
Class-wise Knowledge Distillation for Lightweight Segmentation Model

Ryota Ikedo a, Kotaro Nagata b and Kazuhiro Hotta c

Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan

Keywords: Knowledge Distillation, Class-wise, Semantic Segmentation.

Abstract: In recent years, we have been improving the accuracy of semantic segmentation by deepening segmentation
models, but large amount of computational resources are required due to the increase in computational com-
plexity. Therefore knowledge distillation has been studied as one of model compression methods. We propose
a knowledge distillation method in which the output distribution of a teacher model learned for each class
is used as a target of the student model for the purpose of memory compression and accuracy improvement.
Experimental results demonstrate that the segmentation accuracy was improved without increasing the com-
putational cost on two different datasets.

1 INTRODUCTION

Convolutional neural networks have shown good per-
formance in various image recognition tasks such as
image classification (He et al., 2016), object detection
(Liu et al., 2016), pose estimation (Cao et al., 2018)
and so on (Zhang et al., 2021). Semantic segmenta-
tion is a task that assigns class labels to all pixels in
an input image. This technique has been applied to
automatic driving (Cordts et al., 2016) and medical
images (Zhao et al., 2020).

Semantic segmentation needs inference for all
pixels in an input image, so relationship inter pixels
and location of each class are important. Therefore,
conventional methods have been proposed to improve
the accuracy by enhancing the backbone network in
order to enrich the extracted features (Zhao et al.,
2017), and by introducing an attention mechanism
that maintains the relationship inter-pixel (Vaswani
et al., 2017) and inter-channel (Hu et al., 2018). How-
ever, those methods require a lot of computation cost
because they require additional convolutional layers
and other mechanisms to obtain informative features.
Thus, there is generally a trade-off between computa-
tional complexity and accuracy in semantic segmen-
tation.

In recent years, several methods have been pro-
posed to solve the computational resource problem
in various tasks, such as pruning (Han et al., 2015),
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Figure 1: Comparison of two-class and multi-class segmen-
tation. It shows that the segmentation accuracy is high in
the case of only two classes, but not in the case of multiple
classes.

quantization (Hubara et al., 2016) and knowledge dis-
tillation (Hinton et al., 2015). Knowledge distilla-
tion is an effective method among them, in which
a computationally inefficient student model learns to
the output distribution of a computationally expen-
sive teacher model. As a result, high accuracy can
be achieved with fewer computational resources.

Conventional knowledge distillation uses two
kinds of loss functions; soft target loss and hard target
loss. Soft target loss is the distillation loss that makes
the output distribution of the student model closer to
that of the teacher model using Mean Squared Er-
ror(MSE) loss or Kullback-Leibler(KL) divergence.
Hard target loss is the use of cross entropy to make the
output distribution of the student model closer to one
hot vector representing the label. These two losses
transfer knowledge from the teacher model to the stu-
dent model. However, there is a difference in feature
extraction capability between the teacher and student
models. It is therefore highly difficult to exceed the
performance of the teacher model by simply making
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the output distribution of the student model closer to
that of the teacher model.

In this paper, we propose a new knowledge distil-
lation method for semantic segmentation. Semantic
segmentation is usually more difficult to learn multi-
ple classes in an input image, resulting in less accurate
inference. Therefore, a model that inferences only for
one class is more accurate for each class than a model
that inferences for multiple classes as shown in Fig-
ure 1. We focus on this idea and propose a method
to improve the accuracy by distilling the knowledge
of multiple teacher models specific to one class into
student models that inferences multiple classes.

We evaluate our proposed method using two dif-
ferent datasets; ssTEMD (Gerhard et al., 2013) and
COVID-19 (Zhao et al., 2020). Experimental results
show that the proposed method provide 0.96% and
1.30% improvements compared to the conventional
knowledge distillation method which uses a single su-
pervised model trained with multiple classes.

