
An Evaluation Method and Comparison of
Modern Cluster-based Highly Available Database Solutions

Raju Shrestha a and Tahzeena Tandel
Oslo Metropolitan University (OsloMet), Oslo, Norway

Keywords: High Availability, Database, Cloud Computing, Replication, Multi-Master, Clustering, Evaluation,
Comparison.

Abstract: High availability in cloud computing is a top concern which refers to keeping a service operational and
available for the maximum amount of time without downtime. In any given application and service, the high
availability of the database plays a critical role in the application’s high availability as a whole. Modern
cluster-based multi-master technologies provide high availability database solutions through synchronous
replication. Different database management systems offer different technologies and solutions for high
availability. This paper proposes a comprehensive method for the evaluation of high availability database
solutions. As a comparative case study, two modern high availability database solutions which are open-source
and available for free use, namely the Percona XtraDB Cluster and the MySQL NDB Cluster are used.
Benchmark tests with standard CRUD database operations and analysis of the test results show that no single
solution is superior to the other in all scenarios and needs. Therefore, one should choose an appropriate
solution wisely depending on the needs for an application or service. The proposed evaluation method would
be useful to get insights into which solution is effective for a given application and hence it can be used in
making an informed choice among different solutions at hand.

1 INTRODUCTION

An application or service is said to be highly available
if it is operational and available for a higher than
normal period without downtime (Endo et al., 2016).
Availability is usually expressed as apercentage of
uptime in a given year (e.g., 99.999%) (Piedad and
Hawkins, 2008). As most of the modern cloud-based
applications and services are database driven, high
availability of database or highly availabe database
(HADB) is critical to the high availability of the
application or service as a whole.

Data replication techniques are primarily used
for making databases highly available in distributed
systems (Gopinath and Sherly, 2018) such as
peer-to-peer systems (Ezéchiel et al., 2017), mesh
networking (Milani and Navimipour, 2017) and
distributed data management systems (Liu and
Vlassov, 2013). Many technologies and solutions
have been proposed for achieving database high
availability ranging from simple and traditional
data replication to clustering for providing as
highly available as 99.999%. HADB aims for

a https://orcid.org/0000-0001-6409-8893

reduced downtime as well as for reduced response
time and increased throughput (Hvasshovd et al.,
1995). Different applications demand different
levels of availability (Dahiya and Ahlawat, 2015).
While mission-critical applications cannot afford any
downtime and demand continuous service uptime,
i.e., 100% availability of both read and write access.
The higher the level of availability needed, the higher
will be the level of complexity and cost associated
with it.

In recent years, modern cluster-based
architectures have gained much attention as
alternatives to traditional master-slave architectures
because of their promising features to deliver
continuous availability and enhanced performance.
They are mostly based on multi-master technology
and synchronous replication to address data
inconsistency, eliminate single point of failure, and
use architectures designed to provide higher levels of
availability. Percona XtraDB Cluster (Percona, 2022)
and MySQL NDB Cluster (MySQL, 2022) are the
two examples of major cluster-based technologies
that are available open-source.

Shrestha, R. and Tandel, T.
An Evaluation Method and Comparison of Modern Cluster-Based Highly Available Database Solutions.
DOI: 10.5220/0011714400003488
In Proceedings of the 13th International Conference on Cloud Computing and Services Science (CLOSER 2023), pages 131-138
ISBN: 978-989-758-650-7; ISSN: 2184-5042
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

131

Having many different solutions available, an
obvious challenge one has to face is the selection
of a suitable solution among them. In this paper, a
comprehensive method for evaluating and comparing
HADB solutions is provided. We believe the method
helps get insight into the different technologies and
in turn, helps choose a suitable HADB solution for
a given application. As a case study, two popular
technologies, Percona XtraDB Cluster and MySQL
NDB, Cluster, are evaluated and compared both
quantitatively and qualitatively.

