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Abstract: Assistive Technologies (AT) and Artificial Intelligence (AI) that support humans in decision making and in
difficult or dangerous tasks are in high demand. We created a two-semester capstone project, for undergrad-
uate seniors, providing the opportunity to build an assistive AI algorithm implemented on a skid-steer rover
platform. By the end of the program, students created a system with the potential for assisting humans in
dangerous indoor situations such as: gas leaks, bomb threats, fires, and active shooters. Our unique approach
allowed the skid-steer rovers to autonomously navigate indoor areas never before encountered or previously
mapped. Students used deep behavioral cloning techniques coupled with deep reinforcement learning to train
the rovers for speed, steering control, and cornering. Outfitted with nothing more than a depth-sensing optical
camera, an inexpensive autopilot, and an onboard, assistive NVIDIA Jetson Xavier NX computer, the rover
quickly scanned and oriented to a new environment and then located objects of interest. The students’ final
product demonstrated impressive abilities and skills demanded by industry in developing AT and AI platforms
for mission-critical applications. Herein we share our approach, technology stack, experiences, and artifacts
produced by our students at the end of the project.

1 INTRODUCTION

Post-secondary Computer Science (CS) departments
are tasked with educating and preparing graduates to
fill modern, evolving CS related jobs. Many CS grad-
uates are highly knowledgeable; however, (McGu-
nagle and Zizka, 2020) found that employers desire
problem-solving graduates who are able to work har-
moniously as part of a team. CS undergraduates rely
on their degrees as a foundation for beginning a career
in industry; however, even the best students experi-
ence a skills-gap when they work their first job. CS
faculty members identified a desire to provide more
projects working real-world, industry problems to ad-
dress this skill-gap (Valstar et al., 2020). While there
is little difference in academic performance between
students who intern and those who do not, graduates
without industry experience often find themselves less
employable because they lack practical experience,
good technical and interpersonal skills, and the abil-
ity to work effectively in teams (Kapoor and Gardner-
McCune, 2020). Recent studies, involving 536 multi-
institutional CS students, found that only 57.5% of
undergraduate CS students completed an internship

prior to graduating (Smith and Green, 2021; Kapoor
and Gardner-McCune, 2020).

Machine Learning (ML) shows potential for solv-
ing problems in many areas of science, medicine,
and engineering (Farjo and Sengupta, 2021; Lürig
et al., 2021; Azari et al., 2020; Rutherford, 2020;
von Lilienfeld and Burke, 2020; Akbilgic and Davis,
2019; Toole et al., 2019; Fraley and Cannady, 2017;
Trister et al., 2017); therefore, it is important to have a
portion of CS curriculum in higher education devoted
to ML. Yet, according to (Shapiro et al., 2018), ed-
ucational offerings in CS departments do not reflect
this reality. This paper presents a practical project for
developing teamwork and problem-solving skills that
are in high demand from industry (McGunagle and
Zizka, 2020).

Recently, we designed an applied, Deep Learning
(DL) capstone project to improve students’ knowl-
edge working with Imitation Learning (IL) and Rein-
forcement Learning (RL) in an open-world environ-
ment. The Multipurpose Autonomous Agent Project
(MAAP) is a year-long undergraduate program of-
fered to senior CS majors; it targets skills and insights
that are valuable to industry as well as the United
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Figure 1: The MAAP rover (center) in action. The left and right images are a snapshot of simultaneous streams of data that the
rover collects through its front-mounted camera and processes in real time. The left image represents a RGB stream while the
right side represents rasterized 3D distance information of the same scene. This data is pre-processed, stacked, and then fed
to the rover’s onboard neural networks. The rover then bases its actions on the policy network’s throttle and steering mixture
outputs as well as its object recognition outputs.

States Air Force Academy (USAFA) at the time of
this writing: Assistive Technologies (AT), Artificial
Intelligence (AI), DL, IL, RL, and Computer Vision
(CV).

MAAP offers students direct experience by task-
ing them with designing, programming, training, test-
ing, and deploying AT under the supervision of an ex-
perienced mentor. The project holds inherent chal-
lenges that a small team of students must identify and
overcome to be successful. The final product com-
bines hardware, software, and advanced algorithms
into a cohesive, ready-to-use package. The result is an
autonomous, skid-steer rover built using Modifiable
Commercial off the Shelf (MOTS) parts and open-
source Application Programming Interfaces (APIs).

