
Common Code Quality Issues of Novice Java Programmers:
A Comprehensive Analysis of Student Assignments

Christina Julia Kohlbacher1, Michael Vierhauser2 a and Iris Groher1 b

1Institute of Business Informatics - Software Engineering, JKU Business School, Johannes Kepler University, Linz, Austria
2LIT Secure and Correct Systems Lab, Johannes Kepler University, Linz, Austria

Keywords: Novice Programmers, Code Quality, Best Practices, Static Code Analysis.

Abstract: Starting to learn programming is often perceived as being quite tedious by students at the bachelor level. Many
programming courses thus face high drop-out rates and moderate results for those who pass. This problem
is exacerbated when teaching programming to students enrolled in non-computer science curricula. To over-
come these issues, we have developed a novel didactic concept based on peer learning, tutoring, dedicated
teaching, and learning material that supports individuality and competency-based learning. Our current focus
lies on teaching basic programming principles, but to further support our students and foster a positive learn-
ing experience, we want to learn more about the difficulties they are facing, particularly with respect to best
practices, coding conventions, and code quality. We, therefore, performed a static code analysis of homework
assignments of students participating in our introductory programming course for two consecutive years. We
analyzed over 13,000 Java files and more than 400,000 lines of Java code to identify common code quality
issues faced by our students. Our analysis shows that the majority of rule violations are related to coding style.
The violations do not differ much with respect to the topics covered in the homework assignments, and hardly
change over time. The more lines of code the students write, the more rules are violated. Based on our findings
we present concrete recommendations on how to support novice programmers in improving their code quality.

1 INTRODUCTION

Introductory programming classes are, for most com-
puter science students – and studies from related
fields such as Business Informatics – the first time
they encounter programming, gain experience with
programming languages, and need to understand the
concept of algorithmic thinking. Many first-semester
introductory programming courses, however, face
significant drop-out rates and moderate results of
those who pass (Lahtinen et al., 2005; Milne and
Rowe, 2002; Watson and Li, 2014). To address this
issue, and to provide students with a better learn-
ing experience, in recent years, several didactic con-
cepts, specifically targeting first-semester program-
ming, have been introduced with the goal of fostering
collaborative learning and teamwork (Sabitzer et al.,
2020; Krusche et al., 2020; Williams and Upchurch,
2001; McDowell et al., 2002).

a https://orcid.org/0000-0003-2672-9230
b https://orcid.org/0000-0003-0905-6791

At our university, for the past decade, we have
been teaching introductory programming classes for
Business Informatics, and recently also Business Ad-
ministration students, and have experienced similar
issues, as students are typically quite diverse, with dif-
ferent educational and cultural backgrounds. To over-
come these issues we recently adopted a novel didac-
tic concept based on peer learning, tutoring, dedicated
teaching, and learning material that supports individ-
uality and competency-based learning.

In general, the results have improved, with fewer
drop-outs and more students passing the course, while
the students’ experience appears to be positive. How-
ever, based on the feedback we received, the focus so
far has mostly been on teaching basic programming
concepts while putting little emphasis on overall code
quality aspects. As this class is a precursor to ad-
vanced computer science classes in later semesters,
this has turned out to be a pain point for students
later on. While basic programming skills are no
doubt important, if students are not guided to write
“good” code in an early stage, this might result in ad-
ditional time and effort students have to invest in later

Kohlbacher, C., Vierhauser, M. and Groher, I.
Common Code Quality Issues of Novice Java Programmers: A Comprehensive Analysis of Student Assignments.
DOI: 10.5220/0011715400003470
In Proceedings of the 15th International Conference on Computer Supported Education (CSEDU 2023) - Volume 2, pages 349-356
ISBN: 978-989-758-641-5; ISSN: 2184-5026
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

349



classes (Keuning et al., 2017). Moreover, knowing
which mistakes novices are likely to make also helps
when designing teaching and learning material or ed-
ucational tools (Altadmri and Brown, 2015; Brown
and Altadmri, 2017).