2 BACKGROUND AND RELATED
WORKS

Data replication is a primary approach used for highly
available databases. There are basically two data
replication technologies: master-slave replication and
cluster-based multi-master replication. In master-
slave database replication, a master database server
handles data writes, while multiple slave servers are
used to read data, thus supporting read scalability
(Wiesmann and Schiper, 2005; Curino et al., 2010).
Any changes in the master database are replicated
in the slaves asynchronously. When the master
fails, one of the slaves is automatically promoted
to the master. Asynchronous replication doesn’t
guarantee the delay between applying changes on
the master and propagation of changes to the
slaves, which may cause data inconsistencies when
something goes wrong in the master database server
in the middle of a transaction. Thus, master-slave
replication doesn’t guarantee consistency, one among
the three: consistency, availability, and partition
tolerance in Brewer’s CAP theorem (Brewer, 2012).
Some database systems support semi-synchronous
master-slave replication (Dimitri, 2017) to mitigate
the problem. Multi-master cluster-based database
replication techniques address data inconsistency
problems through synchronous replication. In
synchronous replication, users can both read from and
write to any of the replicas (Ezéchiel et al., 2017).
For high availability databases, different database
management systems support different solutions.
Section 3 gives an overview of some of the
major HADB solutions offered by different Database
Management Systems (DBMSs).

A performance-based comparative study between
master-slave and cluster-based HADB solutions
showed that master-slave replication performs equal
or better in terms of throughput and response
time (Shrestha, 2017). However, cluster-based

solution is superior when it comes to high avail-
ability, data consistency, and scalability as it offers
instantaneous failover, no loss of data, and both
read and write scalability. Another study found that
container-based setup performed better compared to
virtual machine-based setup (Shrestha, 2020). In both
studies, performance was evaluated through Sysbench
online transaction processing benchmark tests using
two quantitative performance metrics, throughput,
and response time.

(Ha et al., 2016) compared performance of
HADB in PostgresSQL with two different replication
managers, same-containment Keepalived-RepMgr
and cross-containment HAProxy-PgBouncer. They
defined different workloads for performance testing
using Apache JMeter and reported results for
throughput, and response time. They concluded that
the performance of HAProxy-PgBouncer is better for
throughput with load balancing abilities as compared
to Keepalived-RepMgr.

Literature study showed that most of the previous
studies on HADB solutions use one particular
database management system and they mainly use
quantitative metrics in their evaluation. In this
paper, we tried to address this through a systematic
evaluation of HADB solutions both quantitatively
and qualitatively, and at the same time focusing on
modern cluster-based solutions.

3 OVERVIEW OF HIGH
AVAILABILITY DATABASE
SOLUTIONS

Among open-source databases, MySQL and Mari-
aDB are embedded with solutions such as data
replication for data backup, clustering with shared
storage, shared-nothing architecture, and clusters
replicated in geographical locations. Master-slave
architecture has been in the ecosystem for a long time
as a HADB solution in databases such as MariaDB,
MySQL, and Microsoft SQL Server. MongoDB
provides master-slave replication through replica sets,
which use elections to support high availability (Gu
et al., 2015). Elections occur when the primary
becomes unavailable and replica set autonomously
select a new primary. MongoDB can also use
sharding to distribute large data to multiple instances.

Most of the modern DBMSs support cluster-based
multi-master replication for highly available
databases. Microsoft SQL Server supports multi-

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

132

master Peer-to-Peer (P2P) replication1, in which
each node is both a publisher and a subscriber.
Data is replicated in multiple nodes and apply the
changes to the destination in near real-time. It is
a good scaling solution for reads as they can be
serviced through multiple nodes. High availability
is achieved by routing the writes from the failed
node to the live node. P2P replication has an issue
in that there could be some latency while applying
data changes to other nodes and hence data loss
can occur (Mishra et al., 2008). Microsoft SQL
Server offers a new high availability solution, called
Failover Cluster Instances (FCI) with always-on
Availability Groups (AGs). FCI leverages Windows
Server Failover Cluster (WSFC), which is a group of
independent servers that work together to increase
the availability of applications and services to support
always-on availability groups (Parui and Sanil,
2016). The always-on availability groups feature is a
high-availability and disaster-recovery solution that
provides an enterprise-level alternative to database
mirroring. An FCI is used to host an availability
replica for an availability group.

