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This paper proposes an iterative intermediate domain generation method using low- and high-pass filters.
Domain shift is one of the prime reasons for the poor generalization of trained models in most real-life appli-
cations. In a typical case, the target domain differs from the source domain due to either controllable factors
(e.g., different sensors) or uncontrollable factors (e.g., weather conditions). Domain adaptation methods bridge
this gap by training a domain-invariant network. However, a significant gap between the source and the target
domains would still result in bad performance. Gradual domain adaptation methods utilize intermediate do-
mains that gradually shift from the source to the target domain to counter the effect of the significant gap. Still,
the assumption of having sufficiently large intermediate domains at hand for any given task is hard to fulfill in
real-life scenarios. The proposed method utilizes low- and high-pass filters to create two distinct representa-
tions of a single sample. After that, the filtered samples from two domains are mixed with a dynamic ratio to
create intermediate domains, which are used to train two separate models in parallel. The final output is ob-
tained by averaging out both models. The method’s effectiveness is demonstrated with extensive experiments
on public benchmark datasets: Office-31, Office-Home, and VisDa-2017. The empirical evaluation suggests

that the proposed method performs better than the current state-of-the-art works.

1 INTRODUCTION

With the increasing popularity of deep learning algo-
rithms in the heavy machine industry and the inclu-
sion of artificial intelligence in new regulations (e.g.,
EU AI Act) and safety standards (e.g., ISO/IEC JTC
1/SC 42 Committee), the practical issues of utilizing
such algorithms in safety-critical applications have
become more apparent. One of the challenges for
any practical application of a deep learning algorithm
is collecting and labeling a large dataset for training
the algorithm while considering the safety criteria for
the application (Bakhshi Germi and Rahtu, 2022b).
A standard method to deal with this issue is utiliz-
ing transfer learning (Zhuang et al., 2021), where the
model is trained with a label-rich source dataset (e.g.,
synthesized or simulated data) and fine-tuned on a
much smaller target dataset (e.g., data collected from
the real world). However, a significant gap between
these two domains would result in poor performance.

Gradual domain adaptation (GDA) deals with the
gap problem by adding data from intermediate do-
mains that interpolate between the source and the tar-

https://orcid.org/0000-0003-3048-220X
5@ nttps://orcid.org/0000-0001-8767-0864

Germi, S. and Rahtu, E.
IFMix: Utilizing Intermediate Filtered Images for Domain Adaptation in Classification.
DOI: 10.5220/0011713600003417

get domains (Kumar et al., 2020). The intermedi-
ate domains are assumed to be available with suffi-
cient data for the training process. The accuracy of
GDA methods is highly dependent on the distance be-
tween the source and the target domains. Moreover,
GDA methods are usually unsupervised and do not
require labels from intermediate or target domains.
While unsupervised methods attract more attention in
the research community, using a small labeled sub-
set from the target domain is more realistic in real-
world applications. Various annotation tools (Ad-
hikari and Huttunen, 2021) and denoising techniques
(Bakhshi Germi and Rahtu, 2022a) could be utilized
to help with gathering the required labeled subset.
Meanwhile, intermediate domains do not naturally
exist for most real-world applications. Thus, this pa-
per focuses on generating intermediate domains based
on a large labeled source dataset and a small labeled
target dataset.

This paper proposes IFMix, a domain adaptation
algorithm that utilizes a filtered-image-based mixup
technique to create intermediate domains iteratively.
A new domain is created by merging the low-pass or
high-pass filtered images from both domains with a
dynamic ratio. The images are chosen from the same
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Figure 1: The overall structure of the proposed method. Two samples of the same category are chosen from two domains to
be mixed. The mixup unit utilizes low-pass and high-pass filters to mix images with different ratios. The resulting images
are used as training samples for two separate models. Each model is trained with a categorical cross-entropy loss. A co-
convergence term is utilized to ensure the convergence of both models towards the same point.

category in both domains to keep the labels intact. Af-
ter that, the proposed method utilizes the intermedi-
ate domains to train two separate models in parallel.
Both models’ average output is considered the pro-
posed method’s final output. The intuition behind the
proposed method is that a supervised method that re-
lies on a small amount of data from the target domain
would be practical and realistic, the iterative domain
creation would compensate for the lack of data in real-
world applications, and the two models develop dif-
ferent perspectives based on their respective filters.