The MAAP rover may be deployed to an indoor
setting that has not been mapped or is otherwise pre-
viously known by the device. The rover is equipped
with a front-facing camera and a distance-sensing de-
vice, giving it the ability to traverse and explore an
environment by navigating hallways and rooms while
simultaneously scanning for an objective object. The
objective can be detected through infrared, gas, or
video sensors installed on the rover platform. Video
and data may be streamed in real-time to a console
app running on a tablet or laptop for real-time feed-
back. The final project deliverable is a generic pack-
age ready for further use in other object detection sce-
narios in unmapped environments.

This paper makes three contributions: (1) we
present a Project Based Learning (PBL) framework
for use in a team-based undergraduate capstone, (2)
we identify the resources needed to replicate and/or

improve MAAP, and (3) we share our assessment of
the MAAP project’s effectiveness. The remainder of
this paper is structured as follows: Section 2 sum-
marizes related works to this project, Section 3 pro-
vides a description of the hardware and software plat-
form, Section 4 describes the course format, Section 5
describes student progression through the year-long
course, and Section 6 describes our conclusions and
proposed future work.

2 RELATED WORKS

MAAP provides CS majors with experience in ap-
plied ML, complex problem solving, and harmonious
teamwork. MAAP engages students with an interest-
ing set of problems that cannot be solved only with
the knowledge they possess at the beginning of the
program. Teaching students to make design decisions
for ML implementation is more difficult than teach-
ing core ML concepts (Sulmont et al., 2019), and
MAAP focuses on experiential learning beyond core
ML concepts. Coincidentally, just as students learn
complex skills through observing expert demonstra-
tion, MAAP focuses on a similar concept for teaching
machines complex tasks and functions through Im-
itation Learning (IL). This section provides a back-
ground on IL and current teaching methods.

2.1 Imitation Learning

In environments where complex autonomous func-
tions are required, it is easier to teach desired behav-
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ior through demonstration rather than attempting to
engineer it (Osa et al., 2018). IL reduces the problem
of teaching a task down to a human providing task
demonstrations and then recording how the human
performed this task. Equipping an agent with mod-
ern sensors gives it the ability to collect large amounts
of data to rapidly process, learn and create maps that
transform data into actions (Hussein et al., 2017a). IL
encompasses a group of algorithms designed to learn
from and mimic the behavior of humans or animals
exhibited under specific circumstances; these algo-
rithms discover a mapping between observations and
actions via a learning process (Hussein et al., 2017b).

Behavioral Cloning (BC) is a subset of IL popular-
ized by two papers published by NVIDIA that utilize
a Convolutional Neural Network (CNN) to go beyond
basic pattern recognition and learn the entire process-
ing pipeline needed to perform an action. NVIDIA
researchers published an initial paper (Bojarski et al.,
2016) and a followup paper (Bojarski et al., 2017) that
inspired the creation of an online Udacity project cen-
tered around a training car to drive itself in a simulator
(Dominique Luna, 2021). Figure 2 shows the trained
model driving the car in the Udacity simulator.

2.2 A Simple Introduction via Udacity

The Udacity demonstration simulates a car with rack
& pinion steering traversing a consistent and clearly
marked race track. The simulator collects and pro-
cesses visual data related to steering input, provided
by a human driver, as the car is driven around the
track. A CNN is built to accept individual, pre-
processed video frames, generated by the simulator’s
scenery, as input and then predicts the steering angle
as output. When training the CNN, the steering angle
is provided as labeled output and the sensor collected
imagery data provides the inputs.

The Udacity simulator introduces students to the
concept of an autonomous pipeline, i.e., sensor in-
puts are utilized to train a model and generate a cyber-
physical output; however, the Udacity simulator can-
not perform outside of a very specific environment.
The simulator provides students an understanding of
the problem and an elementary approach to solve it.
The autonomous steering demonstration in a simula-
tor cannot address non-determinism in the physical
world. In addition, the CNN trained in the Udac-
ity simulator lacks the ability to predict speed control
and object avoidance, i.e., the learned policy will not
translate from the simulator to the real-world.

Figure 2: Car driven by trained CNN through Track 1 in the
Udacity simulator.

3 MAAP OVERVIEW

The MAAP capstone is a 6-credit hour program. The
program centers on integrating ML with autonomous
rovers to provide applied solutions to real-world, open
set problems.