2 RELATED WORKS

2.1 Semantic Segmentation

Various segmentation methods have been proposed
such as SegNet (Badrinarayanan et al., 2017),
Deeplab (Chen et al., 2017), U-net (Ronneberger
et al., 2015) so on. In recent studies, many meth-
ods have been proposed to utilize deep and large-scale
networks such as ResNet (He et al., 2016) and Effi-
cientNet (Tan and Le, 2019) as a backbone for en-
coders to improve the accuracy of feature extraction.
For example, PSPNet (Zhao et al., 2017) adopted
ResNet101 in the encode for feature extraction and in-
troduced the Pyramid Pooling Module to extract fea-
tures with high accuracy and handled both the global
context of image and information on small parts of the
image. The encoder for feature extraction is important
for training these segmentation models. In this paper,
low cost and high accuracy are achieved by transfer-
ring knowledge from a high accuracy model using an
encoder with high computational cost to a model us-
ing a low cost encoder.

2.2 Knowledge Distillation

In recent years, the methods to provide high perfor-
mance networks that are as lightweight as possible
have been researched, e.g, pruning (Han et al., 2015)
and quantization (Hubara et al., 2016). Knowl-
edge distillation (Hinton et al., 2015) involves model

compression by transferring knowledge from a large
model called the teacher model, to a lightweight
model called the student model. When distilling
the knowledge of the teacher model into the student
model, MSE loss and KL divergence are used to close
the output distribution of the student model to that
of the teacher model. Such distillation methods im-
proved the accuracy and regularization of the student
model with low computational cost. In the case of se-
mantic segmentation, pixel-by-pixel knowledge dis-
tillation that makes the output distribution of each
pixel in the student model closer to the output dis-
tribution of each pixel in the teacher model (Liu et al.,
2019).

However, conventional knowledge distillation
methods have the problem that teacher model’s
knowledge of small classes, i.e., classes that are diffi-
cult to recognize, is not well transferred to the student
model. Thus, we propose class-wise knowledge dis-
tillation method, where knowledge is transferred from
teacher models dedicated to each class to a student
model. This derives more effective distillation than
the case that knowledge of all classes were distilled
from one teacher model or conventional knowledge
distillation.

3 PROPOSED METHOD

We propose class-wise distillation method. The
overview of our proposed method is shown in Fig-
ure 2. Our method provides C specific teacher models
and one common teacher model with a large number
of parameters. The specific teacher models are spe-
cialized for a particular class. The common teacher
model is trained on all classes. Note that C is the num-
ber of classes. We also have one lightweight student
model for knowledge distillation. When an image
is fed into all models, the C specific teacher models
output logits maps for two classes; specific class and
the other class (background). The common teacher
model and the student model output logits maps for
all classes. The logits map for each class obtained
by the student model is made closer to the output of
teacher models.

Class-wise distillation method distils the knowl-
edge of one class-specific teacher model into a student
model. This allows class-specific knowledge to be ob-
tained rather than the usual knowledge distillation of
all classes from a single teacher model. The student
model also learns to segment all classes and obtains
relationships between classes that are not available in
the teacher models specialized to only one class. The
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Figure 2: The overview of the proposed class-wise distillation. Teacher models are pre-trained models that are specialized to
infer one particular class. These teacher models perform a two-class segmentation of specific classes and others (background).
The student model is a lightweight network that performs segmentation for all classes. In class-wise distillation, the score for
each class by the student model is learned to be close to the score by the teacher model specialized for that class.

student model is trained with the following loss:

L = Lseg +
c

∑
n=1

λn ·Ln +λall ·Lall (1)

where λ is a hyper-parameter representing the weight
of each loss.