The main difference between the proposed
method and previous works is utilizing a small la-
beled target dataset to create intermediate domains,
resulting in accurate labels instead of pseudo-labels.
Also, using the low- and high-pass filters would re-
sult in two distinct representations of the same sam-
ple, creating substantially different intermediate do-
mains for training two different models. Moreover,
the iterative and gradual nature of the algorithm en-
sures that the model is not overwhelmed by new in-
formation while the gap between the two domains is
breached. The effectiveness of the proposed method
is shown by comparing the performance with previ-
ous state-of-the-art methods in standard public bench-
marks such as Office-31 (Saenko et al., 2010), Office-
Home (Venkateswara et al., 2017), and VisDa-2017
(Peng et al., 2017). The main contributions of this
paper are summarized as follows:

* Proposing an iterative intermediate domain cre-
ation technique based on filtered images to bridge
the gap between the source and the target do-
mains.
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* Providing a practical domain adaptation algorithm
based on the proposed intermediate domains.

* Providing empirical evaluation with extensive ex-
periments on three standard benchmarks to show
the effectiveness of the proposed method.

The rest of the paper is structured as follows. Sec-
tion 2 covers the related works. Next, Section 3 ex-
plains the proposed method in detail. After that, Sec-
tion 4 deals with the experiments and the empirical
evaluation to show the effectiveness of the proposed
method. Finally, Section 5 concludes the work.

2 RELATED WORKS

2.1 Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) methods uti-
lize domain-invariant representation to generalize a
model from a rich-labeled source domain to an un-
labeled target domain (Wilson and Cook, 2020). The
process can be done by either optimizing distribution
discrepancy metrics (e.g., maximum mean discrep-
ancy) (Li et al., 2021a; Peng et al., 2019) or utilizing
adversarial training (Li et al., 2021b; Liu et al., 2019;
Wang et al., 2019). On top of that, utilizing pseudo-
labeling ideas from semi-supervised learning meth-
ods improves the performance of UDA algorithms
(Chen et al., 2020; Liang et al., 2020; Liang et al.,
2021; Liu et al., 2021; Zhang et al., 2021b). More-
over, the natural advantage of transformers in ex-
tracting transferable representations was studied fur-
ther for application in domain adaptation (Ma et al.,
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Figure 2: The creation of multiple intermediate domains by the proposed method. The shown samples are not filtered to
understand better how the method works. Samples progress from the source domain (left) to the target domain (right) with

each iteration based on the value of H.

2021; Xu et al., 2021; Yang et al., 2021a). Unsu-
pervised methods have been the research focus for a
while in academic applications. However, utilizing
a small labeled dataset could result in a performance
surge without significantly increasing the overall cost
of gathering data.

2.2 Gradual Domain Adaptation

Gradual domain adaptation methods utilize interme-
diate domains to improve the performance of basic
domain adaptation techniques (Choi et al., 2020; Cui
et al., 2020; Dai et al., 2021; Hsu et al., 2020). GDA
methods utilize generative models (e.g., generative
adversarial networks) to create an intermediate do-
main by mixing the source and the target data at an
arbitrary ratio (Sagawa and Hino, 2022). By doing so,
the model can learn common features shared between
two domains. In the original work, Kumar assumed
that the intermediate domains gradually shift from
the source to the target domain, and their sequence
is known prior to learning (Kumar et al., 2020). How-
ever, the method is effective even if the sequence of
these domains is unknown (Chen and Chao, 2021;
Zhang et al., 2021a) or when no intermediate domain
is available (Abnar et al., 2021; Na et al., 2021b). The
main difference between current state-of-the-art GDA
algorithms is their technique for creating intermediate
domains.

2.3 Mixup Technique

Mixup techniques are a family of data augmentation
methods based on mixing two or more data points.
Mixup and its variants have proven helpful in super-
vised and semi-supervised learning (Berthelot et al.,
2019; Yun et al., 2019; Zhang et al., 2017). Some
recent domain adaptation methods tried utilizing this
technique to create a continuous latent space across
domains (Wu et al., 2020; Xu et al., 2020), obtain
pseudo labels for intermediate domains (Na et al.,
2021b; Yan et al., 2020; Yang et al., 2021b), or gener-
ate more positive/negative samples (Kalantidis et al.,
2020; Zhang et al., 2022; Zhu et al., 2021).

This paper utilizes the intermediate domains from
GDA, a mixup technique based on low- and high-

pass filters, and a small labeled subset from the tar-
get domain to achieve high performance in real-world
scenarios. The assumptions in this paper are tai-
lored around practical use cases of domain adapta-
tion where a large labeled source domain and a small
labeled target domain are available. While similar
works exist in this field, the proposed method outper-
forms the existing state-of-the-art, as shown in Sec-
tion 4.