3.1 Product Requirements

The MAAP product students are required to deliver at
the end of the program is a physical skid-steer rover
capable of traversing indoor environments with au-
tonomous steering and throttle control. The rover will
find its way out of dead ends, smoothly turn corners,
minimize contact with walls and stationary objects,
tread carefully around people and pedestrians, accel-
erate smoothly when there are no objects in its line
of sight (conversely slow its speed according to its
proximity to objects in front of it), avoid moving ob-
jects, turn away from or even reverse itself to avoid
oncoming objects, and perform scanning maneuvers
(360 degree, in-place turns to scan for objectives).
In addition, the platform utilizes computer vision and
object recognition using mounted sensors to execute
searches for specific objectives defined in the course.
The rover performs these actions in the real-world,
avoiding the limitations that result from determinis-
tic learning environments. Ideally the final product
would utilize some form of spatial mapping, e.g., Vi-
sual Simultaneous Location and Mapping (VSLAM)
to avoid exploring areas previously searched; how-
ever, due to the limited student time, VSLAM tech-
niques were not covered or required.

3.2 Hardware Choices

The students were not involved in hardware decisions;
hardware was supplied at the beginning of the cap-
stone project. We took into account budget, safety
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concerns, and feasibility when considering the hard-
ware choices for this program. Smaller 1/10 scale
RC cars are typically used for similar projects and
are overall less expensive. We desired the maneu-
verability of larger four-wheel drive skid-steer rovers
as well as the simpler and more rugged build. We
purchased all-metal, fully-assembled, mid-sized four-
wheel skid-steer platforms equipped with Pixhawk
Cube Orange (or Black) autopilots (Ardupilot, 2022).
A number of reasons went into our decision for pur-
chasing these machines:

• We wanted to afford students the opportunity to
train and predict ML and AI models with the
same hardware which rides on the rover without
transferring trained models from a more power-
ful workstation. The autopilot, NVIDIA GPUs, 1
TB of hard-drive data storage, cameras, distance
finders, etc. are all onboard the rover. Conduct-
ing all ML and AI model work on the same hard-
ware provided a more efficient work environment
as students improved their models.

• We desired to have all AI and ML algorithms to
train and predict on the rover, without the need for
a remote computer connection. This significantly
reduces latency with data streaming, image pro-
cessing, and command execution. RC transceivers
were on hand at all times to override rover func-
tions in cases where code might create an undesir-
able situation.

• We wanted to lessen situations where rovers could
become stuck when presented with rough, bumpy
or cluttered terrain. We chose large tires and in-
dependent electric motors with adequate torque
so that rovers would be capable of rolling over
rocks, boards, nails, and other debris that could
be present.

• Our rover units are capable of carrying larger sen-
sors, computers and onboard batteries. In future
renditions of MAAP, we plan to add more sensors
and other equipment to these devices. These plat-
forms are more accommodating via their larger
footprint and payload capacity.

We purchased a long-range PowerBox Systems
Radio Core RC System (PowerBox Systems, 2022)
for controlling the rovers during data collection. In
addition, each rover is equipped with an Intel® Re-
alSense™ D455 depth-sensing camera (Intel, 2021),
the NVIDIA® Jetson Xavier™ NX for accelerated AI
execution (NVIDIA, 2022). The NVIDIA® Jetson
Xavier™ NX contains a 6-core ARM CPU, 384 GPU
cores, 8 GB RAM, and a 1 TB SSD. See Figures 3
and 4 for profile and internal details.

Figure 3: Three rovers used in the MAAP capstone. In ad-
dition to the standard RC radio, autopilot, and GPS systems,
we attached an Intel® RealSense™ D455 depth-sensing
camera.

Figure 4: The MAAP rover internals include an indepen-
dent assistive computer located under the autopilot cube.

3.3 Software and Tools

We relied heavily on cross-platform software for
MAAP. This was done out of necessity. All of the
students at our institution are issued Windows laptops
during their Freshman year. Consequently, we wanted
to ensure that the software solutions would run on
their systems as well as with our hardware–much of
which utilizes Linux-based operating systems.

Students are required to use several pieces of free,
cross-platform software while developing code for
the rovers. Python, i.e., the Python 3.8 interpreter
(Sanner et al., 1999), was chosen for the program-
ming language. PyCharm Community Edition (Jet-
Brains, 2022) was chosen for the Python develop-
ment environment. PyCharm Community Edition is a
free, robust development environment that offers easy
virtual environment creation, debugging and syntax
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checking. To communicate with drone hardware via
the MavLink protocol, we utilize two drone-related
Python libraries: (1) Pymavlink and (2) DroneKit.
Machine learning and computer vision are facilitated
by TensorFlow, Keras, and Open-CV. Finally, we in-
clude the PyRealSense Python library for interfac-
ing with the Intel® RealSense™ D455 depth-sensing
camera. All of the Python packages listed in this
paragraph can be downloaded from the PyPi pack-
age repository (Python Software Foundation, 2022)
and installed in the students’ Python environment us-
ing the pip command. Note that there was no need
or requirement for simulator software or Software in
the Loop (SITL). All work can be performed on the
actual hardware in the physical environment.