3.1 Segmentation Loss

Segmentation loss is the hard target loss that closes
the score map between the label and the output of the
student model. The image x ∈ RH×W×3 is fed into
the student model, and the student model outputs the
logits map s∈RH×W×C where H and W are the height
and width of the input image and C is the number of
classes. Segmentation loss is represented as softmax
crossentropy as

Lseg =
1

H ×W

H×W

∑
i=1

c

∑
n=1

pn
i logqn

i (2)

where pn
i and qn

i represent the predicted probability
and the target probability of class n at the i-th pixel.

3.2 Distillation Loss for all Classes

Distillation loss for all classes is a soft target loss that
distills from the common teacher model trained on all
classes to the student model. The common teacher
model outputs the logits map t ∈RH×W×C. All classes

distillation loss computes MSE using the output of the
teacher model and the student model.

Lall =
1

H ×W

H×W

∑
i=1

C

∑
n=1

(sn
i − tn

i )
2 (3)

where sn
i and tn

i are the logits of class n at i-th pixel ob-
tained by the student model and the common teacher
model.

3.3 Class-wise Distillation Loss

Class-wise distillation loss is a soft target loss that dis-
tills from multiple teacher models specific to a partic-
ular class to one student model. The specific teacher
models are pre-trained models that perform segmen-
tation of two classes; a specific class and other class
(background). They output a logits map t ∈RH×W×2.
Class-wise distillation loss computes the MSE using
the output of the specific teacher models and the stu-
dent model.

Ln =
1

H ×W

H×W

∑
i=1

(sn
i − tn

i )
2 (4)

where tn
i is the logits of class n at i-th pixel ob-

tained by the specific teacher models for the class n.
Class-wise distillation loss allows the student model
to mimic the logits maps of the teacher models spe-
cific to a particular class, and useful class-specific
knowledge is transferred to the student model.
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(a) Distillation losses without weights (b) Distillation losses with weights

Figure 3: Transition of class-wise knowledge distillation loss.

4 EXPERIMENT

4.1 Experimental Setup

4.1.1 Dataset and Evaluation Metric

We conducted experiments using two dataset; ssTEM
(Gerhard et al., 2013) and COVID-19 datasets
(Zhao et al., 2020) The ssTEM dataset consists of
Drosophila cell images with five classes; ’mem-
brane’, ’mitochondria’, ’synapse’, ’inner membrane’
and ’background’. COVID-19 dataset has four classes
of pneumonia; ’Background’, ’Lungs other’, ’Ground
glass’ and ’consolidations’. In both datasets, the in-
put image is a monochrome image x ∈ R256×256×1.
In both datasets, we also divided the annotated image
data into training, validation and test for evaluation.

We used the standard evaluation protocol for se-
mantic segmentation, Mean Intersection over Union
(mIoU) averaged over all classes.

4.1.2 Training Setup

As described in the previous section, knowledge dis-
tillation is carried out using teacher models special-
ized for each class. These teacher models were pre-
trained two classes; a specific class and the other class
(background). We used U-net for the student model
and U-net with EffiicentNet-b7(U-net(EN-b7)) as en-
coder for the teacher model. The number of param-
eters in the teacher model is 65.75M and the number
of parameters in the student model is 14.79M. That is,
the student model has 1/4 parameters of the teacher
model. We used softmax cross entropy as segmenta-
tion loss and MSE as class-wise distillation loss. We
also used Adam as the optimizer.

4.1.3 Weight Parameters for Distillation Loss

We selected the weight parameter λn of class-wise
distillation loss in equation (1) for optimal learning of
our method. The loss of our method uses MSE Losses
for each class. If those MSE losses are trained with-
out weights, the loss per each class is shown in Figure
3(a). Figure shows that there is a large difference in
loss between classes. In the case of such losses, the
further the training focuses only on classes with large
losses while it does not learns the classes with small
losses. This may lead to learning bias in each class,
and the data as a whole may not learn well. Thus,
we adjusted the weight parameters so that the value of
each distillation loss would be the same. The adjusted
distillation losses are shown in Figure 3(b). The fol-
lowing experiment is performed when the distillation
loss is corrected by weights.

