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Abstract: Using Machine Learning algorithms to enforce safety in construction sites has attracted a lot of interest in
recent years. Being able to understand if a worker is wearing personal protective equipment, if he has fallen in
the ground, or if he is too close to a moving vehicles or a dangerous tool, could be useful to prevent accidents
and to take immediate rescue actions. While these problems can be tackled with machine learning algorithms,
a large amount of labeled data, difficult and expensive to obtain are required. Motivated by these observations,
we propose a pipeline to produce synthetic data in a construction site to mitigate real data scarcity. We present
a benchmark to test the usefulness of the generated data, focusing on three different tasks: safety compliance
through object detection, fall detection through pose estimation and distance regression from monocular view.
Experiments show that the use of synthetic data helps to reduce the amount of needed real data and allow to
achieve good performances.

1 INTRODUCTION

Construction sites are one of the most dangerous
place where to work1 and the reduction of fatal acci-
dents is crucial in this context. In recent years, due to
the availability of low cost cameras, high bandwidth
wireless connections, as well as hardware and soft-
ware platforms to exploit computer vision and ma-
chine learning, methods to accomplish this goal have
gained attention. Monitoring the compliance to safety
measures and automatically triggering alarms are two
of the main areas where computer vision algorithms
can help reduce fatal accidents.

The main downside of approaches based on ma-
chine learning is “data hungriness”: to solve complex
problems, algorithms need a large amount of labeled
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data from which to learn. More importantly, the re-
quired data tends to be domain-specific and hence a
new collection and labeling effort may be required
whenever a new task is considered or a new system
is installed. Acquiring and labeling a dataset is a
costly and time-consuming process and in some envi-
ronments, such as construction sites, it faces problems
which are not always surmountable, such as privacy
concerns and the inability to capture a good amount
of rare events such as accidents.

A consolidated way to get around the lack of data
is to exploit realistic but synthetic data. Such data can
be generated using a 3D simulator which can auto-
matically label different properties of the data, such
as the presence of objects and people in the scene,
thus leading to consistent savings in terms of time.
In this paper, we investigate a method for generating
synthetic data automatically labeled to address sev-
eral safety monitoring tasks in a construction site. The
proposed approach aims to generate synthetic data us-
ing the Grand Theft Auto V video game rendering en-
gine. We build on the work of (Di Benedetto et al.,
2019) who proposed to generate synthetic data to de-
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tect PPEs (Personal Protective Equipment) used by
workers in a construction site using the same video
game rendering engine. More specifically we extend
this approach from different viewpoints: we generate
data both from first-person perspective, which corre-
sponds to cameras placed on the workers’ helmets,
and from two third-person views, corresponding to
cameras mounted on the vehicles working on the con-
struction site and cameras placed at the top of the
four ends of the construction site. We also provide
a mechanism to randomize the generation of the sce-
narios subjected to some constraints: the construction
sites are built at different positions on the game map
and they vary both in the arrangement of the prop-
erty (i.e. quantity and type) and of the workers (i.e.
position, clothing, and physical attributes). Our tool
allows to generate automatic annotations and can be
used to train algorithms to tackle different tasks. The
tool was developed as a plugin for the Grand Theft
Auto V2 game engine. This tool is able to generate
the synthetic dataset automatically.

To compare the performance of the models trained
with the synthetic images with respect to the ones
trained on real data, a set of real data has also been ac-
quired and manually labeled. We studied the robust-
ness of synthetic data for construction side domain
in a range of applications related to safety monitor-
ing. In particular we focused on the following tasks:
safety compliance through object detection, fall de-
tection through pose estimation and distance regres-
sion from monocular view. The experiments show
that the proposed paradigm is effective in filling the
lack of real labeled data to tackle the considered tasks.
Specifically, results show a strong contribution of syn-
thetic data to improve the performances of the algo-
rithms. To summarize, the contributions of the paper
are the following:

1. A tool capable of generating large amounts of syn-
thetic labelled data related to construction sites in
a short time through randomly generated scenar-
ios;

2. A benchmark that describes and shows that the
use of the synthetic data can be useful to improve
the performance of different algorithms;

3. A tool able to detect the use of PPE by work-
ers, to evaluate distances within a construction site
(e.g., distance between a worker and a working
vehicle), and to recognize a worker on the ground
(e.g., due to an accident).