PostgresSQL supports bidirectional replication
(BDR) as an enhanced feature for high availability
multi-master solutions (Raja and Celentano, 2022). It
uses a standby replica for each master, with a master
replica forming a cluster. Data flows from both master
to standby and from standby to master with streaming
logical replication. BDR, thus, has both physical
and logical replication providing strong resiliency.
BDRv3 supports fully automatic replication of both
Data Manipulation Language (DML)) and Data
Definition Language (DDL). Commit At Most Once
(CAMO) ensures that any in-flight transactions with
unknown states are fully resolved.

Oracle offers various architectures for different
level of high availability2. Among them, cluster-
based Oracle Real Application Clusters (RAC) and
Oracle Data Guard is the most comprehensive
architecture, which reduces downtime for scheduled
outages with premention, detection, and recovering
mechanisms from unscheduled outages, and provides
the highest level of availability. Oracle RAC is
a shared everything database, which uses Oracle
Clusterware, a cluster management solution that binds
a pool of servers into the cluster, providing maximum

1Microsoft SQL Sever Peer-to-Peer Transactional
Replication, https://learn.microsoft.com/en-us/sql/
relational-databases/replication/transactional/peer-to-
peer-transactional-replication

2Oracle High Availability Architectures and Solutions,
https://docs.oracle.com/cd/E11882 01/server.112/e17157/
architectures.htm

write-scalability. It is recommended that Oracle
RAC and Oracle Data Guard reside on separate
clusters and data centers. Oracle Data Guard supports
both synchronous mode for maximum protection and
availability of data, and asynchronous mode for better
response time in systems with a network bottleneck.

Among others, MariaDB Galera Cluster (Mari-
aDB, 2022), Percona XtraDB Cluster (Percona,
2022), and MySQL NDB Cluster (MySQL, 2022),
are three widely used open-source cluster-based
multi-master HADB solutions. Percona XtraDB
Cluster is a variant of Galera Cluster3. We used
Percona XtraDB Cluster and MySQL NDB Cluster
as a case study in our comparative study in this
paper because they are free, modern, and open source
and they use different storage engines. The two
technologies are described briefly below.
Percona XtraDB Cluster (PXDB) is a synchronous
multi-master clustering technology, which uses
certification-based replication. It uses the Percona
server for MySQL and Galera library with write
set replication (wsrep). Recommended configuration
is to have at least 3 nodes, but one can make
it run with 2 nodes as well (Tkachenko, 2012).
For data consistency, the XtraDB storage engine,
a drop-in equivalent to the InnoDB storage engine
with an enhanced set of features, is used and data
is kept synced in all the nodes through synchronous
replication of Data Defination Language (DDL)
and Data Manipulation Language (DML) actions.
PXDB uses Galera replication protocol for DML
actions and total order isolation for DDL actions
to ensure consistency in the cluster (Krunal, 2016).
The binary log format is set to row for row-level
replication. Certification-based replication is used
to avoid transaction conflicts. Figure 1 shows the
architecture of Percona XtraDB Cluster.

Read

Read

Read

Write

Write

Write

Node1

Node2

Node3

Group

communication

Figure 1: Percona XtraDB Cluster architecture (Tkachenko,
2012).
3Galera Cluster - A new type of highly consistent MySQL
Cluster architecture, https://www.programmersought.com/
article/6193909457

An Evaluation Method and Comparison of Modern Cluster-Based Highly Available Database Solutions