4 PROGRAM PROGRESSION

The MAAP capstone course was organized into four-
week sprints. Class time for capstone work averages
5 hours per week with an instructor present and an ad-
ditional 8 hours of non-instructor work time per week.
At the start of each sprint, the capstone team and in-
structor plan the sprint by considering what should be
accomplished in the four week period. Scrum meet-
ings occur at the beginning each week and last 30-45
minutes. The work environment is designated to en-
courage open ideas and rapid prototyping.

Periodic gate checks are conducted by the instruc-
tor to ensure work is progressing in a timely fash-
ion. The instructor may conduct hands-on work-
shops to help students apply theoretical knowledge to
the physical hardware environment. To form a com-
plete picture of an end-to-end solution, each major
sprint concludes with a demonstration where students
must present a working prototype. Twice during the
semester the students must present their work to se-
lected faculty members outside of the project and the
team is graded by an uninvolved reviewer.

MAAP combines several complex topics, and the
instructor provides the essentials necessary to com-
plete sprint tasks. It is important to consider the stu-
dents’ ability to learn and implement new material,
without overwhelming the students in the four-week
sprint period. For example, if it becomes obvious that
the team is struggling with identifying, evaluating,
and narrowing potential CNN models for use in policy
learning, the instructor may guide the team towards
the models that are likely to bring the biggest benefit
to the project. An important outcome for this course
is to produce graduates who have both knowledge and
implementation skills, yet the instructor must main-
tain cognizance of the project’s direction and guide

the team away from ideas that could derail it.

4.1 Provided References

We chose to provide trade books and current papers as
a reference to the students. The advantages to using
trade books over traditional textbooks are: (1) quality
publications provide readers with robust theory while
filtering all but the essentials of how to implement
the theory, (2) trade books are often considered more
readable, making examples and instruction more ac-
cessible to undergraduate students, and (3) students
who go on to become professionals are likely to turn
to trade books when working in industry (Schultz,
2014), (Smolkin et al., 2013). We chose several texts
for the course:

• Hands-on Machine Learning with Scikit-Learn,
Keras, and TensorFlow 2nd Edition (Géron, 2019)

A Géron - 2019; ISBN-13: 978-1492032649
• Deep Reinforcement Learning Hands-On:... (La-

pan, 2020)
M Lapan - 2020; 978-1838826994

• Reinforcement Learning: Industrial Applications
of Intelligent Agents (Winder, 2020)

P Winder - 2020; 978-1098114831
• Hands-On Computer Vision with TensorFlow 2:

Leverage deep learning to create powerful image
processing apps with TensorFlow 2.0 and Keras
(Planch, 2019)

B Planch - 2019; 978-1788830645

The Papers We Chose for the Students to Review
Were:

• End to end learning for self-driving cars (Bojarski
et al., 2016)

• Explaining how a deep neural network trained
with end-to-end learning steers a car (Bojarski
et al., 2017)

• Imitation Learning: A Survey of Learning Meth-
ods (Hussein et al., 2017b)

• An Algorithmic Perspective on Imitation Learn-
ing (Osa et al., 2018)

• Evaluation of pre-training methods for deep rein-
forcement learning (Larsson, 2018)

• Learning to drive by imitation: An overview of
deep behavior cloning methods (Ly and Akhloufi,
2020)

• Deep reinforcement learning for autonomous
driving: A survey (Kiran et al., 2021)

• Mobile robots exploration through CNN-based re-
inforcement learning (Tai and Liu, 2016)
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• Recent advances in imitation learning from obser-
vation (Torabi et al., 2019)

4.2 Bootstrapping: Code and Libraries

MAAP requires students to write a significant amount
of Python code. We provide starter code as well as
Python virtual environment setup instructions to pro-
vide a starting point. The following are the items we
provide to the students:

• Custom Python libraries containing common
functions for communicating with our rovers,
along with commonly-used commands and pro-
cesses,

• skeleton code that provides a working Main func-
tion and stubs that students are required to com-
plete,

• coding standards and naming conventions, and

• an existing Github repository where are code and
documentation are stored

These items provide structure, allowing students
to quickly focus on the major tasks at hand. Students
have an opportunity to explore the initial project code
as well as some functional examples that they may
modify to fit their needs.