In order to gain insights into the code quality of
student assignments, and the difficulties and chal-
lenges students face, we have conducted a study an-
alyzing homework assignments with regards to code
quality and coding best practices. We have collected
data from the past two years of our course and ana-
lyzed the assignments of 284 students. We performed
a static code analysis of more than 13,000 Java files
comprising over 400,000 lines of code. In total, we
checked 108 different rules with respect to best prac-
tices, code style, design, error-prone code, and perfor-
mance.

We have observed that the majority of rule viola-
tions are related to coding style. The violations do not
differ much with respect to the topics covered in the
homework assignments and do not change over time.
The more lines of code the students write, the more
rules are violated.

The remainder of this paper is structured as fol-
lows. We first discuss related work in Section 2. In
Section 3, we then provide a brief overview of our
course setup and the teaching strategies. In Section 4,
we describe our research method, data collection, and
research questions and report on the results of our
data analysis. We then discuss implications, lessons
learned, and recommendations in Section 5. We fi-
nally present threats to validity in Section 6.

2 RELATED WORK

Different authors have performed static analysis of
source code written by students as part of a univer-
sity course. Edwards et al. (Edwards et al., 2017) per-
formed a static analysis of Java code of student groups
with different levels of experience. The authors used
Checkstyle and PMD to identify the most frequent
rule violations of four different programming courses.
The data set comprised nearly ten million static anal-
ysis errors, made by more than 3,000 students over a
five-semester time period. The analysis revealed that
formatting and documentation issues were most com-
mon. Furthermore, the results showed that, with more
experience, fewer errors are made. However, the most
frequent errors were consistent across all analyzed ex-
perience levels.

Albluwi and Salter (Albluwi and Salter, 2020)
analyzed the source code of 968 students in a Java
course for beginners from a three-semester period.

With Checkstyle, PMD, and FindBugs, more than one
million issues were identified. Similar to the results
of Edwards et al. (Edwards et al., 2017), the results
show that Formatting and Documentation were the
most frequent error categories. Their overall results
showed that those two categories account for 60% of
the total errors found. The authors also provided static
analysis tools to the students and monitored the dif-
ference in error numbers between the initial and the
final submissions. Most of the issues got fixed before
the final submission. More specifically, only 20,3%
of the total number of issues occurred in the final sub-
missions.

Delev and Gjorgjevikj (Delev and Gjorgjevikj,
2017) present their static analysis results of C source
code from novice programmers. The data set com-
prised about 14,000 exam submission files from a
three-year period. The authors found that the most
common flaws in the submission files were issues like
uninitialized or unused variables, as well as logical
operation errors.

Keuning et al. (Keuning et al., 2017) analyzed the
type and frequency of code quality issues that oc-
cur in two million Java programs of novice program-
mers. They also investigate whether students are able
to solve these issues and whether solving code qual-
ity issues is improved when students have code anal-
ysis tools installed. Interestingly, the study by Keun-
ing et al. revealed that most issues are rarely fixed, es-
pecially when they are related to modularization. An-
other finding was that the use of tools has little effect
on issue occurrence.

Brown and Altadmri (Brown and Altadmri, 2017)
investigate in their study whether educators have an
accurate understanding of the mistakes that students
often make. The study reveals that educators have
only a weak consensus about the frequency of errors
novice programmers make. Also, the beliefs of the
educators are not in line with the analysis results of
the Java programs. This mismatch makes more stud-
ies on programming issues necessary to help educa-
tors understand where students need better support.

3 COURSE SETUP

In this section, we briefly describe the main concepts,
as well as the structure of our introductory program-
ming course. The course is mandatory in the first
semester of the Business Informatics bachelor pro-
gram at our university. Each year approximately 150
to 200 students are attending the course. The goal of
the course is to teach basic programming principles
and to further introduce students to software develop-

CSEDU 2023 - 15th International Conference on Computer Supported Education

350



ment with the Java programming language. Java was
chosen deliberately, as subsequent courses, building
on top of this course, rely on and require students
to have basic programming knowledge in Java. The
course starts with a basic introduction to program-
ming principles (statements, conditions, loops, data
types), covers the foundations of Java programming
(methods and arrays), and concludes with object ori-
entation, and basic inheritance principles.

