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Abstract: To overcome the limitations of prevailing NLP methods, a Hybrid-Architecture Symbolic Parser and Neural
Lexicon system is proposed to detect structural ambiguity by producing as many syntactic representations
as there are interpretations for an utterance. HASPNeL comprises a symbolic AI, feature-unification parser,
a lexicon generated using manual classification and machine learning, and a neural network encoder which
tags each lexical item in a synthetic corpus and estimates likelihoods for each utterance’s interpretation with
respect to the corpus. Language variation is accounted for by lexical adjustments in feature specifications and
minimal parameter settings. Contrary to pure probabilistic system, HASPNeL’s neuro-symbolic architecture
will perform grammaticality judgements of utterances that do not correspond to rankings of probabilistic sys-
tems; have a greater degree of system stability as it is not susceptible to perturbations in the training data;
detect lexical and structural ambiguity by producing all possible grammatical representations regardless of
their presence in the training data; eliminate the effects of diminishing returns, as it does not require massive
amounts of annotated data, unavailable for underrepresented languages; avoid overparameterization and po-
tential overfitting; test current syntactic theory by implementing a Minimalist grammar formalism; and model
human language competence by satisfying conditions of learnability, evolvability, and universality.

1 INTRODUCTION

The human language faculty allows speakers to as-
sociate thoughts and concepts into mental linguistic
representations, which are subsequently externalized
as speech, text or signs. These mental representations
are hierarchical in nature, but because of constraints
of nature, the externalization is linear. Therefore,
speech and text consist only of strings of words as
leaves or terminal nodes of the whole syntactic struc-
ture, and so information about constituents, classes
and categories is literally lost in externalization. An
important consequence of this fundamental property
of language is structural ambiguity, or the fact that a
single utterance or string of words can be interpreted
in more than one way by our mental grammars. For
example, the utterance ‘They can fish’ can be inter-
preted in two different ways: as meaning that they are
able to fish or that they put fish in cans. This sentence
is ambiguous because our internal language system
can assign two different structure representations to
the same string. Ambiguity may be problematic for

efficient communication as it leads to misunderstand-
ings, yet it is pervasive in language use.

To address the linguistic problem of ambiguity,
we propose a Hybrid-Architecture Symbolic Parser
with Neural Lexicon (HASPNeL) system that com-
bines the effectiveness of probabilistic systems with
the accuracy of syntactic representation of symbolic
parsing. By encoding the syntactic rules from natu-
ral language to create a generalizable tagging system,
this interdisciplinary approach represents a paradig-
matic departure from traditional attempts to iden-
tify ambiguity in natural language, such as statisti-
cal methods based on machine learning and applica-
tions following machine-learning-guided rule-based
derivations (Petkevič, 2014). HASPNeL would be
able to not only parse grammatically acceptable novel
strings and represent structural and lexical ambiguity,
but would also be able to identify those strings that
are not grammatically acceptable, effectively approx-
imating the performative effectiveness of the gram-
maticality judgments of native speakers of a given
language—flexible enough to accept novel input, yet
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strict enough to be able to identify the acceptability of
such input, even when this input is novel.

2 ARCHITECTURE

HASPNeL uses a hybrid architecture consisting of
three major components: (1) a probabilistic encoder,
(2) a symbolic decoder, and (3) a lexicon.

2.1 Probabilistic Encoder

This component is implemented using an RNN, or
self-attentive neural network, as two strong alterna-
tives for this stage. Neural parsers can be visual-
ized as composed of two stages: encoder and de-
coder. The encoder takes an input string and assigns
syntactic categories to the words in that string. The
decoder takes the tagged lexical items and builds the
constituent structures of the sentence. This architec-
ture is denoted encoder-decoder (Aggarwal, 2018).
The output vectors should provide information about
the potential categories of the lexical items together
with their probabilities inferred from the learning al-
gorithm. The syntactic categories produced by the en-
coder component can be a vector or set of vectors.
These vectors correspond to the syntactic categories
of the lexical items in the input string. Lexical items
can have more than one syntactic category, though
(e.g., ‘fish’ can be a noun or a verb). The assignment
of category depends on the context where the word is
used. The decoder uses these vectors to incrementally
build up a labeled parse tree (Kitaev and Klein, 2018).