3 PROPOSED METHOD

This section presents the details of the proposed
method, as shown in Figure 1. Let D* = {(x!,y})}!,
be the labeled dataset from the source domain, D' =
{(x})}7L, be the unlabeled dataset from the target

domain, and D} = {(x;,y})}7_, be the labeled sub-
set from the target domain. The task is transferring
knowledge from 2 to D' when there is a large distri-
bution gap between them.

3.1 Iterative Filtered Mixup

The proposed method selects random samples with
the same category label from D* and D}, applies low-
and high-pass filters on them, and mixes them to cre-
ate new samples as follows:

xl = (1—H) x LoPass(x}) + H x LoPass(x';)
; ' . ) )]
xi' = (1 —H) x HiPass(x}) + H x HiPass(x};)

Where (0 < H < 1) denotes a dynamic ratio for the
mixing step, LoPass and HiPass denote the low-pass
and high-pass filter functions, respectively. These fil-
ters could be implemented using the Gaussian filter
function in the Multidimensional Image Processing
package (scipy.ndimage). Moreover, the labels yf”
and yf-’i for generated samples would be the same as
the original label y; due to choosing samples from the
same category. Finally, the mixing ratio H is updated
based on the number of epochs as follows:

Hiy1=H;+axt 2
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Where o is a positive constant and ¢ is the current
number of epochs. Two labeled datasets, DL and Dl
are created with each iteration. These intermediate
datasets fill the gap between the source and the target
domains, as shown in Figure 2. Note that the figure
shows unfiltered samples for a more straightforward
interpretation of how the algorithm works.

3.2 Training and Loss Functions

In the next step, two models are trained on Q)ﬁ;’ and
DI using the categorical cross-entropy loss function:

0 1 B o0 0
Lige= 5 131" xlog (p (yIXf ))
i

. 18 . ;
Ll = 2 Yyl < log (q (vil') )

Where p(y|x!?) and g(y[x") denote the predicted class
for each network on their respective input, and B is the
batch size. The models are trained separately for a
few epochs (warm-up period) to ensure they gain dif-
ferent perspectives without the influence of the other
model.

3)

3.3 Output and Co-Convergence Term

With each model training to recognize different char-
acteristics of a given sample, their average output is
used to determine the final output of the algorithm.
Since the models should converge towards the same
goal, a co-convergence term is added to the overall
loss after the warm-up period. This term ensures that
each model can influence the other model slightly to
reach a similar conclusion on their output.

1 B lo + hi
Lcct:BZyixlog<p(y-xt)Zq(y|Xl)) (4)
i

3.4 Overall Process

The overall process of the IFMix algorithm is sum-
marized in Algorithm 1. The algorithm starts with
creating the intermediate domains in each iteration.
Then two networks are trained with the new interme-
diate domains using the defined loss functions. The
co-convergence term is added after the warm-up pe-
riod to allow the models to develop unique character-
istics without the influence of the other model.

In experiments, the mixup ratio H is updated every
few epochs to prevent potential divergence of models.
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Algorithm 1: IFMix Algorithm.

Require: Source dataset D°, Labeled Target
subset Q)l’ , Number of epochs 7', Batch size
B, Warm-up period W, Mixup ratio H,
Mixup increment rate o
1: fortel,...,T do
2:  Select samples from same category in D*

and Dj
3:  Create intermediate domains QDI’}} and Q)Il_;’
using Eq. 1
4. forbel,...,Bdo
5: Update loss functions L2, and L',
using Eq. 3
6: if i > W then
7: Update co-convergence term L
using Eq. 4
8: end if
9: end for
10:  Update the mixup ratio
using Eq. 2
11: end for

4 EXPERIMENTS &
EVALUATION

To evaluate the proposed method, three different do-
main adaptation benchmarks are chosen so that the
performance of the proposed method can be com-
pared with state-of-the-art methods. In each exper-
iment, 5% of samples from the target domain are
selected as labeled target subsets for the proposed
method, and the remaining 95% of samples are left
as test data.

4.1 Office-31

Office-31 (Saenko et al., 2010), a domain adaptation
benchmark, provides samples for 31 categories from
three domains. These domains are denoted as A for
images taken from Amazon.com, D for images taken
with a DSLR camera, and W for images taken with a
webcam. The dataset has around 4000 samples, mak-
ing it a perfect benchmark for proof of concept.

4.2 Office-Home

Office-Home (Venkateswara et al., 2017), a domain
adaptation benchmark, provides samples for 65 cate-
gories from four domains. These domains are denoted
as A for arts and paintings, C for clipart images, P for
product images without a background, and R for real-
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Table 1: Accuracy (%) on the Office-31 dataset. The best accuracy is indicated in bold, and the second best is underlined.