With 6 ECTS credits (corresponding to approxi-
mately 150 hours of work), the course consists of two
separate parts. First, a weekly lecture, where atten-
dance is optional (but highly recommended), and sec-
ond, a weekly exercise with mandatory attendance.
Lecture: This part consists of a 90-minute slide-
based lecture, covering one topic per week, over the
course of 14 weeks. The slides are augmented with
live-coding sessions in which the lecturer presents
programming examples, supporting students with
hands-on experience. Slides and programming ex-
amples are provided to the students, alongside an op-
tional textbook. We encourage students to read the
book chapter and/or familiarize themselves with the
topic that is covered before the lecture and prepare
questions.
Excercise: The exercise is synchronized with the lec-
ture and takes place in the same week (typically one or
two days after the lecture). Students are divided into
several smaller exercise groups of approximately 30
people. In order to provide an optimal learning expe-
rience, we have recently adopted a new teaching con-
cept specifically designed for teaching STEM classes
at the university level. It has a strong focus on dis-
covery and cooperative learning, and instead of solely
relying on front-of-class teaching, the exercise is split
into three parts.

In the first part (Repetition and Questions) the
lecturer summarizes the most important concepts of
the previous lecture and provides additional exam-
ples and code snippets. During this time, students are
encouraged to ask clarification questions. The sec-
ond part (Discovering) is dedicated to self-learning.
Students have time to take a look at what we call
“Reading Corners”, where we provide sample solu-
tions, step-by-step exercises, and examples related to
the topic. The third part (Pair Programming) of the
90-minute exercise is dedicated to teamwork and pair
programming. Students work together in groups of
two or three on their weekly assignments.

Beginning with 2020, due to the COVID pan-
demic, lectures and exercises were both held online.
Despite not having students physically present in the
classroom, we tried to follow the same teaching con-
cepts previously introduced as close as possible. Pair

programming sessions were performed in breakout
Zoom rooms, and the lecturer was called for help
when needed. Students shared their screens or used
the collaborative online editor to work together on
the assignments. Additionally, a lecturer visited each
team at least once during the pair programming ses-
sion.
Homework Assignments: The weekly homework
assignments are composed of several smaller exam-
ples, typically five to six individual tasks, includ-
ing different types of tasks. Besides “traditional”
programming tasks, we also include tasks such as
reading, understanding, and describing code snippets.
Each student has to submit the weekly homework as-
signment tasks electronically within one week.

During the semester, we hand out ten assignments
out of which a minimum of eight must be submitted.
If more are submitted, we only consider the best eight
assignments when calculating the final grade. With
regards to grading, assignments are manually graded
by a tutor, typically a student in a higher semester, that
has Java programming experience. The tutors are pro-
vided with grading guidelines provided by the lecturer
to ensure consistent grading. As part of the feedback,
students not only receive points for each assignment,
but tutors provide detailed feedback about the errors
made by the students as well as the quality of the code
and the way the solution is implemented.

Additionally, complementing the lectures and ex-
ercises, a weekly tutorial is offered. Attendance to
the tutorial is optional and run by a tutor where sup-
port is provided to students who experience problems
or have questions about the assignment.
Teaching Materials: Besides lecture slides and
homework assignments, the students receive differ-
ent learning materials for studying the course con-
tents. They are provided with supporting literature
in the form of books, summary slides of the exercises
with additional examples, and a weekly Reading Cor-
ner that contains sample solutions and step-by-step
examples to foster pattern recognition and discovery
learning. In addition, links to videos are provided that
contain further examples and coding sessions. While
the teaching material does include guidelines, recom-
mendations, and best practices for Java programming,
it is part of the lecture and we do not present this as
a separate topic, but blend these into the first three
lectures and exercises. We present best practices and
guidelines regarding variable, method, (and later on)
class names as well as braces in control structures.
Exam: Students have to take an exam at the end of the
semester. The final grade is a result of both the assign-
ment and exam results. In order to pass the course,
students have to (1) receive at least 50% of the total