Encoders have been built using fixed-window-size
feed-forward NNs (Durrett and Klein, 2015), but have
been displaced by Recurrent Neural Networks (RNN)
in part due to RNNs’ ability to capture global con-
text in sentences with variable lengths. Nevertheless,
RNNs have one major limitation: the long-term mem-
ory problem (Aggarwal, 2018), i.e., RNNs are not
able memorize data for long time and begin to forget
their previous inputs as the learning time passes. Two
implementations that compensate for the long-term
memory problem of RNNs are the Long-Short-Term
Memory networks (LSTM) (Hochreiter and Schmid-
huber, 1997), and the Gated Recurrent Unit (GRU)
(Cho et al., 2014). (Kitaev and Klein, 2018) propose
the use of a self-attention encoder which makes ex-
plicit the manner in which information is transferred
between different locations in the sentence. They use
this approach to study the relative importance of dif-
ferent kinds of context to the parsing task. The lo-
cations in the sentence attend to each other based on
their positions, but also based on their contents.

2.2 Symbolic Decoder

The decoder will produce the different structural anal-
ysis based on the syntactic categories produced by the
neural encoder. Symbolic systems are characterized
by (i) the use of a set of symbols as knowledge repre-
sentations, (ii) a specific formal code (metalanguage)
to formulate the symbol-handling system, and (iii) au-
tonomy between the syntactic component (which sets
the conditions for structural well-formedness) and the
semantic component (which computes meaning from
well-formed expressions).

The symbol-handling component of our proposed
system encodes the formalisms of Minimalist Gram-
mars (MGs) ((Stabler, 1997), (Stabler, 2011), (Collins
and Stabler, 2016)) as a formalization of Minimalist
syntax ((Chomsky, 1995), (Chomsky, 2001); (Chom-
sky, 2008)). The mathematical rigor makes it possi-
ble to address questions about the generative power
and explanatory adequacy of this formalism for nat-
ural language (Graf, 2021). Moreover, by putting
Minimalism on a mathematical foundation, it can be
linked to existing work on parsing and learnability.
This approach not only strengthens the connection be-
tween theoretical syntax and psycholinguistics, but it
also opens up the gate to large-scale applications in
modern language technology. As Graf points out, if
Minimalist ideas can be shown to be useful for prac-
tical applications, that is mutually beneficial for all
involved fields (Graf, 2021).

Linguistic theories are generative models of the
human language faculty. Broadly speaking, two fac-
tors of generative models pertain to the construction
of parsing models: 1) Binary Merge, the primitive op-
eration at the heart of modern theories, is a bottom-up
operation that constructs larger phrases from smaller
one. However, parsing models generally operate from
left to right, this is termed online, and results in struc-
ture being filled in incrementally as parsing proceeds.
Therefore, it is a research challenge to re-interpret
Merge as predictive parsing. 2) Merge is word-order
free, in other words, core operations of grammar con-
struct dependencies, e.g. agreement, binding, con-
trol or movement chain, between phrases based on
hierarchical structure only. Syntactic objects built by
Merge must be linearized during Externalization. It
is a challenge to reconstruct or reverse this process
during parsing.

Recent work in the Minimalist Program has high-
lighted the role of locally deterministic computations
in the construction of syntactic representation as part
of a shift in the structure of linguistic theories of
narrow syntax from abstract systems of declarative
rules and principles, (Chomsky, 1981), to systems
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where design specifications call for efficient com-
putation within the human language faculty (Fong,
2005). Case agreement is reanalyzed in terms of a
system of probes, e.g., functional heads that target and
agree with goals, e.g., referential and expletive nomi-
nals, within their c-command domain. In this system,
probe-goal agreement can be long-distance and need
not trigger movement.