133

MySQL NDB Cluster (MNDB) is a HADB solution
for MySQL database system with an underlying stor-
age engine used is NDB (Network DataBase), which
is implemented using a distributed, shared-nothing
architecture with automatic failover and self-healing,
providing high levels of availability (MySQL, 2022).
It has three different types of nodes: management
node – used to monitor, maintain, and manage the
cluster, data node – used to store data, and SQL
node – used to access data in data nodes. MySQL
Servers provide an SQL interface to access the data
stored in data nodes. The minimum recommended
number of nodes is four: one management, one SQL
node, and two data nodes. There can be several node
groups; each node group consists of one or more data
nodes. However, one can make it work with one data
node as well. The cluster is available till one node in
each node group is alive. MNDB has a built-in fault
tolerance with a heartbeat mechanism, where each
table created gets partitioned into data nodes, each
data node holding its own primary replica and also a
copy of secondary replica. Replication in data nodes
is performed synchronously using a protocal called
a two-phase commit. (Mether, 2013; King, 2015).
Figure 2 shows the MNDB Cluster architecture.

Applications

SQL Nodes

Data Nodes

Management
Node

Management
Client

Figure 2: MySQL NDB Cluster architecture (Mether,
2013).

4 EVALUATON METHOD

The proposed method for evaluating and comparing
HADB technologies or solutions consists of quali-
tative and quantitative evaluations based on various
attributes and metrics. They are described in the
following subsections.

4.1 Qualitative Evaluation

HADB solutions can be compared qualitatively based
on their type and support in terms of five different
attributes. They are architecture, replication type,

scale-out, level of availability, and automatic failover
support.
Architecture: Basically, architecture could be either
master-slave or multi-master. Some DBMSs use the
term primary-secondary for the master-slave. Archi-
tecture also defines the minimum or recommended
number of nodes required for a HADB setup.
Replication Type: A HADB could offer either
asynchronous or synchronous or both.
Scale-Out: Scale-out support is an essential feature
in a cloud infrastructure. The scale-out attribute
defines whether a HADB supports scaling of
read-only or both read and write.
Availability: Availability attribute indicates the level
of database availability. We have defined three levels
as low (90% or below), medium (90-99%), and high
(above 99%).
Automatic Failover: Automatic failover is yet
another important feature in a HADB. Some HADBs
do not support failover at all, some support automatic
failover, while some other offer automatic failover.

Depending on the needs of the application at hand,
these attributes help make decisions in the selection of
an appropriate HADB solution.

4.2 Quantitative Evaluation

A quantitative comparison is done based on
performance evaluation of the HADB solutions under
benchmark tests with standard CRUD (Create, Read,
Update, and Delete) database operations. Most of
the previous studies (Ha et al., 2016; Shrestha, 2020)
used mainly two performance metrics, throughput
and response time in their performance evaluation.
Since resource usage such as CPU and memory are
also important factors that are commonly considered
while comparing different systems (Birke et al., 2012;
Kozhirbayev and Sinnott, 2017), we have added two
more metrics, CPU use and Memory use in our
quantitative comparison. The four metrics used are
defined as follows.
Throughput: Throughput is defined as the number
of transactions executed per second (tps). Higher
the throughput, the better the performance of the
HADB (Krzysztof, 2021).
Response Time: Response time (or latency) is the
time taken to execute a transaction. A lower response
time means better performance.
CPU Use: It is the percentage utilization of CPUs.
The lower the CPU use with similar setups, the better
the system is.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

134

Memory Use: It is the percentage utilization of
system memory. Just like CPU use, a lower Memory
use with similar setups means a better system.

Based on these performance metrics obtained
through experiments with the two HADB setups using
MySQL NDB Cluster and Percona XtraDB Cluster,
the two HADB solutions are evaluated and compared.