2https://www.rockstargames.com/gta-v

2 RELATED WORKS

Our work focuses on machine learning algorithms
to monitor safety compliance in a construction site
through the use of synthetic data for training purpose.
Both safety monitoring and synthetic data generation
have been investigated in recent years, and several
works have tackled these tasks. In the following para-
graphs, we present some of the works most relevant
to ours.

Safety Monitoring. The use of machine learning
algorithms for safety monitoring is becoming in-
creasingly popular. Many existing computer vision
tasks can be exploited to reduce accidents and in-
crease safety in workplaces (Sandru et al., 2021;
Wu et al., 2019). (Kim et al., 2021) uses a
YOLOv4 ((Bochkovskiy et al., 2020)) object detec-
tor to recognize workers and equipment from aerial
images, in order to undestrand dangerous situations
within a work site. (Taufeeque et al., 2021; Juraev
et al., 2022) use the OpenPifPaf (Kreiss et al., 2021;
Kreiss et al., 2019) algorithm to capture situations of
domestic falls, managing to calculate the pose of the
subjects and to assign a “Fall” or “No-Fall” label from
the pose. (Jayaswal and Dixit, 2022) monitor distance
between people in order to mantain social distancing
in real time during the period of the Covid-19 pan-
demic.

Synthetic Data Generation. Thanks to the evolu-
tion of rendering engines and the greater availability
of GPUs, the use of synthetic data in computer vision
is a de-facto standard to obtain data for tasks which
are hard to label. The synthetic data can be gener-
ated using 3D graphics tools (i.e. Blender, Maya, etc),
or can be generated through the use of customizable
video game engines (i.e. GTA-V, Unreal, etc). (Quat-
trocchi et al., 2022) used Blender to generate syn-
thetic data to automatically and simultaneously ob-
tain synthetic frames paired with ground truth seg-
mentation masks to use for the Panoptic Segmenta-
tion task in an industrial domain. (Leonardi et al.,
2022) also used synthetic data in an industrial do-
main, but focused on the Human Object Interaction
task, where the goal was to simulate hand-object in-
teractions. (Di Benedetto et al., 2019) used the ren-
dering engine of Grand Theft Auto V to generate data
in the scenario of a construction site in order to train
an object detector capable of detecting the presence
or absence of PPE. (Savva et al., 2019; Szot et al.,
2021) simulate agents which navigate within 3D envi-
ronments and perform many different tasks. The work
ofgi (Sankaranarayanan et al., 2018) tackles the prob-
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lem of the shift between real domain and synthetic
domains, proposing an approach based on Generative
Adversarial Networks (GANs). (Pasqualino et al.,
2021) considers the problem of unsupervised domain
adaptation for object detection in cultural sites be-
tween real images of the cultural site and synthetic
images. (Dosovitskiy et al., 2017) introduced an
open-source driving simulator for autonomous driv-
ing. The simulator runs on Unreal Engine 4 (UE4)
and allows to have full control of different parameters,
such as the positioning of vehicles and pedestrians, as
well as changes in weather conditions. (Fabbri et al.,
2021; Hu et al., 2019; Hu et al., 2021; Krähenbühl,
2018; Richter et al., 2017) also use a video game to
generate synthetic data, but adopt a slightly different
approach as compared to the proposed method and
those presented previously. These works extract g-
buffers from the GPU in order to extract intermediate
representations from the rendering pipeline. In this
way, they are able to automatically extract informa-
tion such as depth maps, segmentation masks, optical
flows. This approach was not used in our work due
to the need to modify and generate custom entities,
as well as the cameras. Also, the g-buffers extrac-
tion approach would not have allowed the extraction
of worker keypoints.

3 DATA GENERATION

The video game Grand Theft Auto V (GTAV) is a
popular video game based on Rockstar Advanced
Game Engine (RAGE). It is set in a real world and
thus it contains thousands of assets which are suit-
able in different domains. A third party developer
distributed the RAGE Plugin Hook (RPH)3 compo-
nent that allows to hook pieces of custom source code,
called plugins. Such plugins allow to manipulate the
running game instance and perform actions such as
the spawn of polygonal models (characters, vehicles,
buildings, objects), as well as the ability to assign
a behavior to each model, in the form of action se-
quences defined through the script. We relied on this
component to create a plugin to extract and automati-
cally annotate frames.

The plugin is composed of three main modules:

Location Collector. We generate data in different lo-
cations of the game map. The location collector
takes care of collecting, within the game map, the
positions in which the scenarios to be acquired
will be generated.