4.3 Mini Lectures & Labs

The instructor provides theory and industry experi-
ence for the team through additional labs. During
the program, we provided several lessons that are de-
signed to closely mimic a given sprint’s upcoming
tasks (see section 5 for breakdown of the labs we
provided to the students). We cover topics such as
DroneKit APIs, Open-CV, image processing, Tensor-
Flow, Keras, data collection, data preparation, deep
CNN models, deep RL, model performance analyt-
ics, and model fine-tuning techniques. Most lectures
include some form of sample code in Jupyter Note-
books (Kluyver et al., 2016) that students may use as
starter code for their tasks.

4.4 Team Assessment

At the end of each sprint, students are graded as a sin-
gle unit. The instructor reviews and assesses sprint
artifacts, demonstrations, and assessments from out-
side faculty reviewers. The artifacts, demos, and out-
side assessments are weighted and combined to yield
a final grade. The team is encouraged to be bold and
imaginative; however, members are also responsible
for recognizing when they are at an impasse and when

they should consult their instructor. The instructor al-
lows the students to wrestle with team conflicts, bad
ideas and some failures, but keeps a close eye out for
when those things begin to compromise the overall
success of the project. Typically, by the end of the first
two sprints, the team will have learned each member’s
strengths and weaknesses and will begin to demon-
strate improved efficiency as a result.

5 SPRINT BREAKDOWN

The entire project lasts for eight, four-week sprints.
It is critical that the team make progress during every
sprint in order to meet the requirements by the end
of the program. In the following sections we outline
the major events, instructor interventions, and results
from the sprints at our institute.

5.1 Sprint One: Orientation

The team was introduced to the project, its require-
ments, high level concepts, source repository, devel-
opment tools, and reading material (see section 4.1).
The main objective is for each student to learn and
understand IL theory. Students already had exposure
to AI and ML as well as RL, and this prior knowl-
edge served as a base upon which to build their un-
derstand of IL and behavioral cloning. Artifacts from
this sprint consisted of a report that summarizes the
team’s understanding of the project requirements, toy
code similar to the Udacity demonstrations (discussed
in 2.2) to demonstrate an understanding of a sim-
plified example of behavioral cloning by each team
member.

5.2 Sprint Two: Data Collection Utility
and CNN Cloning Design

The team learned the essentials of data collection
from the previous sprint. For sprint two, they cre-
ated a program that collects data from the rover hard-
ware stack. This includes writing code that interfaces
with the rover’s autopilot and the RealSense camera
streams. Steering and throttle data from the rover was
captured and matched with imagery and depth data
from the Intel Realsense camera. This data was stored
and then later used to train a CNN model. The team
was free to use the starter code we provide to interface
with the camera sensors and the rover’s autopilot (see
section 4.2).

The data collection program (i.e., the recorder)
works by waiting until the rover is armed via the re-
mote RC handset. Once armed, the program begins
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data collection. The human operator may collect as
little or as much data as desired. Human operated
driving sessions lasted anywhere from 1 to 15 min-
utes. When the rover was disarmed via the RC hand-
set, the dataset was closed. A dataset consists of a
video file that contained both RGB and distance mea-
surement streams, a data file, and a log file. The
data file temporally matched steering, throttle, ground
speed, and heading information with each frame in
the video file. Note that only steering and throttle are
currently used in MAAP, leaving the other variables
available for future use with more complex models.
The log file recorded autopilot status, recording time,
sensor status, and any exceptions that might occur
during the session.

Simultaneously, the team began training the initial
CNN model for behavioral cloning. The instructor di-
rected the team to begin with a modified version of the
CNN model introduced in (Bojarski et al., 2017). The
team built this model using Keras with TensorFlow as
the back end. In this project, the team created a more
complex model than what is presented in the Bojarski
paper. The key differences are as follows:

• Input: the original model accepts three frames
from center, right, and left cameras at the same
point in time, with steering angle as a label during
training. Our model now accepts a single RGB
frame from a centered camera stacked with pixel-
aligned gray-scale depth sensor data, using linear
throttle and steering numbers as labels. The re-
sultant CNN is now a multi-label model that takes
throttle into account as well as steering.

• Output: the original model renders a single value
representing steering angle, while our modified
regression model now provides predictions for
both steering and throttle control.