4.2 Experimental Results

4.2.1 Results on ssTEM Dataset

Table 1 shows the results on the ssTEM dataset. First,
we compare the performance of 2 classes U-net(EN-
b7), teacher models specialised for each class, with
5 classes U-net(EN-b7), a teacher model trained on
all classes. Teacher models specialized for each class
achieved higher accuracy in almost classes than a
model trained on all classes simultaneously.

We then compare the performance of 5 classes U-
net(EN-b7) and 5 classes U-net which is a student
model. 5 classes U-net(EN-b7) outperformed stan-
dard U-net by +2.96%. U-net trained by our pro-
posed method outperformed standard U-net and U-
net trained by the conventional knowledge distillation
method by 3.52% and 0.96%. Furthermore, U-net
trained by our proposed method improved the accu-
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Table 1: Comparison our proposed method with baseline on ssTEM dataset. We denoted EfficientNet-b7 as EN-b7 and
Knowledge distillation as KD. Standard U-net is used as the student model and U-net with EfficientNet-b7 backbone is used
as the teacher models.

IoU(%)

Method membrane mitochondria synapse Inner
membrane background mIoU(%)

2 classes U-net(EN-b7)

73.47 - - - - -
- 84.35 - - - -
- - 52.38 - - -
- - - 69.06 - -
- - - - 92.71 -

5 classes

U-net 69.82 78.12 48.45 64.54 91.37 70.46
U-net(EN-b7) 72.26 83.87 49.26 69.67 92.04 73.42
U-net + KD 71.55 81.83 47.90 71.79 92.01 73.02
U-net + ours 72.14 83.93 50.48 70.79 92.54 73.98

Table 2: Comparison of different class-wise distillation
weight parameters. We also use the common teacher model
trained on all classes in this experiment. (a) is the result of
learning without weights. (b) is the result of adjusting the
weights so that the MSE loss for each class matches.

Method mIoU(%)
student model : U-net 70.46

teacher model : U-net(EN-b7) 73.42

weight λ1 λ2 λ3 λ4 λ5 mIoU(%)
(a) 1 1 1 1 1 72.56
(b) 0.01 1.5 2.0 0.01 0.03 73.98

racy by 0.56% over 5 classes U-net(EN-b7) which is
a teacher model.

We also confirmed that our proposed method is
effective for classes which are difficult to inference,
such as synapses. This results show that the proposed
method is more effective than conventional knowl-
edge distillation methods for classes that are difficult
to infer.

Table 2 shows a comparison of the different
weight parameters for class-wise distillation loss. Ta-
ble 2 (a) shows the results of training without weights,
and (b) shows the results of training with weights so
that the MSE loss values for each class are about the
same. (b) outperforms (a) by 1.42%. This is because
the learning of classes with large losses interferes with
the learning of classes with smaller losses. There-
fore, for successful learning, it is necessary to select
weights so that the distillation losses of all classes are
about the same.

Figure 4 shows the qualitative segmentation re-
sults by each model. Figure shows that U-net, U-
net enhanced with EfficientNet-b7, and U-net trained
with vanilla knowledge distillation fail to correctly
distinguish the mitochondrial area circled by the
white dot lines. However, the proposed method al-

Figure 4: Comparison of our proposed method and base-
line on ssTEM dataset. Student model trained with our pro-
posed class-wise distillation method infer more accurately
than those trained with conventional knowledge distillation
methods.

lowed the student model to recognize mitochondria
by transferring the knowledge from the teacher model
specialized for it. These results on the ssTEM dataset
show that, the proposed method transferred useful
information from the teacher models specialized for
each class to the student model, and achieved im-
proved the accuracy with small model capacity de-
scribed in Section 4.1.2.