The proposed system represents a development of
Fong’s implementation of the probe-goal account. He
also sustains that ”efficient assembly, i.e., locally de-
terministic computation, from a generative perspec-
tive with respect to (bottom-up) MERGE does not
guarantee that parsing with probes and goals will
also be similarly efficient. By locally deterministic
computation, we mean that the choice of operation
to apply to properly continue the derivation is clear
and apparent at each step of the computation” (Fong,
2005). Therefore, following Fong’s system, instead
of MERGE and MOVE as the primitive combinatory
operations for the assembly of phrase structure, the
proposed system will also be driven by elementary
tree composition with respect to a range of heads in
the extended verb projection (v*, V, c, and T). Ele-
mentary tree composition is an operation that is a ba-
sic component of Tree-Adjoining Grammars (TAG)
(Joshi and Shabes, 1997). The system will also be
on-line in the sense that once an input element has
fulfilled its function, it is discarded, i.e., no longer ref-
erenced. To minimize search, there is neither looka-
head nor lookback in the sense of being able to exam-
ine or search the derivational history, but Fong’s two
novel devices with well-defined properties: a Move
Box that encodes the residual properties of CHAINs
and theta theory, and a single or current Probe Box
to encode structural Case assignment and to approxi-
mate the notion of (strong) Phase boundaries. In par-
ticular, the restriction to a single Probe Box means
that probes cannot “see” past another probe; thereby
emulating the Phase Impenetrability Condition (PIC).
Limiting the Move Box to operate as a stack will al-
low nesting but not overlapping movement. A con-
sequence of this is that extraction through the edge
of a strong Phase is no longer possible. Examples of
parses will be used to illustrate the empirical prop-
erties of these computational elements. The system
is also incremental in the sense that a partial parse is
available at all stages of processing (Fong, 2005).

In more recent work, e.g. (Fong and Ginsburg,
2019), many dependency relations and phenomena
across different languages (English, Arabic, Japanese
and Persian) have been directly implemented in the
generative framework using a Minimalist Machine.
Our plan is to adapt this machinery for parsing.

2.3 Lexicon

The lexicon is the module that contains the grammati-
cal information about all lexical items in the sentences
to be analyzed by the parser. Following the Chomsky-
Borer hypothesis, MGs situate all language-specific
variation in the lexicon. Hence every MG is just a fi-
nite set of lexical items. Each lexical item takes the
form A :: α, where A is the item’s phonetic exponent
and α its string of features (Graf, 2021).

As ”the heart of the implemented system”, the
lexicon will contain every fully inflected word-form
appearing in a corpus of 2000 manually-tagged sen-
tences that were constructed for validation purposes.
Lexical items are entered as a string of literals, and
features are indicated by means of different data
types. All lexical items are labeled with a syntactic
category; additionally, each category requires a spe-
cific subset of valued features and lexical properties,
which at least contains the syntactic category, sub-
categorization frames and relevant grammatical fea-
tures (such as case, c-selectional and phi-features)
for each lexical item. Since it is necessary to deter-
mine if a certain combination of words is licensed or
grammatical in the language, the lexicon should in-
clude every possible entry for each ambiguous lex-
ical item. (Alers-Valentı́n et al., 2019). The prop-
erty of selection and uninterpretable feature match-
ing will drive the parsing process. In the course of
computation, unintepretable features belonging to an-
alyzed constituents will be eliminated through probe-
goal agreement. A (valid) parse is a phrase structure
that obeys the selectional properties of the individual
lexical items, covers the entire input, and has all un-
interpretable features properly valued (Fong, 2005).

3 ENCODING AND ESTIMATING
AMBIGUITY

Lexically ambiguous items will have as many lexical
entries as meanings and/or feature bundles are identi-
fied and tagged for that item in the corpus. In those
cases, the RNN encoder will produce as many out-
puts as there are entries for said item. For example,
let us say that for the word ”can” there should be (at
least) three outputs: (MD 0.7 can), (VB 0.1 can), and
(NN 0.2 can), where the number n,0 ≤ n ≤ 1, corre-
sponds to the likelihood of each category. The like-
lihood of a category is calculated within the corpus.
The sum of the likelihood of each category should be
exactly 1. On the other hand, if the item were ”cans”,
the output would have at least options like (cans 0.2
VBZ) and (cans 0.8 NNS). In the case of the lexi-
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cal verb ”cans”, it has 3rd person singular phi- (gen-
der/person/number) features and non-preterit tense
feature. So, an utterance like ”I can fish” is ambigu-
ous, yet ”He cans fish” is not. For this last utterance,
the symbolic component should be able to discard the
NNS category, in spite of having a higher likelihood.