5 EXPERIMENTAL SETUP AND
TESTS

This section describes the implementation and setups
of the two HADBs, and benchmark and failover tests
conducted to evaluate and compare them.
HADB Setups: Percona XtraDB Cluster (PXDB)
and MySQL NDB Cluster (MNDB) based HADBs
are set up on the OpenStack cloud at the university
(see Figures 3 and 4). Nodes in both setups are
implemented with a virtual machine (VM), created in
a private network. Necessary security rules and ports
are opened to allow TCP/IP communication between
them. The same specification of the operating system:
Ubuntu 18.04, CPU: 1 VCPU, Memory: 2 GB, and
Storage: 20GB was used for all the database nodes.
For a fair comparison, the same total number of VMs
(four) were used in the two setups. The PXDB
setup has four database nodes and the MNDB setup
has two SQL nodes and one node group consisting
of two data nodes. MySQL NDB Cluster version
8 and Percona XtraDB version 8 were used in the
experimental setups. In both setups, a server with
HAProxy4 was used as a load balancer as well as
an application server. ClusterControl5, a database
management tool, was used to deploy, manage, and
monitor clusters.

Node1 Node2

Node3Node4

HAProxy load balancer

and Application server

ClusterControl

Figure 3: Percona XtraDB Cluster (PXDB) setup.

Benchmark Tests: Sysbench v1.0.206, a popular
and powerful database benchmarking tool, was used
to perform various benchmark tests under intensive

4HAProxy - The Reliable, High Performance TCP/HTTP
Load Balancer, http://www.haproxy.org

5ClusterControl, https://docs.severalnines.com/docs/
clustercontrol

6Sysbench, https://github.com/akopytov/sysbench

ClusterControl

Management

Node

HAProxy load balancer

and Application server

SQL

Node1

SQL

Node2

Data

Node1

Data

Node2

Figure 4: MySQL NDB Cluster (MNDB) setup.

loads. Four different benchmark tests, ReadOnly,
ReadWrite, Update, and Delete, were performed
using the Online Transaction Processing (OLTP))
benchmark that comes with Sysbench. OLTP was
used as it is close to common real-world dynamic
database-driven web applications. OLTP ReadWrite
consists of a mix of about 70% read (SELECT) and
30% write (INSERT, UPDATE and DELETE). In
these tests, a test database was prepared with 50 tables
of size 10000 rows, which took about 134MB of
disk space. The size was set so that it fits well in
the storage buffer pool in Percona XtraDB and data
memory in MySQL NDB.

Benchmark tests were run for different numbers
of threads (8, 16, 32, 64, 72) and each test was run for
120 seconds. Tests were repeated for five times and
average throughput and response time values were
used in the results and analysis. CPU and Memory
utilization were obtained using s9s ClusterControl
CLI command (Ashraf, 2017). For each test run,
average CPU and Memory usage were computed for
values taken every 30 seconds for two minutes. CPU
and Memory use amount to the resource consumption
by database engines, connection, communication,
data replication and synchronization between the
nodes, and operating system.

Failover Test: The two HADBs were also tested for
failover scenarios to see how they behave in case of
failures. PXDB was tested by abruptly disconnecting
one and two nodes from the network, while MNDB
was tested by disconnecting one SQL node and one
data node.

6 RESULTS AND DISCUSSION

Results from the study are presented and discussed
here in three different parts: benchmark test results,
failover test results, and qualitative evaluation.

Benchmark Test Results: Figures 5 and 6 show
benchmark test results in terms of throughput and
response time respectively.

An Evaluation Method and Comparison of Modern Cluster-Based Highly Available Database Solutions

135

70

620

1170

1720

2270

2820

3370

3920

8 16 32 64 72Number of threads

70

170

270

370

470

570

8 16 32 64 72

T
h

ro
u

g
h

p
u

t
(t

p
s

)

Number of threads

 ReadOnly

 ReadWrite

 Update

 Delete

PXDB MNDB

Figure 5: Benchmark test results in terms of throughput.

0

100

200

300

400

500

600

8 16 32 64 72

R
e

s
p

o
n

s
e

 t
Im

e
 (

M
ill

is
e

c
o

n
d

s
)

Number of threads

 ReadOnly

 ReadWrite

 Update

 Delete

PXDB MNDB

Figure 6: Benchmark test reults in terms of response time.