Common Code Quality Issues of Novice Java Programmers: A Comprehensive Analysis of Student Assignments

351



points for the exam, and (2) hand in at least eight out
of the ten homework assignments, with at least 50%
of the available points for the homework assignments.

4 STUDY

In order to gain insights into common mistakes stu-
dents make, we collected and analyzed data from
homework assignments of the last two years of our
introductory programming course. We performed a
static code analysis of all submitted assignments and
analyzed the results with respect to mistakes and vio-
lations of practices and the development of these vio-
lations over the course. Based on this data, we answer
the following two research questions:
RQ1: What are the most common issues with regard
to code quality? With this first research question,
we investigated which best practice and code quality
rules were violated most by the students of our course.
RQ2: How do the quality issues develop over the
course and are they related to different assignment
topics? For the second research question, we inves-
tigated the different types of rules and the number of
violations with respect to the different topics that were
part of the assignments. We were particularly inter-
ested in whether students learn to follow best prac-
tices and whether rule violations differ between the
assignment topics.

4.1 Data Collection and Analysis

We collected data from the assignments submitted by
our students from the winter terms of 2019 and 2020.
Therefore, we downloaded all submitted Java files
from the course management platform of our univer-
sity and anonymized the data for privacy protection.
We removed the student names and IDs, but retained
information regarding the year, the topic, and the as-
signment the files belong to.

For the analysis, we used the static code analysis
tool PMD1 with a custom set of rules. Starting from
the 445 rules included in the default PMD rule set,
we removed rules that were not deemed relevant for
the analysis, based on the following exclusion crite-
ria: we excluded (1) all non-Java rules. We further
eliminated (2) all rules that cover aspects not rele-
vant for our course (e.g., rules from categories such
as Documentation, Multithreading, and Security) as
these are not part of the topics covered in introduc-
tory programming. The final rule set contained 108
rules from five different categories: 15 rules from the

1https://pmd.github.io

Best Practices category, 21 rules from Code Style, 20
from Design, 38 from Error Prone, as well as 14 from
Performance (see Figure 1a).

We developed several Python scripts for automat-
ically extracting data and analyzing the Java files for
rule violations. We further calculated the lines of code
for each submitted assignment. The result analysis
and visualization were performed with the data ana-
lytics platform Qlik Sense2.

4.2 Results

Table 2 provides an overview of the collected data. In
total, we analyzed data from homework assignments
of 284 students participating in our introductory pro-
gramming course for two consecutive years. We had
around 20% more participants in 2020 compared to
2019 which lies within the typical limits of variation
we see in our first-semester courses. In total, we ana-
lyzed more than 13,000 Java files with a total of over
400,000 lines of Java code for all assignments. In
2019, we had on average, 113 submissions per as-
signment with a maximum of 127 submissions (as-
signment 2) and a minimum of 73 submissions (as-
signment 10). In 2020, we had 129 submissions on
average, with a maximum of 154 (assignment 1) and
a minimum of 85 (assignment 10).

In total, the submitted homework assignments
contained over 60,000 rule violations, corresponding
to roughly 14.5 violations per 100 LLOC. The viola-
tions per 100 LLOC are slightly higher for 2019, even
though we observed a larger number of rules violated
in 2020 (62 PMD rules in 2020 compared to 56 in
2019).

4.2.1 Common Code Quality Issues

To identify common violations of best practices and
code quality rules in our course, we analyzed the dis-
tribution of rule violations among the five categories.