3https://ragepluginhook.net/

Figure 1: Plugin workflow. The plugin executes, in order,
the processes of reading the locations, generating the sce-
nario and acquiring the scenario. The scenario generation
process includes several stages, such as the teleportation to
the current location, the generation of the scenario perime-
ter, and the generation of workers and work items.

Figure 2: Synthetic construction site.

Scenario Creator. This module deals with the gener-
ation of random scenarios. The construction site,
workers, vehicles, and objects are then generated
for each location collected by the Location Col-
lector.

Auto Labeling. This module takes care of the data
acquisition process: for each construction site,
images are collected from all points of view de-
fined in the script, both from the first person and
third person points of view. The module is also
responsible for automatic annotation of the gener-
ated images.
The execution of the plugin follows the flow de-

picted in Figure 1. In Figure 2 is reported an example
of a synthetic image generated by the plugin.

The first step is to read the first available position
of the map available from the location collector mod-
ule. Once the location is read, the playable charac-
ter is teleported to the corresponding location. Once
the playable character has been teleported, the con-
struction site is generated randomly, positioning the
cones that delimit the construction site, the vehicle,
the objects (e.g., pneumatic hammer, concrete mixer,
etc), the workers (with random body attributes and
random clothing), and the cameras. Synthetic data
are generated from different kinds of cameras: four
third-person cameras, one for each corner of the con-
struction site; four vehicle-centric cameras for each
vehicle, one for each corner of the generated vehicle;
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first-person cameras positioned at eye level for each
of the generated workers. Once the construction site
and the actors have been generated, the active camera
is iterated over all deployed camerad and all the an-
notations corresponding to the entities present inside
the frames are saved. The stored data are realted to
the 2D and 3D bounding boxes, the distance between
the entity and the camera, the body joints of the work-
ers. Once the iteration of all the generated cameras is
finished, the entities are deleted and the playable char-
acter is moved to the next position to be visited on the
map until termination of all positions in the list.

As described above, the generated cameras can
be grouped into three categories: third-person cam-
eras (TPV), first-person cameras (FPV), cameras po-
sitioned on vehicles.
The third-person cameras mimic the cameras that are
usually placed on the perimeter of the construction
site to have a top view of the area (usally used for
surveillance purpose). These cameras are positioned
at an height of 6 meters. Third-person cameras simu-
late wide cameras whit a Field of View (FoV) of 120
degrees. The images are acquired at a resolution of
1280x720 pixels.
The first-person cameras represent the cameras that in
the real settings can be worn by the workers (e.g., on
the helmets). A first-person camera is simulated for
each worker generated within the construction site.
The workers “on the ground” were not equipped with
a camera in the first person, since their being lying
on the ground led to acquire frames with artifacts due
to interpenetration with the ground. The first-person
cameras, simulating the cameras mounted on the hel-
mets, have a FoV of 64.67 degrees, in order to sim-
ulate a HoloLens2 camera. The images captured by
the cameras from the first person point of view are ac-
quired at a resolution of 1280x720 pixels.
The cameras positioned on the vehicles are four per
vehicle and they are positioned at an elevated position
and rotated in order to have a view of everything that
surrounds the vehicle. The cameras were positioned
as if they were physically present at the 4 corners of
the vehicle to understand if a worker is too close to
a moving vehicle. The cameras positioned on the ve-
hicles have a FoV of 120 degrees. The images are
captured by the cameras positioned on the vehicles at
a resolution of 1280x720 pixels.

While the plugin is running, different views of the
scene are displayed, one for each acquisition point.
These views are obtained by activating, deactivating
and moving the created virtual cameras. For each
generated view two files are created: a screen cap-
ture saved in JPG format and a text file containing the
annotations for each entity present within the view.

The 2D and 3D bounding boxes are labeled with
the following 12 classes: head with work helmet,
worker, torso with high visibility vest, pneumatic
hammer, vehicle, head without work helmet, torso
without high visibility vest, cone, worker on the
ground, shovel, wheelbarrow, concrete mixer.

For each labeled entity, distance from the camera
was measured as the length of the segment connecting
the camera position to the center of the 3D bounding
box of the entity.

The worker joints that have been labeled are the
following: nose, neck, left clavicle, right clavicle,
left thigh, right thigh, left knee, right knee,
left ankle, right ankle, left wrist, right wrist,
left elbow, right elbow.