We observed that in ReadOnly and ReadWrite
tests on both HADBs, throughput didn’t increase
but rather decrease in some cases after increasing
the number of threads beyond 16 (see Figure 5).
This is because of row locking and internal resource
contention with the further increase in the threads.
In the case of Update and Delete tests, throughput
still increases slightly beyond threads 16, possibly
due to lesser resource contention. Since ReadOnly
and ReadWrite are the two most common database
operations in OLTP applications, we consider 16
threads as optimal in terms of throughput in our
setups. In terms of response time, as expected,
response time increases with the increase in the
number of threads in all the tests, though with
different degrees. ReadWrite tests have the lowest
throughput and highest response time in both
HADBs. This is because when data is written, it
needs to be replicated and synchronized with the other

nodes in a cluster which takes more time and hence
lowers throughput and increased response time.

Among the two HADBs, PXDB had significantly
higher throughput in ReadOnly tests compared to
MNDB, but the scenario was opposite in Update and
Delete tests. Both HADB performed more or less the
same in ReadWrite tests. Similar performance was
observed from the two HADBs in terms of response
time also.

Figures 7 and 8 show CPU and Memory usage
in the two HADBs under four benchmark tests. As
anticipated, CPU use increased gradually with the
increase in the number of threads in both HADBs
under all four tests. Similar behavior was observed
with PXDB in ReadWrite and Delete tests. While
memory use remained more or less constant in other
tests in both HADBs.

35

45

55

65

75

85

8 16 32 64 72

C
P

U
 u

s
e

 (
%

)

Number of threads

 ReadOnly

 ReadWrite

 Update

 Delete

PXDB MNDB

Figure 7: CPU use in different benchmark tests.

40

45

50

55

60

65

70

75

8 16 32 64 72

M
e

m
o

ry
 u

s
e

 (
%

)

Number of threads

 Readonly

 ReadWrite

 Update

 Delete

PXDB MNDB

Figure 8: Memory use in different benchmark tests.

MNDB used less or similar CPU and Memory
compared to PXDB in all the tests, indicating its
superiority in terms of both CPU and Memory use.

To provide a general overview of the performance
of the two HADBs, Table 1 gives benchmark test

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

136

results in terms of all four metrics when the number
of threads was 16. From the table, we see that MNDB
outperforms PXDB in all the tests except in ReadOnly
test, where PXDB has higher throughput and lower
response time.

Table 1: Comparative results from benchmark tests with
the two HADBs when the number of threads was 16.
Numbers shown in green indicate better performance over
the corresponding ones shown in red.
HADB Benchmark test

Metric

ReadOnly ReadWrite Update Delete

Throughput (tps) 489 89 530 515

Response time (ms) 33 204 30 32

CPU use (%) 78 64 79 71

Memory use (%) 71 62 67 51

Throughput (tps) 175 131 2434 3529

Response time (ms) 91 122 7 5

CPU use (%) 50 54 67 64

Memory use (%) 50 44 55 50

PXDB

MNDB

Failover Test Results: Failover tests show that
PXDB continued to be operational and was available
even when two random nodes were disconnected,
keeping the three minimum nodes as required by
PXDB. No failure-related hiccups were observed.
MNDB was also available and working normally
when one SQL node and one data node were
disconnected. This test confirmed that both HADBs
supported automatic failover making them highly
available as long as the minimal number of nodes are
there.
Qualitative evaluation: Comparing the two HADBs
in terms of the qualitative attributes described in
Section 4, both PXDB and MNDB are based on
multi-master architecture, with the former requiring
three recommended nodes while the latter requires
four recommended nodes (1 management node, 1
SQL node, and 2 data nodes). Both HADBs
use synchronous replication, support both read and
write scaling, with built-in automatic failover, thus
providing higher level of availability.

Based on the qualitative and quantitative evalua-
tion of the two HADBs, one can select an appropriate
solution according to the need for the application
or service at hand. For a side-by-side comparison
between different solutions (PXDB and MNDB in our
case study), we can create a simplistic comparative
table as shown in Table 2, where numeric metric
values are translated as low, moderate, and high.