Figure 1a provides an overview of the distribu-
tion of the analyzed rules among the five rule cate-
gories. With over one third (35.2%), Error Prone is
the most examined category. This category includes
rules such as empty statements or missing breaks in
switch statements. Code Style and Design, make up
19,4% and 18,5% of the rule set. Code Style rules in-
clude naming conventions or duplicate imports. De-
sign rules include deeply nested if-statements, or ex-
cessive method or class lengths. Best Practices and
Performance are the least represented categories with
less than 15% each. Examples of Best Practice rules
include rules checking for unused imports, or unused

2https://www.qlik.com/de-de/products/qlik-sense

CSEDU 2023 - 15th International Conference on Computer Supported Education

352



Table 1: Overview of top 10 violated PMD rules (PMD, 2021) and their categories (CS=Code Style, BP=Best Practices,
D=Design).

Rule Cat. Description

ShortVariable CS Checks minimum length of field, local variable, or parameter names
ControlStatement Braces CS Checks braces on ‘if . . . else’ statements and loops
Useless Parentheses CS Checks for superfluous parentheses
ClassNaming Conventions CS Checks for standard Java naming conventions of a class (camel case,

no special characters, . . . )
LocalVariable
NamingConvents

CS Checks for standard Java naming conventions of local variables

AvoidReassigning Parameters BP Checks if a parameters of methods are reassigned
UnusedLocalVariable BP Checks if a variable is declared and/or assigned, but not used
UnnecessaryLocal
BeforeReturn

CS Checks for unnecessary local variables in methods

SimplifyBoolean Expression D Checks unnecessary comparisons in boolean expressions
ConfusingTernary CS Checks for confusing (negated) if expressions with an ”else” clause

(a) Distribution of Checked Rules among Categories (b) Distribution of Rule Violations among Categories

Figure 1: Rule and Violation Distribution for Checked PMD Rules.

methods and local variables. Performance rules in-
clude instantiations of objects and inefficient checks
(cf Table 1).

By far the most violations we observed fall into
the Code Style category (83,2%), followed by Best
Practices (8,5%) and Error-Prone (4,3%). Only few
rule violations belong to the categories Design (3,6%)
and Performance (0,4%). Figure 1b shows the distri-
bution of rule violations among these categories in all
assignments of 2019 and 2020.

Figure 2 presents the top ten violated rules of all
homework assignments for the years 2019 and 2020.
The calculation is based on the number of rule viola-
tions per 100 LLOC. Colors represent the categories
(cf. Figure 1a) the rules belong to. Seven out of ten,

Table 2: Overview of the collected data and static code anal-
ysis results.

Year 2019 2020 Total

Nr. of Students 127 157 284
Java Class Files 6,426 7,239 13,665
Total LLOC 162,611 252,091 414,702
Violated PMD Rules 56 62 63
Rule Violations 25,626 34,631 60,257
Violations/100 LLOC 15.76 13.74 14.53
Avg. Violation/Ass. 20.18 22.06 21.22
Avg. LLOC/Ass. 128.04 160.57 146.02

including the top five, rule violations belong to the
Code Style category. Two rules belong to the Best

Common Code Quality Issues of Novice Java Programmers: A Comprehensive Analysis of Student Assignments

353



Practices category and one to Design. Most rule vio-
lations are related to short variable names. Class and
local variable naming conventions are the fourth and
fifth of all rule violations. Problems related to paren-
theses are second and third of all violations. The other
rule violations among the top ten are reassigning pa-
rameters, unused local variables, unnecessary local
variable before return, complex boolean expressions,
and confusing ternaries.

With regards to RQ1 and the most common issues
we have observed, simple code style/coding conven-
tion violations were by far the most common viola-
tions. This includes naming conventions for variables,
methods, and classes, as well as structuring loops and
conditions. This is not surprising, as the topics cov-
ered by our course mostly deal with simple programs,
control structures, and methods. All of these guide-
lines were part of the course material, and were also
mentioned by the tutors during assignment grading.
However, while we did encourage students to follow
them, we did not strictly enforce them, e.g., by de-
ducting points.