4 PROBLEMS WITH CURRENT
PARSING TRENDS

Probabilistic parsers produce the most likely parse for
a given word string, regardless of the acceptability or
ambiguity of the string. They use a statistical model
of the syntactic structure of a language, e. g., proba-
bilistic context free grammar (PCFG). Although prob-
abilistic parsers are widely used in NLP applications,
they always output a structure even if the word se-
quence is ungrammatical or unacceptable for native
speakers. They also require a manually annotated
corpus and a statistical learning algorithm. Although
these parsers are particularly good in identifying syn-
tactic categories and have a desirable cost-benefit re-
lation between accuracy and speed, they have been
found rather ineffective in the representation of sen-
tences containing long-distance relations among con-
stituents (Alers-Valentı́n et al., 2019).

(Bernardy and Chatzikyriakidis, 2019) point out
that symbolic systems can be very precise, yet they
break easily in the presence of new data. Symbolic
systems in NLP tasks have been criticized on the fact
of their “brittleness”, i.e., that these systems tend to
easily break down once they are moved to open do-
mains. Neural Network (NN) models are currently
the most used in all sorts of NLP applications since
these systems, at first sight, do not seem to suffer
from the brittleness problem that characterize sym-
bolic approaches. In spite of their apparent suc-
cess, (Bernardy and Chatzikyriakidis, 2019) recog-
nize that recent studies show that NLP applications
of NN, such as state-of-the-art natural language infer-
ence (NLI) systems, are rather brittle in the sense that
they “fail to generalize outside individual datasets and
are, furthermore, unable to capture certain NLI pat-
terns at all” and therefore argue that, with respect to
symbolic approaches, “the NLP community has been
probably too hasty in dismissing them.”

There is recent literature regarding hybrid parsing
systems ((Gaddy et al., 2018); (Stanojević and Sta-
bler, 2018); (Torr et al., 2019)), like the A* neural
parser developed by a research team in the Univer-
sity of Edinburgh. This particular system is an im-
plementation of a minimalist grammar that uses the
A* search algorithm. This system produces accu-

rate syntactic representation in many cases, including
complex structures as in across-the-board movement;
however, the results are not always consistent, and the
system does not account for any kind of ambiguity.

4.1 Grammaticality Judgements

In our hybrid approach, a neural lexicon handles
the multiple syntactic categories of words and lexi-
cal items, while the rule-based component attempts
to match those syntactic categories with well-formed
phrases according to a set of grammar rules. If the
rule-based component cannot fit the syntactic cat-
egories into a well-formed structure, the string is
deemed non grammatical. Machine learning-based
parsers are trained with sentences from a corpus. This
approach infers rules from a limited set of examples,
however large the set may be. To logically infer a
rule describing every member of a set, the system
must have information about every member of that
set. According to the No Free Lunch Theorem for ma-
chine learning, every classification algorithm, when
averaged over all possible data-generating distribu-
tions, has the same error rate when classifying pre-
viously unobserved points (Wolpert and Macready,
1997). “In some sense, no machine learning algo-
rithm is universally any better than any other” (Good-
fellow et al., 2016). Moreover, most ML-based
parsers are trained with grammatical sentences. Even
if a ML-based parser were trained including non-
grammatical sentences, it is biased by the proportion
of non-grammatical utterances in the corpus. Dur-
ing testing, both false positive and false negative non-
grammatical results get buried together with other
types of parsing errors.