The experiments conducted in the case study with
two HADB solutions, PXDB and MNDB, were based
on the setups in the OpenStack cloud setup at the
university with certain resource limitations. However,

Table 2: Comparion table between two HADBs. Better
indicators are shown in green, while relatively worse
indicators are shown in red.

Attributes PXDB MNDB

Architecture
Multi-master;

Min. 3 nodes

Multi-master;

Min. 4 nodes

Replication type Synchronous Synchronous

Scale-out Both read write Both read write

Data consistency Yes Yes

Availability High High

Throughput for Read only High Low

Throughput for ReadWrite Low High

Throughput for Update & Delete Low High

Response time for ReadOnly Low High

Response time for ReadWrite High Low

Response time for Update & Delete High Low

CPU use High Moderate

Memory use High Moderate

the results from the benchmark tests provide a general
idea about the performance of the two HADBs.

Since none of the two HADBs shows superior
performance in all aspects, one should make a wise
decision while selecting a HADB. For example, if an
application will have significantly much more read
than write, update, and delete in its database, then
it’d be wise to select PXDB over MNDB as it has
significantly better throughput and response time.
Otherwise, MNDB would be a better choice.

7 CONCLUSION

The proposed evaluation method comprising both
qualitative and quantitative evaluation provides a
systematic and comprehensive evaluation of high
availability database technologies and solutions.
Both the modern cluster-based high availability
database solutions tested and compared in our
case study, Percona XtraDB Cluster and MySQL
NDB Cluster use multi-master architecture and
synchronous replication enabling data consitency and
high availability and support both read and write
scaling. Performance-wise Percona XtraDB Cluster
has been found to offer high throughput and low
response time for ReadOnly tests while MySQL NDB
Cluster has shown superior performance with high
throughput and low response time and lower CPU and
Memory use in ReadWrite, Update, and Delete tests.
By following the proposed evaluation method, one
can evaluate, compare, and select a suitable solution
from among different solutions available at one’s
disposal, for a given application or service.

An Evaluation Method and Comparison of Modern Cluster-Based Highly Available Database Solutions

137

REFERENCES

Ashraf, S. (2017). The Command Line Interface to Clus-
terControl. Serverlines, Online: https://severalnines.
com/blog/command-line-interface-clustercontrol/.

Birke, R., Chen, L. Y., and Smirni, E. (2012). Data centers
in the cloud: A large scale performance study. In
2012 IEEE Fifth International Conference on Cloud
Computing, pages 336–343.

Brewer, E. (2012). Pushing the CAP: Strategies for
Consistency and Availability. Computer, 45(2):23–29.

Curino, C., Jones, E., Zhang, Y., and Madden, S. (2010).
Schism: A workload-driven approach to database
replication and partitioning. Proc. VLDB Endow.,
3(1-2):48–57.

Dahiya, S. and Ahlawat, P. (2015). Choosing between high
availability solutions in Microsoft SQL Server. 4:387–
391.

Dimitri, V. (2017). Different types of MySQL replication
solutions. Percona Database Performance Blog,
Online: https://www.percona.com/blog/2017/02/07/
overview-of-different-mysql-replication-solutions.

Endo, P. T., Rodrigues, M., Gonçalves, G. E., Kelner,
J., Sadok, D. H., and Curescu, C. (2016). High
availability in clouds: Systematic review and research
challenges. Journal of Cloud Computing, 5.

Ezéchiel, K. K., Agarwal, R., and Kaushik, B. N.
(2017). Synchronous and asynchronous replication. In
International Conference On Machine Learning and
Computational Intelligence.

Gopinath, S. and Sherly, E. (2018). A comprehensive
survey on data replication techniques in cloud
storage systems. International Journal of Applied
Engineering Research, 13:15926–15932.

Gu, Y., Wang, X., Shen, S., Ji, S., and Wang, J. (2015).
Analysis of data replication mechanism in NoSQL
database MongoDB. In Proeedings of the IEEE
International Conference on Consumer Electronics
(ICCE), pages 66–67, Taiwan. IEEE.

