x,y,w,h,c) where x,y,w,h are the 2D
Bounding box coordinates in the image and c repre-
sents the class of the detected object. We integrated
the 2D object detector through the Barracuda library8.
To train the YOLOv4 object detector, was used the
dataset presented in (Leonardi et al., 2022), which is
composed of images acquired in the industrial labora-
tory ENIGMA of the University of Catania, and iden-
tifies the same scenario considered in this project. A
list of examples of the classes present is shown in Fig-
ure 4. We trained the model for 395 epochs. Figure 2b
shows the mAP (mean Average Precision) on the val-
idation set along with the number of training epochs.
The mAP of the chosen epoch is equal to 0.775.

3.2.3 Plane Detection

Plane detection, is a feature available in the NRSDK,
by the script PlaneDetector.cs present in the library.
The script uses a Unity’s prefab named Polygon-
PlaneVisualizer, which places markers of polygonal
shape on the detected flat surfaces. In this way, it is

7https://models.roboflow.com/object-detection/yolov4-
tiny-darknet

8https://docs.unity3d.com/Packages/com.unity.barrac
uda@1.0
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Figure 5: Overview of the full system.

possible to trace the 3D plane positions in the Unity
space. Since this application is made for industrial
operators, we decided to turn off the graphic render-
ing of the plans, for the benefit of greater visibil-
ity of the work area and less distraction for the op-
erator. The accuracy of plane detection technology
from NRSDK is generally high, but can be affected
by various factors such as lighting and clutter in the
environment. In situations with ample lighting and
distinct planes, the detection algorithm tends to per-
form very well, accurately identifying and tracking
planes. However, in conditions such as low light or
cluttered environments, the accuracy may be compro-
mised. The NRSDK offers a dependable and effective
solution for plane detection in various situations.

3.2.4 3 D Object Tracking

This module takes as input the 2D Bounding boxes
of the detected objects and the 3D coordinates of the
detected plane and assigns to each object a 3D point.
First, the x and y coordinates are extracted from the
center point of bounding box of the identified object,
creating the point P2D(x,y). Then the point P2D is
transformed into P3D(x,y,z) where the z coordinate
is taken from the “near plane”, that is a plane used
in mixed reality to render 2D elements at a fixed dis-
tance. After that, a ray is generated from the 3D posi-
tion of the camera that passes through P(x,y,z). Con-
sidering the ray incidents on the detected plane (“far
plane”), we obtain the point P′(x′,y′,z′) which repre-
sents the estimated 3D position of the detected object
(see Figure 3). Once this 3D point has been identi-
fied, an invisible virtual gameobject is placed in its
position.

3.2.5 Hand Tracking

Hand tracking is another feature made available by
NRSDK. To activate this feature, it is required to im-
port the prefab called “NRInput” into the application
scene in Unity, and select the “Hands” value for the
“Input Source Type” attribute. In this way, the system
will enable the use of the hands as an input source,
as an alternative to the controller (smartphone / com-
puting unit). Once these steps are completed the hand
tracking module is enabled, allowing to obtain the sta-
tus of each hand, in terms of the performed gesture,
position and rotation of each keypoint. This module
allows to track the 3D position of both user’s hands in
the world respect to the camera.

3.2.6 Interaction Detection

To detect if a user is interacting with objects, the Eu-
clidean distance between his hand, traced by hand
tracking, and the various invisible gameobject that
are currently tracking objects previously detected by
the object detector (section 3.2.4) are checked at each
frame.

Given the estimated 3D position of the objects and
the user’s hands present in the scene, the system pre-
dicts whether a human-object interaction is happen-
ing. For each hand, we calculate the Euclidean dis-
tance between the hand and each object present in the
scene. If the distance is below the threshold of 2 cen-
timeters, a HOI is happening and the system outputs
the class of the active object involved in that inter-
action. This output will trigger an augmented reality
service which will give to the user additional infor-
mation on that object. The information is audiovisual.
The user will hear an audio description relative to the
interacted object and will see a short video tutorial in
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Figure 6: Results have been represented through boxplots.
The median value is indicated in red.

mixed reality, showing a possible use of that object. A
complete overview of the system is shown in Figure 5.