Probabilistic systems do not appear to show any
correlation between grammaticality and the rankings
in a list of examples (Fong, 2022). In experiments
performed by (Pereira, 2002) and (Fong, 2022), gram-
matical examples are not ranked highly enough to
make an appearance within the 10-best list. In fact,
the grammatical example ”colorless green ideas sleep
furiously” only ranks 23rd out of the list of the 120
possible permutations of those five words. The re-
sults show a clear lack of discrimination between
the grammatical and the ungrammatical, and Chom-
sky’s observation still holds: “there is no signifi-
cant correlation between order of approximation and
grammaticalness. If we order the strings of a given
length in terms of order of approximation to English,
we shall find both grammatical and ungrammatical
strings scattered throughout the list, from top to bot-
tom. Hence the notion of statistical approximation ap-
pears to be irrelevant to grammar” (Chomsky, 1956).
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4.2 System Stability

The experiment by (Fong, 2022) also shows that sta-
tistical systems are not as stable as could be pre-
sumed. For example, the grammatical sentence color-
less green ideas sleep furiously ranks higher than the
ungrammatical *furiously sleep ideas green colorless
when 34,000-40,000 treebank sentences are used in
training. However, when trained with about 15,000-
32,000 sentences, not only does the ungrammatical
sentence rank higher, but it achieves a top-10 score
for this interval, a score not achieved by the gram-
matical sentence at any stage of the experiment. This
calls into question the stability of the statistical sys-
tem (Fong, 2022). Further experimentation confirms
the observed instability.

The probabilistic context free grammar (CFG)
system is also surprisingly sensitive to perturbation in
the training data. Another experiment by (Fong and
Berwick, 2008) confirms this problem, despite the
many thousands of treebank sentences available for
training. Prepositional phrase (PP) attachment am-
biguity is an important task for any syntactic parser,
with either high attachment to the VP or low attach-
ment to the NP, as in [Herman [VP [VP mixed [NP the
milk] ] [PP with the water] ] ] (PP high-attachment)
versus [Herman [VP drink [NP the milk [PP with the
water] ] ] ] (PP low-attachment).

For this sentence, the system produced a low at-
tachment representation. A single training example
was enough to account for the low attachment. To
confirm this, the relevant PP was deleted from the
training example and the parser was retrained, result-
ing in an output with high attachment in both sen-
tences (Fong and Berwick, 2008). The reason for
this extreme sensitivity to perturbation in the train-
ing data is that there are millions of parameters that
need to be estimated, and this particular parser makes
use of nearly every statistical event (recorded during
training), even if those events occur only once (Fong,
2022). Since symbolic systems do not make use of
any statistical event, they cannot experience any de-
gree of perturbation.

4.3 Ambiguity Detection

In contrast to probabilistic parsers, symbolic pars-
ing systems perform very well in handling syntactic
ambiguity, as they do not depend on training data
(Alers-Valentı́n et al., 2019). It is enough to spec-
ify in the lexicon the categorial selection of lexical
items like drink (one NP internal argument) and mix
(one NP and one PP internal arguments). In this case,
the symbolic system will always produce a PP high-

attachment in clauses whose predicate requires a PP
internal argument (e.g. with mix as main verb), but
both PP high- and low-attachment in clauses whose
predicate does not require it (as with the verb drink).

4.4 Data Requirements

To produce structural representations, symbolic sys-
tems require a (manually) annotated lexicon contain-
ing an array of lexical items with the grammatical fea-
tures and properties used by the parser. The size of the
lexicon is determined by the number of lexical entries
required to characterize the target language, which is
finite by nature, probably to a maximum in the order
of 105 entries. On the other hand, current probabilis-
tic parsing systems require massive amounts of good
quality data. Since machine-generated data is low
quality, it leads to poor performance, while good qual-
ity data, which is manually annotated, makes it ex-
tremely expensive. In machine learning approaches,
a fraction of the instances is used to build and tune
the training model. The remaining instances, referred
to as the held-out instances, are used for testing. The
accuracy of predicting the labels of the held-out in-
stances is then reported as the accuracy of the model.
The fraction used to build the model is further divided
in two sets: training and validation. Strictly speaking,
the validation data is also a part of the training data,
because it influences the final model. For very large
labeled data sets, only a modest number of examples
to estimate accuracy is needed. There are two options
for training the model. One is to hold-out the valida-
tion set. The other is to use cross-validation, which
can closely estimate the true accuracy under certain
circumstances. However, cross-validation can result
computationally expensive (Aggarwal, 2018).