Ha, L. Q., Xie, J., Millington, D., and Waniss,
A. (2016). Comparative performance analysis
of PostgreSQL high availability database clusters
through containment.

Hvasshovd, S. O., Torbjørnsen, O., Bratsberg, S. E., and
Holager, P. (1995). The ClustRa Telecom Database:
High availability, high throughput, and real-time
response. In Proceedings of the 21st International
Conference on Very Large Data Bases, VLDB ’95,
pages 469–477, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

King, C. (2015). The trade-offs between MySQL
cluster and Master/Slave content. White paper,
https://www.datavail.com/resources/the-trade-offs-
between-mysql-cluster-masterslave.

Kozhirbayev, Z. and Sinnott, R. O. (2017). A performance
comparison of container-based technologies for the
cloud. Future Generation Computer Systems, 68:175
– 182.

Krunal, B. (2016). How Percona XtraDB cluster certifi-
cation works. Percona Database Performance Blog,
Online: https://www.percona.com/blog/2016/04/17/
how-percona-xtradb-cluster-certification-works.

Krzysztof, K. (2021). How to measure database
performance. Online: https://severalnines.com/
database-blog/how-measure-database-performance.

Liu, Y. and Vlassov, V. (2013). Replication in distributed
storage systems: State of the art, possible directions,
and open issues. In Proceedings of the International
Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery, pages 225–232.

MariaDB (2022). What is MariaDB Galera Cluster?
Online: https://mariadb.com/kb/en/what-is-mariadb-
galera-cluster/.

Mether, M. (2013). MySQL cluster internal
architecture. Online: https://mariadb.com/
files/MySQL Cluster Internal Architecture -
MariaDB White Paper - 08-26-13-001 1.pdf.

Milani, B. A. and Navimipour, N. J. (2017). A systematic
literature review of the data replication techniques in
the cloud environments. Big Data Research, 10:1–7.

Mishra, S., Mehra, P., Rao, V., and Ashok, G. (2008).
Proven SQL Server architectures for high availability
and disaster recovery.

MySQL (2022). MySQL NDB cluster 8.0. Online:
https://dev.mysql.com/doc/mysql-cluster-
excerpt/8.0/en/mysql-cluster-overview.html.

Parui, U. and Sanil, V. (2016). Introduction to Windows
Server Failover Clustering. Pro SQL Server Always
On Availability Groups, pages 45–52.

Percona (2022). Percona XtraDB cluster 8.0 documenta-
tion. Online: https://www.percona.com/doc/percona-
xtradb-cluster/LATEST/index.html.

Piedad, F. and Hawkins, M. (2008). High availability:
Design, techniques, and processes. Harris Kern’s
Enterprise Computing Institute Series. Prentice Hall.

Raja, Y. and Celentano, P. (2022). PostgreSQL
bi-directional replication using pglogical. Online:
https://aws.amazon.com/blogs/database/postgresql-
bi-directional-replication-using-pglogical.

Shrestha, R. (2017). High availability and performance
of database in the cloud: Traditional Master-slave
replication versus modern Cluster-based solutions. In
Proceedings of the 7th International Conference on
Cloud Computing and Services Science, CLOSER,
pages 413–420, Portugal. SciTePress.

Shrestha, R. (2020). Performance of cluster-based
high availability database in cloud containers. In
Proceedings of the 10th International Conference on
Cloud Computing and Services Science, CLOSER,
pages 320–327. SciTePress.

Tkachenko, V. (2012). Percona XtraDB Cluster
Feature 1: High availability. Online:
https://www.percona.com/blog/2012/01/17/xtradb-
cluster-feature-1-high-availability/.

Wiesmann, M. and Schiper, A. (2005). Comparison of
database replication techniques based on total order
broadcast. IEEE Transactions on Knowledge and
Data Engineering, 17(4):551–566.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

138