4 QUALITATIVE ANALYSIS

We asked 25 subjects to test the proposed system in
the real industrial laboratory ENIGMA of the Uni-
versity of Catania. At the end of each session, we
administrated a survey composed of 14 questions re-
lated to the usability, comfort, usefulness and possible
privacy issues of the system. Table 1 reports the list
of the questions included in the survey. Each question
could be rated from 0 (extremely negative) to 5 (ex-
tremely positive). For the analysis, a custom version
of the application was created that let the user inter-
act with 5 objects through an audiovisual guide that
provides instructions on what to do step by step. The
five selected objects for this survey are: clamp, screw-
driver, oscilloscope, oscilloscope probe and soldering
iron base.

4.1 Results

In order to evaluate the general performance of the ap-
plication, we visualize the results extracted from the
surveys using boxplots (see Figure 6). Participants
do not highlight any particular issues related to the
analysis of the system (questions number 1-2). Each
question on average has a score that varies between
4 and 5, except for question number 11 (“How do
you rate the presence of wire and outdoor unit (smart-
phone)?”), which has a median of 3, indicating that
the presence of the wire connected to the computing
unit is not appreciated by the users. Questions number
6, 10, 12 and 13 have the highest interquartile range
(IQR), suggesting that there is little agreement in the
way the visual/text information is provided and the
relevance of privacy issues in the proposed system.

We also analyzed the Spearman’s rank correla-
tion coefficient ρ of the answers which are statisti-
cally relevant (p-value < 0.05) (see Figure 7). The
figure shows that the characteristics which signifi-
cantly influence the overall positive judgment of the
application (Question 1) are: the clarity of the in-

Table 1: List of questions included in the survey. Each ques-
tion is associated with an unique ID.

ID Question
1 How satisfied are you overall with the ex-

perience?
2 How supportive do you think the technol-

ogy demonstrated in this application proto-
type can really be?

3 Do you believe that the technology demon-
strated in this prototype can be used in
more complex systems?

4 How often has the system recognized the
interactions?

5 How do you evaluate the information trans-
mitted through sounds?

6 How do you evaluate the information trans-
mitted through video?

7 How clear were the audio/video instruc-
tions included in the application about its
use?

8 How satisfied are you with the system re-
sponse time before receiving information
on objects?

9 How do you rate the weight of the device?
10 How do you rate the visual rendering of the

device?
11 How do you rate the presence of wire and

outdoor unit (smartphone)?
12 Considering that the system does not save

any visual data, but could keep higher level
information obtained from the visual data,
how much do you think the system respect
the privacy of users?

13 How do you evaluate the information trans-
mitted through text?

14 How do you evaluate a prolonged use over
time?

structions provided by the application (Question 7,
ρ= 0.66), the response time of the interactions (Ques-
tion 8, ρ = 0.57) and the number of detected interac-
tions (Question 4, ρ = 0.48). It is also interesting to
note how prolonged use over time (Question 14) is
strongly correlated with the presence of the wire con-
nected to the wearable device (Question 11, ρ = 0.74)
and its weight (Question 9, ρ = 0.58). In particular,
those who evaluates negatively the presence of the
wire and the device’s weight, do not express a posi-
tive opinion about the use of the device for prolonged
periods. In contrast, those who positively evaluate the
presence of the wire or the device’s weight have no
problems with prolonged use of the device.
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Figure 7: Filtered p-value< 0.05 Spearman correlation.

5 CONCLUSIONS

In this paper, we presented a smart glass applica-
tion that assists industrial employees understanding
human-object interactions. To avoid the challenge re-
lated to 3D object annotation, we proposed a system
that uses a 2D object detector to find and identify the
objects in the scene and common features available
on AR devices such as plane detector, virtual object
anchoring, and hand tracking to predict how a human
would interact with the objects. For qualitative evalu-
ation purpose, we set up a test campaign for the appli-
cation, in which the 25 volunteers tested the applica-
tion and responded to a survey on the app’s function-
ality and usability. The results suggest that approach
presented in this work can be useful to develop appli-
cations helpful in manufacturing environments.
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