Artifacts from this sprint included (1) a utility pro-
gram to collect training data, from the rover, for use
in training the CNN cloning model, and (2) an initial
CNN ready to train with data. The data collection and
model training started in the following sprint.

5.3 Sprint Three: Training Data and
CNN Training and Experimentation

The team began data collection, utilizing the utility
program developed in Sprint 2, as well as trained their
initial CNN model. Data collection was time con-
suming. We chose to collect driving data from two
of six floors in a large building, reserving the remain-
ing floors for performance evaluation. To introduce
diversity into the training data, each student on the
team was tasked with collecting a total of two hours

of driving data during this sprint. Students used the
utility program to record driving maneuvers as they
manually guide the rover around the building.

5.3.1 Driving Sessions

Several types of driving sessions were collected at
various times of the day to account for natural and ar-
tificial light, light glare, artificial and overhead lights
as well as low-light conditions. We identified four
categories of driving sessions for which we collected
data:

1. Smooth forward driving in empty, clear hallways
around the building in clock-wise and counter-
clockwise fashion. The rover was kept more or
less to the right side as it traversed the hallways
and around corners. Some sessions had the throt-
tle locked between a low and high setting. Throt-
tle and steering are varied, but driving was per-
formed with relatively smooth steering and throt-
tle input, i.e., no erratic maneuvers. Throttle was
generally increased when driving in a straight line
with no objects in sight; throttle was lowered
when coming close to a wall or corner at the end
of a hallway.

2. Object avoidance sessions that involved driving
around various inanimate/static objects and ob-
stacles that are set in random areas throughout
the hallways. Obstacles might be tables, chairs,
boxes, trashcans, maintenance equipment, doors
that open out into the hallways, litter, and station-
ary people who are either standing or sitting at
different angles. The path of least resistance is
taken, but in the case where an object might be in
the center of the hallway, the drivers were asked
to vary left and right turns when avoiding those
objects so as to avoid introducing a right-hand or
left-hand bias. The drivers were also asked to
vary when they begin maneuvering to avoid an
object. In some instances a driver began maneu-
vering well ahead of time while in other instances
the driver maneuvered at the last moment to avoid
an object. Throttle varied, but it always decreased
when approaching an object.

3. Object avoidance sessions involving moving ob-
jects such as people, carts, trash cans, and rolling
chairs. Throttle and steering were utilized to avoid
colliding with moving objects. In the case where
a person or object is moving towards the rover, the
driver would decrease throttle and change course.
If the object also corrects and continues to ap-
proach the rover, the driver would come to a stop
or even reverse the throttle to begin a backwards
movement. Since there were no rear sensors,
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backup throttle was only used for a short duration
while the driver attempted to take the first forward
path avoiding the object altogether.

4. Entering adjacent rooms where entrance is fea-
sible. Drivers turned into the closest doorway
where the door was open and the path was clear.
Throttle was reduced considerably as the rover
was driven past the threshold and further into the
room. Gradually the throttle increased according
to the condition of the room (i.e. how much clutter
is present). Rovers were driven around and under
desks and chairs and around any other obstacles
present in the room. Once the room was traversed,
the driver maneuvered the rover back into the hall-
way.

All sessions were stored and labeled according to
the driving session types mentioned above. All orig-
inal log and label files were retained along with the
full-resolution sensor and video streaming in rosbag
format (a Robot Operating System (ROS) file format
for storing ROS message data).

5.3.2 CNN Training

Training began before the entire data collection pro-
cess was complete. Small subsets of driving session
type 1 data (see Section 5.3.1) was used to begin ini-
tial CNN training near the beginning of Sprint Three.
The training data was further prepared by creating and
running a special utility program that rips individual
frames from the video streams, resamples and repro-
cessing the images while also labeling the frames with
steering and throttle numbers from the matching data
file. In addition, an inline data generator was also cre-
ated to wrap the raw data. The data generator was
used to randomize and split data into training, valida-
tion, and test splits as well as to feed mini batches to
the model upon request as it trains.

The training scripts saved the model only if the
validation loss improved over the previous epoch. Ini-
tial training began over a maximum of 50 epochs,
with performance flattening between 17 and 20
epochs. The training script was designed to resume
training as new data arrives by de-serializing previ-
ously trained best model.

Finally, a control program was constructed to read
camera feeds in real-time while feeding them into
the newly trained CNN. The raw CNN output was
de-normalized and passed directly into the autopilot
channel feeds for throttle and steering, overriding nor-
mal function. This program ran in a continuous loop
at 15 frames per second, constantly plugging in the
cloning model’s actions to the rover’s autopilot.