4.2.2 Development Throughout the Course

In a second step, we were interested if, and to what
extent, quality issues changed over the course of the
semester. Therefore, we analyzed the different types
of rules and the number of violations with regards to
the different topics that were part of the assignments.
We were further interested in the change of violated
rules to uncover any connections between topics and
specific rules.

For this, we examined the top ten violated rules
for each of the ten assignments. This analysis re-
vealed that the most violated rule over all assign-
ments, short variable name, is the top violated rule
in seven out of the ten assignments. In the remain-
ing three assignments it was the second most vio-
lated rule. In the first assignment, in which students
had to develop simple programs without any control
structures, local variable naming conventions were vi-
olated the most. In assignments three (covering the
topics of if-statements and loops) and four (covering
the topic of methods), we observed that students had
the most difficulties with parentheses. Overall, there
are only slight variations with regard to the violated
rules among the assignments. For example, rules re-
lated to switch statements mostly occur in assignment
three, as this is the assignment that explicitly covers
this topic. Generally, the number of violations related
to naming conventions grows over the course of the
semester, which means that students tend to put less
emphasis on naming conventions as assignments get
more complex and comprehensive.

Sh
ort

Va
ria

ble Con
tro

l

Sta
tem

en
t

Brac
es Usel

es

Par
en

the
ses

Clas
sN

am
ing

Con
ve

nti
on

s

Loc
alV

ari
ab

le

Nam
ing

Con
ve

nti
on

s

Av
oid

Re
ass

ign
ing

Par
am

ete
rs

Unu
sed

Loc
alV

ari
ab

le

Unn
ece

ssa
ryL

oca
l

Befo
reR

etu
rn

Sim
plif

yB
oo

l.

Ex
pre

ssi
on

s

Con
fus

ing

Ter
na

ry
0

1

2

3

4

5

6

Vi
ol

at
io

ns
/1

00
LL

OC

5.94

1.97 1.85

0.82
0.58 0.46 0.32 0.31 0.24 0.22

Figure 2: Top Ten Violated Rules Across all Assignments
(purple: Code Style, red: Best Practices, blue: Design).

Figure 3 provides an overview of the number of
rule violations per 100 LLOC for each of the ten as-
signments separately for 2019 and 2020. Overall, the
number of rule violations in relation to the lines of
code students write grows over the course. The more
complex the assignments get, the more rule violations
are detected. The numbers are quite consistent for
2019 and 2020, except for assignment 5 in which the
2020 students performed better, and assignments 8
and 9 in which the 2019 students performed better.

Over the ten assignments, we are facing a drop out
of students in our course. Also, to pass the course,
students have to hand in at least eight out of the ten
assignments. While the first eight assignments are
typically handed in by the majority of the students,
this number typically drops for assignments nine and
ten. In 2019, for example, assignments 9 and 10 were
only handed in by 92 and 73 students (out of 127 stu-
dents that were part of the course at the beginning),
respectively. We can observe a similar drop in 2020.

With regards to RQ2, how quality issues develop
over the course, if they are related to different assign-
ment topics, we can conclude that the types of rule
violations do not change significantly, and the num-
ber grows with the size of the programs. As dis-
cussed above, the fact that the types of rule violations
stay rather consistent over the course is not surpris-
ing. Still, we were hoping that basic code style would
improve since we covered the rules in the lecture and
the tutors continuously made remarks. Unfortunately,
we could not observe a learning effect with respect to
code quality in our course.

CSEDU 2023 - 15th International Conference on Computer Supported Education

354



0 5 10 15 20 25
Violations/100LLOC

Ass 1

Ass 2

Ass 3

Ass 4

Ass 5

Ass 6

Ass 7

Ass 8

Ass 9

Ass 10

As
sig

nm
en

t

13.51

12.36

10.03

9.01

17.9

15.61

15.71

17.34

11.89

19.35

12.66

13.97

12.82

9.83

12.07

18.09

18.49

23.98

18.36

19.35 2019
2020

Figure 3: Violations/100LLOC per Assignment for 2019
and 2020.