4 BENCHMARK

We tested the quality of the synthetic dataset gener-
ated by the proposed plugin running benchmarks on
three tasks: safety compliance through object detec-
tion, fall detection through pose estimation and dis-
tance regression from monocular view. Experiments
have been performed on both synthetic dataset and an-
notated real data. These last have been used for fine-
tuning and for the evaluation of the algorithms.

4.1 Dataset

The dataset was collected by generating 200 build-
ing sites within the game map. In total, 76,580
frames were generated, with 44,580 in FPV (work-
ers), 16,000 frames in FPV (vehicles) and 16,000
frames in TPV (construction site corners). The
dataset contains 2,438,566 labels distributed as fol-
lows: 333,856 workers, 168,686 heads with helmet,
165,867 busts without high visibility vest, 20,454
pneumatic hammers, 35,850 vehicles, 165,170 heads
without helmet, 167,989 busts without high visibil-
ity vest, 1,085,729 cones, 135,084 ground work-
ers, 78,584 shovels, 39,999 wheelbarrows and 41,298
concrete mixers. Some of these images were dis-
carded for occlusions or other glitches, bringing the fi-
nal count to 51,081 synthetic images splitted in train-
ing (30,019), and validation (21,062).

The final dataset contains also a grand total of
9,698 real images splitted in training set (9,212) and
validation (486).
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Table 1: Object Detection mAP.

Real Synthetic + Real
10% 0.819 0.853
25% 0.852 0.875
50% 0.875 0.889
75% 0.885 0.900
100% 0.888 0.905

Figure 3: Object Detection mAP.

4.2 Safety Compliance Through Object
Detection

In order to understand if all the workers in a con-
struction site wear Personal Protective Equipment
(PPE), we performed experiments using the YOLO
object detector (Bochkovskiy et al., 2020) and post-
processing the inferred bounding boxes to distinguish
whether or not a worker is wearing a helmet and a
high visibility jacket. As a first step, we analyze if
and how the synthetic data can improve the quality of
object detection, then we study the results obtained on
the safety task.

4.2.1 Object Detection

In order to analyze the use of synthetic data in the ob-
ject detection task, we trained and tested the object
detection algorithm in two different settings. In the
first setting, the model is trained using only the real
data. In the second one, we train the model using syn-
thetic data and then the real data is used to fine-tune
it. In both settings, we vary the amount of real data
used for training (10%, 25%, 50%, 75%, 100%) in or-
der to assess the amount of real data needed to have a
working model.

Table 1 reports the results in terms of mAP metric.
Figure 3 depicts the graph showing the trend of the
mAP for varying quantities of real data used to train
the model.

As can be seen, the use of synthetic data helps to
increase the performance of the model. We can ob-
serve that when we use all the synthetic data and fine-

Table 2: No Helmet mAP.

Real Syn + Real
10% 0.723 0.759
25% 0.757 0.799
50% 0.800 0.798
75% 0.796 0.807

100% 0.799 0.819

Table 3: No Vest mAP.

Real Syn + Real
10% 0.880 0.889
25% 0.892 0.899
50% 0.913 0.904
75% 0.906 0.904

100% 0.918 0.915

tune using 50% of the real data, the detector performs
at the same manner than when using 100% of only
real data (88.9% vs 88.8%).

4.2.2 No Vest / no Helmet

The settings of the experiments are the same of object
detection. Tables 2 and 3 show the detection results
of the absence of the helmet and absence of the high
visibility vest, whereas Figure 4 shows a qualitative
example using a real image.

Results show that helmets detection takes advan-
tage from the synthetic data. With 25% of real data
for fine-tuning, the detector reaches an accuracy value
close to 100% of only real data.

Vest detection, on the other hand, benefits less
from synthetic data, with best results obtained with
only real data.

4.3 Fall Detection Through Pose
Estimation

The estimated positions of the human joints in con-
junction with the bounding box around the human can
be used to classify workers in two classes: “no Fall”
and “Fall”. The choice to use both the bounding boxes
and the human body joints was driven by the fact that
human pose estimation algorithms could find only a
subset of joints at inference time, thus the exploita-
tion of bounding box can improve the final quality.