Artifacts included a demonstration of a rover that

can somewhat navigate throughout a single hallway
(but not very well). Even though the rover could navi-
gate simple hallways and around corners 30%-50% of
the time, it is an exciting time as the team observes the
rover “magically” roaming the hallways and largely
avoiding walls and objects.

5.4 Sprint Four: Model
Experimentation and Shortcomings

The team was guided towards the discovery of several
major improvements to the training process. First,
the numerical range for both steering and throttle is
between 1000 and 2000 with 1500 representing the
“center” or neutral. Anything less than 1500 repre-
sents a value towards a left-hand turn and anything
over 1500 represents a value towards a right-hand turn
when for steering input. Similarly, for throttle inputs,
anything under 1500 represents backwards movement
and anything over 1500 represents forward motion.
Normalizing these variables using a min–max nor-
malization limits the range between 0 and 1. This
helped with decreasing the time it took for the CNN
to converge during training. Furthermore, the learn-
ing curves were smoother and showed less “bounc-
ing” than before applying normalization. In addition,
the team discovered that training using small, ran-
domized frame sequences of 13 frames per sequence
markedly improved overall performance; the rover’s
steering and throttle stability improved along with its
ability to smoothly round corners. Another discov-
ery of note: experimentation provided evidence that
randomized sequences using a CNN may yield bet-
ter performance over more complex Long Short Term
Memory (LSTM) models.

The team experimented with various deep models
until they discovered models that demonstrated poten-
tial for good performance. The artifacts for this sprint
were: (1) a discussion of model performance and (2)
demonstrated improvement using a behavioral clone
model. The rover was better able to negotiate cor-
ners, showing marked all-around improvements. In
fact, the rover was able get out of most dead end sit-
uations, navigate around most objects, and even slow
down or stop around people, mimicking extra caution
around people and pedestrians. The performance was
impressive as well as inspiring to the students. How-
ever, the team soon discovered that a blind cloning
effort can only take performance so far before weak-
ness begins to show.
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5.5 Sprint Five: Improved Performance
and Need for Reinforcement
Learning

Despite the impressive performance gains in the pre-
vious sprint, the team began to understand that a sin-
gle CNN cloning model simply could not provide the
functionality MAAP requires. This is due to model’s
overly simple action (i.e., output) policy. The model
was only capable of learning a distribution of actions
over a finite training set. The model had no way
(except through inherent bias in the training data) of
learning when it was better to turn left vs turning
right, or when it is more beneficial to back up vs doing
an in-place 360 (remember, this is a skid steer rover).
This is where behavioral cloning alone begins to show
its limitations.

The instructor discussed concepts related to trans-
fer learning (domain adaptation) coupled with re-
inforcement learning models best suited for learn-
ing policies over a continuous action space. We
pointed the team towards Actor-Critic models, specif-
ically Advantage Actor-Critic (A2C), coupling it with
the now much-improved, pre-trained Bojarski CNN
model the students had been developing up to this
point. This opened the door to a host of potential per-
formance gains. The idea came from several sources
we provided as reference material for this project:
Deep Reinforcement Learning Hands-On; chapters 12
and 17 (Lapan, 2020), Reinforcement Learning: In-
dustrial Applications of Intelligent Agents; chapters
7 and 8 (Winder, 2020), and the paper Evaluation of
pre-training methods for deep reinforcement learning
(Larsson, 2018).

This sprint marked the most critical point in the
project, because it required a deeper understanding of
RL and IL as well as advanced skills with TensorFlow.
The instructor closely monitored and advised the team
through the initial approach and programming efforts.
The resulting model was an A2C architecture where
the actor and critic shared the same modified Bojarski
CNN. The discounted rewards were based on a sim-
ple calculation involving the distance of objects in the
field of view. A 2D Gaussian matrix was applied to
the depth sensor pixel values from the camera, creat-
ing a gradient scoring system where pixels of objects
in the periphery were given a better score over objects
in the forward center of view (objects in the center of
view were actually penalized more). This scoring sys-
tem was designed to teach the model to always look
for the path of least resistance (i.e. facing where fewer
objects are in the way). This created a policy whereby
the model favors actions that result in the clearest path
ahead (see Figure 5). The maximum movement was

restricted so that the rover would not be turned com-
pletely around to avoid taking a valid path ahead of it
in favor of a better path behind it (i.e. a path it most
likely already traversed). The artifacts were the re-
lated Python code that contained the new A2C model
and the code required to train, test, and analyze the
new model.