5 DISCUSSION

In this section, we discuss the results and findings
from our analysis and present three recommendations
intended to establish best practices and improve code
quality.

While we did introduce a small set of Java pro-
gramming practices and guidelines early on in our
course, and tutors repeatedly reminded students dur-
ing the assignments, this was not the main focus of
the lectures and assignments. Thus, students did pay
scant attention to these guidelines which is consis-
tent with the results we observed for the different as-
signments. While some guidelines, especially those
pertaining to object-oriented programming, are only
important in later parts of the course, fundamental
ones such as naming conventions affect even simple
programs. One concrete improvement we are plan-
ning in our course is to gradually introduce guide-
lines throughout the semester and repeat them after
each lecture, not just as a side note, but as an integral
part of the teaching material that will also be enforced
more rigorously during assignment and exam grading.
We also plan to include best practices in the weekly
Reading Corner as part of the assignment.

Repetition: Introduce Best Practices and guide-
lines early on and keep repeating them throughout
the course. Provide example solutions that focus
on code quality to foster pattern recognition and
discovery learning.

The weekly homework assignments in our course
include different types of tasks. They contain pro-
gramming tasks as well as tasks such as reading, un-
derstanding, and describing code snippets. The dif-
ferent tasks support individual learning paths, needs,
and interests (Sabitzer and Strutzmann, 2013). One
concrete step we plan to address these code quality
issues in the future is to include new types of tasks
in homework assignments. These tasks could include
code snippets in which the students have to detect and
fix code quality issues.

Specific Tasks: Provide tasks that explicitly focus
on code quality.

Analyzing the top ten rule violations throughout
the course revealed that students have problems with
naming conventions and parentheses. There are only
slight variations among the assignments and the top-
ics covered. Existing work shows that novice pro-
grammers hardly fix code quality issues reported by
code analysis tools (Keuning et al., 2017) even when
explicitly presented. We thus suggest limiting the an-
alyzed rules to the ten most common ones. Reports
created by code analysis tools might be too complex
and detailed for novice programmers. One way to
address this could be customized rule violation mes-
sages that are easy to understand for beginners. In the
future, we will use a static code analysis tool such as
PMD but limit the rule set and also present the results
to the students in an easy-to-understand manner.

Focus: Limit the rules to the ten most important
ones and provide automated feedback to the stu-
dents. Present simple and easy-to-understand rule
violation messages.

6 THREATS TO VALIDITY

Our research is subject to a number of threats to va-
lidity. Our study is limited to one university and the
number of students participating in the course, which
is a threat to external validity. The data we analyzed
covers two years of the course. As their results only
differ slightly, we are confident that the results would
be similar for further years. Moreover, as our findings
yield similar results as other studies, we are confident
that some observations are generalizable for other in-
troductory programming courses.

The number of submitted assignments is inconsis-
tent throughout the semester. This is partly because
only eight out of ten assignments have to be submit-

Common Code Quality Issues of Novice Java Programmers: A Comprehensive Analysis of Student Assignments

355



ted in order to pass the course. Also, some students
quit the course and only submit the first few assign-
ments. Our analysis does not confirm that the first as-
signments, which include most students, contain more
rule violations than the latter ones.

We selected a specific subset of the PMD default
rule set for our analysis (108 out of 445), posing a
threat to construct validity. We only chose rules suit-
able for the Java programming language and excluded
rules that cover topics not relevant to our course.

7 CONCLUSION

In this paper, we report on a study analyzing code
quality in an introductory programming course. The
main goal of this work gain insights into difficulties
our students are facing, particularly with respect to
best practices, coding conventions, and code quality.
We performed a static code analysis of homework as-
signments of the previous two iterations of our course.
The findings show that the majority of rule violations
are related to coding style without much difference
with respect to the topics of our course. Also, the rule
violations do not change much over time.