Besides, huge amounts of data for general-
purpose NLP tasks, albeit low quality, is available for
only a relatively small number of languages. For ex-
ample, GPT-2 was trained on the WebText corpus,
containing about 40 GB of text data. In the case
of English, 40 GB is not particularly burdensome,
but in the case of under-represented languages, large
amounts of training data may never become available
(Fong, 2022). Diminishing returns are another (ex-
pected) negative factor: “to halve the error rate, you
can expect to need more than 500 times the com-
putational resources” (Thomson et al., 2021). The
enormous resources required, both in terms of en-
ergy and exposure to large amount of data, means that
these probabilistic systems, independent of their po-
tential achievements or promise of their biologically-
inspired architecture, cannot possibly meet the aus-
tere learning conditions met by nature (Fong, 2022).
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4.5 Model Size and Parameters

There exists a serious number-of-degrees-of-freedom
problem (Fong, 2022) with (probabilistic) Context-
free grammars (CFGs) -the most commonly imple-
mented parsing formalism- as they are too uncon-
strained; in principle, all combinations of phrases,
both exo- and endo-centric, are possible in this frame-
work. From the point of view of empirical coverage,
CFGs are too broad. At the same time, CFGs are a
poor choice of formalism for encoding many types of
structurally-determined relations, e.g., displacement,
control, long-distance agreement or pronominal bind-
ing. Bikel observes that “...it may come as a surprise
that the [parser] needs to access more than 219 million
probabilities during the course of parsing the 1,917
sentences of Section 00 [of the Penn Treebank: SF]”
(Bikel, 2004).

Recently, general-purpose deep neural networks
have been adopted that contain vastly more parame-
ters than the statistical CFG models. For example, the
well-known GPT-2 neural net model has 1.5B param-
eters, and the next-generation GPT-3 model has 175B
parameters (Brown et al., 2020). However, it is not
clear whether these systems do anything more with
the upscaled parameter size other than simply mem-
orize more. A substantial downside of these scaled-
up systems is in terms of the computational resources
required to perform the training (Fong, 2022). Large
model sizes (more than 100 million parameters) make
it computationally expensive to train separate models
for each language (Kitaev et al., 2018). In fact, GPT-
3 is reputed to have cost around 4.6 million dollars to
train. This has resulted in a curious admission in the
case of GPT-3 (by the authors): “unfortunately, a bug
resulted in only partial removal of all detected over-
laps from the training data. Due to the cost of train-
ing, it wasn’t feasible to retrain the model” (Brown
et al., 2020).

4.6 Explanatory Adequacy

Different from current probabilistic models, HASP-
NeL aims to model a generative grammar, i.e., a
theory that seeks to explain the properties of the I-
language and the system of externalization possessed
by the language user. At a deeper level, the theory of
the shared language faculty, Universal Grammar (UG)
in modern terms, is concerned with the innate fac-
tors that make language acquisition possible — fac-
tors that distinguish humans from all other organisms.
One achieves a genuine explanation of some linguistic
phenomenon only if it keeps to mechanisms that sat-
isfy the joint conditions of learnability, evolvability,

and universality, which appear to be at odds (Chom-
sky, 2021).

Models based on information-theoretic and
machine-learning ideas have been successful in a
variety of language processing tasks in which what is
sought is a decision among a finite set of alternatives,
or a ranking of alternatives (Pereira, 2002). In
each case, the task can be formalized as learning a
mapping from spoken or written material to a choice
or ranking among alternatives. However, a potential
weakness of such task-directed learning procedures
is that they ignore regularities that are not relevant
to the task, even though those regularities may be
highly informative about other questions. This is in
sharp contrast with human learners who are general
learners and as such sensitive to regularities observed
beyond those relevant to a specific task. “Further-
more, one may reasonably argue that a task-oriented
learner does not really ‘understand’ language, since
it can accurately decide just one question, while
our intuitions about understanding suggest that a
competent language user can accurately decide many
questions pertaining to any discourse it processes.
For instance, a competent language user should be
able to reliably answer ‘who did what to whom’
questions pertaining to each clause in the discourse”
(Pereira, 2002). We do not claim that HASPNeL will
‘understand’ language, yet it may resemble Searle’s
(1980) Chinese room, able to efficiently perform
operations on symbolic representations to produce
correct descriptions without having to choose or rank
among alternatives.