5.6 Sprint Six: Continued RL Work

Eventually a model emerged that would normally re-
quire thousands of training sessions using a virtual
environment before it would be able to do anything
useful. However, the team came up with a way to
pre-train the new A2C model using training data that
was collected during Sprint Two. The training was
not optimal because the model was not allowed to
explore during these training sessions; however, the
training was adequate for a bootstrap where trans-
fer learning techniques could be used to optimize the
model over additional incremental training sessions.
An additional Python script was created to facilitate
the rapid incremental training of the model. The pro-
gram waited until the rover was armed before starting
a new training session, and training required a human
user to operate the rover. Once the training session be-
gan, the rover would begin traversing the interior from
the location from where it was armed, using its new
A2C model. Anytime the rover makes contact with a
wall or object the user simply flips the RC hand con-
trol switch to disarm the rover, thus ending the ses-
sion. The human user could then direct the program
to immediately start training a new session by flipping
a switch on the RC controller. This vastly improved
the speed of data collection.

The results were encouraging. The rover was
able to traverse busy hallways and rooms right out
of the box in areas the model had never visited or
trained over beforehand. Incremental training was
time consuming, but incremental improvements took
relatively little time to notice. We did not have a vir-
tual environment to train the model over thousands
or even millions of sessions. This remains an open
agenda item for future iterations of MAAP.

5.7 Sprints Seven & Eight: Mission
Deployment

The A2C model could use more tweaking and train-
ing; however, there was no more time available to
continue that effort. By this time we addressed the
project’s object recognition objectives by implement-
ing bolt-on object recognition models. The team
settled on a pre-trained object recognition model
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(a) Original image (b) Heat map of original image (c) 2D Gaussian matrix (d) Result of inverse scaling
b with c

Figure 5: The reward system for our A2C model consists of penalizing the closest objects as they approach the forward center
of view, subtracting those points from the maximum points in the image. This is accomplished by applying an inverse gradient
scale using a multivariate (2D) normal distribution against the distance value for each pixel as measure by the distance sensor
in our camera.

Figure 6: The resultant A2C model incorporating the pre-
trained behavioral clone model.

they incrementally trained to recognize hazard signs
(demonstrating the ability to locate mock hazards).
In addition, the team needed to figure out how the
cloning model and the object recognition model could
both share the same GPU at once. In addition,
the team also determined how the rover would au-
tonomously scan for these hazards when the A2C
model was deployed. Eventually, YOLO3 was cho-
sen as a simple bolt-on to our MAAP pipeline. We
used transfer learning on a pre-trained YOLO3 model
where the model was trained with the help of Ima-
geNet and a collection of labeled hazard signs.

With the deadline for project deliverables looming
the team was unable to produce a solution that would

allow the A2C model and the YOLO3 model work on
the same GPU, so YOLO was relegated to the CPU
while the A2C was kept on the GPU. Overall, the
model was able to function at a rate between 9 and
13 frames per second - a pretty good rate, considering
there was no effort put towards optimized hardware
performance.

The artifacts for the final two sprints were a fi-
nal presentation to faculty members who were not in-
volved with the project, a presentation at a local AI
event, and a final demonstration of the hazard recog-
nition mission to the project mentor. The mission was
successful in that rover was able to locate 7 out of 9
easy-to-find hazard signs. The search routine was not
optimal in that the program simply issued a command
to the rover to perform a slow five-second in-place
360 turn to scan for hazard signs. This action was per-
formed at one-minute intervals. Overall, the bolt-on
object recognition portion of the project was rushed,
but provided evidence that the students’ approach to
MAAP was plausible and had potential to scale for
many real-world uses.

6 CONCLUSIONS AND FUTURE
WORK

Through our MAAP capstone program, students were
able to participate in developing an end-to-end so-
lution involving advanced applied ML techniques at
USAFA. Each student gained invaluable insight as
well as improved ML skills, technical skills, and
team-building skills employers would consider above
average for newly minted undergraduate Computer
Science majors. MAAP is a highly engaging program
that allows students to experience how ML is de-
signed, tested, improved, and applied in a real-world
scenario outside of a simulated environment.

We feel that this program can be adapted to
other robot modalities such as prosthetic limbs, aerial
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drones, and legged pack drones. Future plans in-
clude incorporating additional sensors and providing
more interesting bolt-on missions and objectives for
MAAP. We also plan to publish our data collections
for use in research-related works as well as provid-
ing a publication covering the teaching materials for
MAAP for use by other higher education institutions.
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