Based on our analysis we discuss lessons learned
and recommendations for improving the code qual-
ity of novice programmers. We suggest repetitively
including best practices in teaching and learning ma-
terials and presenting only a very limited set of rules
to the students in order to foster deeper understand-
ing, without creating unnecessary confusion. Assign-
ments explicitly focusing on code quality might fur-
ther improve the learning outcomes.

REFERENCES

Albluwi, I. and Salter, J. (2020). Using Static Analysis
Tools for Analyzing Student Behavior in an Intro-
ductory Programming Course. Jordanian Journal of
Computers and Information Technology (JJCIT), 6.

Altadmri, A. and Brown, N. C. (2015). 37 million compila-
tions: Investigating novice programming mistakes in
large-scale student data. In Proceedings of the 46th
ACM Technical Symposium on Computer Science Ed-
ucation, SIGCSE ’15, page 522–527, New York, NY,
USA. Association for Computing Machinery.

Brown, N. C. C. and Altadmri, A. (2017). Novice java
programming mistakes: Large-scale data vs. educator
beliefs. ACM Transactions on Computing Education,
17(2).

Delev, T. and Gjorgjevikj, D. (2017). Static analysis of
source code written by novice programmers. In Pro-
ceedings of the 2017 IEEE Global Engineering Edu-
cation Conference.

Edwards, S. H., Kandru, N., and Rajagopal, M. B. (2017).
Investigating Static Analysis Errors in Student Java
Programs. In Proceedings of the 2017 ACM Con-
ference on International Computing Education Re-
search. ACM.

Keuning, H., Heeren, B., and Jeuring, J. (2017). Code qual-
ity issues in student programs. In Proceedings of the
2017 ACM Conference on Innovation and Technol-
ogy in Computer Science Education, pages 110–115.
ACM.

Krusche, S., von Frankenberg, N., Reimer, L. M., and
Bruegge, B. (2020). An interactive learning method
to engage students in modeling. In Proceedings of the
ACM/IEEE 42nd Int’l Conference on Software Engi-
neering: Software Engineering Education and Train-
ing, pages 12–22.

Lahtinen, E., Ala-Mutka, K., and Järvinen, H.-M. (2005).
A study of the difficulties of novice programmers.
SIGCSE Bull., 37(3):14–18.

McDowell, C., Werner, L., Bullock, H., and Fernald, J.
(2002). The effects of pair-programming on per-
formance in an introductory programming course.
SIGCSE Bull., 34(1):38–42.

Milne, I. and Rowe, G. (2002). Difficulties in Learn-
ing and Teaching Programming—Views of Students
and Tutors. Education and Information Technologies,
7(1):55–66.

PMD (2021). Ruleset. https://pmd.github.io/latest/pmd
rules java.html. [Last accessed 01-01-2022].

Sabitzer, B., Groher, I., Sametinger, J., and Demarle-
Meusel, H. (2020). Cool programming: Improving
introductory programming education through cooper-
ative open learning. In Proceedings of the 2020 9th
International Conference on Educational and Infor-
mation Technology, ICEIT 2020, page 95–101, New
York, NY, USA. ACM.

Sabitzer, B. and Strutzmann, S. (2013). Brain-based pro-
gramming: A new concept for computer science ed-
ucation. In Proceedings of the 18th ACM Conf. on
Innovation and Technology in Computer Science Ed-
ucation, ITiCSE ’13, page 345, New York, NY, USA.
ACM.

Watson, C. and Li, F. W. (2014). Failure rates in intro-
ductory programming revisited. In Proceedings of
the 2014 Conf. on Innovation & Technology in Com-
puter Science Education, ITiCSE ’14, page 39–44,
New York, NY, USA. Association for Computing Ma-
chinery.

Williams, L. and Upchurch, R. L. (2001). In sup-
port of student pair-programming. SIGCSE Bull.,
33(1):327–331.

CSEDU 2023 - 15th International Conference on Computer Supported Education

356