We used OpenPifPaf (Kreiss et al., 2021) to in-
fer human pose and a simple Multilayer Perceptron to
classify worker status. We performed four tests, the
results of which are reported in Table 4:

1. Training joint ground truth labels (GT) and testing
on validation joint ground truth labels (GT). This
is the baseline case.
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Figure 4: No Vest/No Helmet detection on a real image.

2. Training joint ground truth labels (GT) and test on
inferred joint validation labels (INF). In this case
ground truth labels and inferred labels may vary a
lot, e.g. many keyponts are not found.

3. Training on inferred joint labels (INF) of the
training-set and testing on the validation ground
truth labels (GT). In this case, we measure what
happen when there are no labels for training data.

4. Training on inferred joint labels (INF) of the
training-set and testing on the validation set in-
ferred labels (INF).

In Table 5 and Table 6 we present the performance
on the experiments (2 - 4) varying the distance from
the camera of the worker annotated boxes. Best re-
sults are for workers at a distance under 5 meters from
the camera. Learning from the inferred labels increase
robustness to missing values. Figure 5 shows a quali-
tative example using a synthetic image.

Figure 5: Fall detection on a synthetic image.

4.4 Distance Regression from
Monocular View

We evaluated distance regression using monocular
view on the created synthetic dataset. We followed
the work in (Haseeb et al., 2018) who used a multi-
layer perceptron of 3 hidden layers with 100 neurons
each. The network to regress the distance needs the
average 3D bounding box size in the real world, for
the Worker class. It has been set an average dimen-
sions of 1.75 m, 0.55 m, 0.30 m. In Table 7 we show
the results with 3 different training setups: using im-
ages with boxes at every distance, at no more than
10m and at no more than 5m. In the first case an av-
erage error of 1.73m is obtained.

Table 4: Results of the four test for fall detection.

Train Test no Fall Boxes Fall Boxes Accuracy no Fall Accuracy Fall Average Accuracy
GT Labels GT Labels 100,562 41,105 0.996 0.938 0.979
GT Labels INF Labels 41,317 2,666 0.708 0.551 0.698
INF Labels GT Labels 100,562 41,105 0.968 0.236 0.756
INF Labels INF Labels 41,317 2,666 0.979 0.877 0.973

Table 5: GT Labels vs INF Labels varying distance.

Distance no Fall Boxes Fall Boxes Accuracy no Fall Accuracy Fall Average Accuracy
< 2m 625 62 0.242 0.998 0.930
< 5m 6,123 767 0.939 0.494 0.890
< 10m 19,999 2,329 0.800 0.564 0.775
All 41,317 2,666 0.708 0.551 0.698

Table 6: INF Labels vs INF Labels varying distance.

Distance no Fall Boxes Fall Boxes Accuracy no Fall Accuracy Fall Average Accuracy
< 2m 625 62 0.978 0.903 0.971
< 5m 6,123 767 0.986 0.952 0.982
< 10m 19,999 2,329 0.981 0.905 0.973
All 41,317 2,666 0.979 0.877 0.973
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Table 7: Results of the network using as training set images of workers at all possible distances (a), with workers at no more
than 10m (b) and at no more than 5m (c).

Distance All Images (a) Under 10m (b) Under 5m (c)
< 1m 0.76m (91%) 0.48m (57%) 0.37m (44%)
< 2m 0.83m (63%) 0.60m (44%) 0.52m (37.15%)
< 5m 1.21m (39%) 0.93m (30%) 0.53m (18%)
< 10m 2.28m (35%) 0.88m (16%) -

all 1.73m (16%) - -

5 CONCLUSIONS

In this work, we presented a pipeline to generate syn-
thetic data in the domain of construction sites using
the Grand Theft Auto V videogame graphics engine.
A benchmark of the generated dataset on three differ-
ent tasks has been also performed. We focused the
study on training machine learning algorithms using
a large amount of synthetic data and a small set of
real images with the aim of measuring the usefulness
of such data to reduce real labeling effort without de-
creasing inference quality, evaluating algorithms be-
haviour varying the amounts of real data used. The
results show that the use of synthetic data is a viable
way to reduce the need to acquire and label new real
data.
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R., Ošep, A., Calderara, S., Leal-Taixe, L., and Cuc-
chiara, R. (2021). Motsynth: How can synthetic data

help pedestrian detection and tracking? In Proceed-
ings of the IEEE International Conference on Com-
puter Vision, pages 10849–10859.

Haseeb, M. A., Guan, J., Ristic-Durrant, D., and Gräser,
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