4.7 Cognitive Plausibility

CFGs also pose an acquisition problem that contrasts
with the human experience. Unlike the case of the
cognitively-unrealistic treebank containing already-
parsed sentences, hierarchical structure is not ex-
plicitly represented in primary linguistic data (Fong,
2022). General-purpose systems (GPS) are attractive
to the engineering community; advantages include
flexibility across problem sets and (non-language) do-
mains. There is also an intuitive appeal in assuming
setup simplicity in the language domain as if “nothing
necessarily particular to language is hardcoded ahead
of time” (Fong, 2022). One can regard these GPS
as a continuation of the behaviorist conception, as in
Bloomfield’s description of language as “a matter of
training and habit” (Chomsky, 2021). “However, with
so many parameters, the chief downsides are that a
lot of training data is required, much more than what
seems to be cognitively plausible, and that there are
burdensome requirements in terms of computational
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resources (for training). The term overparameteriza-
tion is used when a model has many more param-
eters than data points, like in GPT-2’s case, poten-
tially leading to overfitting, i.e., memorization of the
training data, rather than true generalization” (Fong,
2022).

“While typically task-agnostic in architecture, this
method still requires task-specific fine-tuning datasets
of thousands or tens of thousands of examples. By
contrast, humans can generally perform a new lan-
guage task from only a few examples [...] —some-
thing which current NLP systems still largely struggle
to do” (Brown et al., 2020).

We agree with Pereira’s conclusion that “although
statistical learning theory and its computational ex-
tensions can help us ask better questions and rule
out seductive non sequiturs, their quantitative re-
sults are still too coarse to narrow significantly the
field of possible acquisition mechanisms. However,
some of the most successful recent advances in ma-
chine learning arose from theoretical analysis (Cortes
& Vapnik, 1995; Freund & Schapire, 1997), and
theory is also helping to sharpen our understanding
of the power and limitations of informally-designed
learning algorithms” (Pereira, 2002). On the other
hand, information-theoretic and computational ideas
are also playing an increasing role in the scientific un-
derstanding of language. We envision our proposed
hybrid system as a step towards bringing together the
best of these seemingly irreconcilable perspectives of
formal linguistics and information theory.

5 EVALUATION AND
ASSESSMENT

Some evaluation methods commonly used among the
NLP community are not suitable for HASPNeL. That
does not mean that the system cannot be evaluated,
but rather that evaluation must be grounded in linguis-
tic principles and formal computational methods.

Since we claim that the HASPNeL system over-
comes some of the disadvantages of statistical parsers,
it would seem reasonable at first to attempt to evalu-
ate our system’s output against that of other statisti-
cal systems like the Stanford Parser. However, there
are two reasons why this attempt would be futile. In
the first place, it is not possible to compare the repre-
sentations produced by a symbolic system with those
of a probabilistic one, since, by design, parses pro-
duced by symbolic systems have to be grammatical,
yet parses by probabilistic systems do not have any
guarantee or presumption of grammaticality. Sym-
bolic parsers as HASPNeL only produce trees that

can be generated by the grammar procedures and re-
strictions (external and internal Merge, unification,
locality constraints) that is modeled by the system,
On the other hand, probabilistic systems always parse
any string of words, regardless of its grammaticality.
The parser documentation of the (Group, 2022) states
that ”this parser is in the space of modern statistical
parsers whose goal is to give the most likely sentence
analysis to a list of words. It does not attempt to de-
termine grammaticality, though it will normally pre-
fer a ”grammatical” parse for a sentence if one ex-
ists.” In answering why a parse tree assigned to a sen-
tence may be wrong, they give as a possible expla-
nation that “it may be because the parser made a mis-
take. While our goal is to improve the parser when we
can, we can’t fix individual examples. The parser is
just choosing the highest probability analysis accord-
ing to its grammar.” Evaluating the grammaticality of
HASPNeL’s performance against a parser like Stan-
ford’s will be advantageous to our assessment, but in
the end it would not say much about our system.