4.2.2 Results on COVID-19 Dataset

Table 3 shows the results on the COVID-19 dataset.
U-net trained with our distillation method outper-
formed the standard U-net and U-net trained with
the conventional knowledge distillation by 5.16% and
1.30% in mIoU. Similarly with the experiment in
previous section, U-net trained with our proposed
method outperformed 4 classes U-net(EN-b7) which
is a teacher model by 1.29% in mIoU. In ”consoli-
dations” class, the most difficult class to distinguish,
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Table 3: Comparison our proposed method and baseline on COVID-19 dataset.

IoU(%)

Method Background Lungs other Ground glass Consolidations mIoU(%)

2 classes U-net(EN-b7)

93.14 - - - -
- 33.88 - - -
- - 49.22 - -
- - - 7.40 -

4 classes

U-net 92.41 30.18 41.23 2.44 41.57
U-net(EN-b7) 95.04 34.37 46.45 5.86 45.43
U-net + KD 96.11 37.83 47.72 0.00 45.42
U-net + ours 95.38 37.06 48.13 6.30 46.72

the proposed method is able to inference with higher
accuracy than the respective baselines. This results
show that our proposed method is effective even for
classes that are difficult to inference.

Experiments on two datasets demonstrated that
our proposed class-wise distillation method is more
effective in distilling knowledge for inference than
conventional knowledge distillation methods.

5 CONCLUSIONS

In this paper, we proposed a new class-wise knowl-
edge distillation method for multi-class semantic seg-
mentation. Specifically, knowledge is transferred
from teacher models specialized for each class to
a student model. This enables better knowledge
transmission than conventional knowledge distillation
methods. By using this method, the student model
achieved higher accuracy than the student model
trained by conventional knowledge distillation meth-
ods.

In the future, we would like to make learning more
effective without increasing computational resources.

ACKNOWLEDGEMENTS

This work is supported by SCAT Foundation and
KAKENHI Grant Number 22H04735.

REFERENCES
Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017).

Segnet: A deep convolutional encoder-decoder archi-
tecture for image segmentation. IEEE transactions on
pattern analysis and machine intelligence.

Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., and Sheikh,
Y. (2018). Openpose: realtime multi-person 2d pose

estimation using part affinity fields. arXiv preprint
arXiv:1812.08008.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2017). Deeplab: Semantic image seg-
mentation with deep convolutional nets, atrous convo-
lution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence.

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The cityscapes dataset for semantic urban
scene understanding. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition.

Gerhard, S., Funke, J., Martel, J., Cardona, A., and Fet-
ter, R. (2013). Segmented anisotropic sstem dataset of
neural tissue. figshare.

Han, S., Mao, H., and Dally, W. J. (2015). Deep compres-
sion: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition.

Hinton, G., Vinyals, O., Dean, J., et al. (2015). Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-
excitation networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and
Bengio, Y. (2016). Binarized neural networks. Ad-
vances in neural information processing systems.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on com-
puter vision. Springer.

Liu, Y., Chen, K., Liu, C., Qin, Z., Luo, Z., and Wang, J.
(2019). Structured knowledge distillation for seman-
tic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical

BIOSIGNALS 2023 - 16th International Conference on Bio-inspired Systems and Signal Processing

292



image computing and computer-assisted intervention.
Springer.

Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model
scaling for convolutional neural networks. In Interna-
tional conference on machine learning. PMLR.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems.

Zhang, Y., Wang, C., Wang, X., Zeng, W., and Liu, W.
(2021). Fairmot: On the fairness of detection and
re-identification in multiple object tracking. Interna-
tional Journal of Computer Vision.

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017).
Pyramid scene parsing network. In Proceedings of
the IEEE conference on computer vision and pattern
recognition.

Zhao, J., Zhang, Y., He, X., and Xie, P. (2020). Covid-
ct-dataset: a ct scan dataset about covid-19. arXiv
preprint arXiv:2003.13865.

Class-wise Knowledge Distillation for Lightweight Segmentation Model

293