Another problem with comparing HASPNeL
parsing trees against those of another statistical sys-
tem is that there is no match between the structural de-
scriptions produced by the two different systems. At
the core of the HASPNeL system there is a minimal-
ist grammar, following contemporary linguistic the-
ory. Among many other things, minimalist trees are
strictly binary and endocentric (every phrase or pro-
jection has to have a head of the same category), while
statistical systems still use PCFG, with unrestricted
rules that allow for multiple branching nodes and exo-
centric representations. Also, the differences in label-
ing conventions are beyond comparison. Evaluation
methods sometimes applied to probabilistic parsers,
such as measuring the accuracy of a structural de-
scription by counting and comparing nodes and labels
in trees, are not linguistically plausible. Structural
representations are grammar-dependent, so they do
not have an absolute or “fixed” number of nodes and
branches. Likewise, trees may have the same num-
ber of the same labels although they were describing
different structures. These kinds of comparisons may
be somewhat useful between systems using the same
grammar, but otherwise they do not produce a valid
assessment. Unlike HASPNeL, since typically sta-
tistical parsers only choose “the highest probability
analysis according to its grammar”, they are not par-
ticularly well suited to detect ambiguity, either lexical
or structural.

From the arguments outlined above, we conclude
that the best evaluation of the results obtained from a
symbolic, knowledge-based system can only be done
by experts who, in this case, have to be human. A
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descriptive adequacy assessment methodology simi-
lar to that presented by (Gomez-Marco, 2015) func-
tions as a suitable benchmark to assess the correct-
ness of the HASPNeL parsing model. Expert evalu-
ators will be given a number of sentences with their
corresponding structural representations produced by
the system. Each evaluator assesses syntactic crite-
ria per sentence, such as, (1) the clause’s immediate
constituents, (2) each constituent’s internal structure,
(3) argument structure, (4) identification of categories
and projections, and (5) detection of structural ambi-
guities by representations that succeed in criteria 1-4.
Assessment of each criterion can be Boolean or using
a scale. Evaluators may write comments about their
judgements and observations, which shall be used to
fix bugs in the system’s theory modeling.

Since we are working with a synthetic corpus of
a manageable size, at a later stage of the project, we
may be able to measure by hand the cases of lexical
ambiguity in the annotated synthetic corpus and cal-
culate the likelihood of structural ambiguity in sen-
tences with those lexical units that are ambiguous
with respect to the corpus. To assess the system’s am-
biguity estimation, these measurements may be com-
pared with both the results of the system by detect-
ing possible ambiguity and the likelihood estimates
of each interpretation in those cases.

6 CONCLUSIONS

Although machine learning systems have the advan-
tage of a relatively fast and easier training, they fail
to acquire the capacity to detect structural ambigu-
ity that gives rise to semantic ambiguity. Symbolic
systems, on the other hand, do account for structural
ambiguities and are suitable for the construction of a
knowledge base as a model of human language cog-
nition. The system we propose exploits the advan-
tages of both strategies, as current literature suggests
that NLP implementations are improved by combin-
ing resources from both probabilistic and symbolic
AI to perform the specific tasks to which they are
best. Syntactic formalisms of minimalist grammars
and tree-adjoining grammars will be implemented in
the system, which can be used as a computational
model of language knowledge and acquisition, as well
as to test current syntactic theory. This system may
also serve as foundation to applications in education,
text editing, and the development of other human lan-
guage technologies, particularly for underrepresented
languages which cannot benefit from big data ap-
proaches.
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editor, Logical Aspects of Computational Linguistics,
pages 68–95, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Stabler, E. (2011). Computational perspectives on mini-
malism. In Boeckx, C., editor, Oxford Handbook of
Linguistic Minimalism, pages 617–643. Oxford Uni-
versity Press.
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