Method | A=D  A-W D—A  D—oW W —A W—D | Average
GSDA (Hu et al., 2020) 94.8 95.7 73.5 99.1 749 100 89.7
SRDC (Tang et al., 2020) 95.8 95.7 76.7 99.2 77.1 100 90.8
RSDA (Gu et al., 2020) 95.8 96.1 714 99.3 789 100 91.1
FixBi (Na et al., 2021b) 95 96.1 78.7 99.3 794 100 914
CoVi (Naet al., 2021a) 98 97.6 71.5 99.3 78.4 100 91.8
TEMix (Ours) 976 975 779 993 79.7 100 92

Table 2: Accuracy (%) on the Office-Home dataset. The best accuracy is indicated in bold, and the second best is underlined.

Method [ A—=C A—P A—R C—A C—P C—+R P—A P—C P—R R—A R—C R—P [ Average
MetaAlign (Wei et al., 2021) 59.3 76 80.2 65.7 74.7 75.1 65.7 56.5 81.6 74.1 61.1 85.2 71.3
FixBi (Na et al., 2021b) 58.1 713 80.4 67.7 79.5 78.1 65.8 579 81.7 76.4 62.9 86.7 72.7
CoVi (Naet al., 2021a) 58.5 78.1 80 68.1 80 71 66.4 60.2 82.1 76.6 63.6 86.5 73.1
CDTrans (Xu et al., 2021) 60.6 79.5 82.4 75.6 81 82.3 72.5 56.7 84.4 71 59.1 85.5 74.7
WinTR (Ma et al., 2021) 653 84.1 85 76.8 84.5 84.4 3.4 60 85.7 772 63.1 86.8 712
IFMix (Ours) 66.1 84 86.6 77.4 84.1 86.1 75.2 61.1 86.5 78.4 62.8 87.4 78

Table 3: Accuracy (%) on the VisDa-2017 dataset. The best accuracy is indicated in bold, and the second best is underlined.

Method [ Plane Bike Bus Car Horse Knife Motor Human Plant Skate Train Truck [ Average
CAN (Kang et al., 2019) 97 872 825 743 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
FixBi (Na et al., 2021b) 96.1 87.8 90.5 90.3 96.8 953 92.8 88.7 972 94.2 90.9 25.7 87.2
CDTrans (Xu et al., 2021) 97.1 90.5 824 715 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
CoVi (Na et al., 2021a) 96.8 85.6 88.9 88.6 97.8 934 91.9 87.6 96 93.8 93.6 48.1 88.5
WinTR (Ma et al., 2021) 98.7 91.2 93 91.9 98.1 96.1 94 72.7 97 95.5 95.3 57.9 90.1
IFMix (Ours) 98.2 91.7 929 9.2 98.5 96.5 93.7 88 98 955 94.8 61.8 91.8

world images taken with a camera. The dataset has
around 15000 samples, making it a more challenging
task than Office-31.

4.3 VisDa-2017

VisDa-2017 (Peng et al., 2017), a domain adaptation
benchmark, provides samples for 12 categories from
two domains, simulated and real-world. The dataset
has around 280000 samples, making it a complex and
realistic benchmark for domain adaptation problems.

4.4 Hyper-Parameters

In the experiments with Office datasets, ResNet-50
with stochastic gradient descent (SGD) is used as the
base model. The initial learning rate is 0.001, the mo-
mentum is 0.9, the weight decay is 0.005, the initial
mixup ratio is 0.05 with a 0.05 increment every 10
epochs, and the total number of epochs is 200. In
the experiments with VisDA dataset, the base model
is swapped to ResNet-101. The initial learning rate
is 0.0001, the initial mixup ratio is 0.1 with a 0.1
increment every 5 epochs, and the total number of
epochs is 50. In all experiments, the models utilize
pre-trained weights on ImageNet (Russakovsky et al.,
2015).

4.5 Results and Comparison

Table 1 holds the results for the Office-31 dataset.
Six different tasks are experimented upon, and the
results are compared with state-of-the-art methods.

The accuracy of state-of-the-art methods is obtained
from their respective published papers. The results
from each task indicate that the proposed method is
competitive. The average accuracy of the proposed
method is 92%, which is a slight improvement over
the previous best method, CoVi (Na et al., 2021a).
As stated before, the Office-31 dataset was utilized
to prove that the proposed method works as intended,
even if the improvement is slight and negligible.

Table 2 holds the results for the Office-Home
dataset. Twelve different tasks are experimented
upon, and the results are compared with state-of-the-
art methods. Similar to previous experiments, the ac-
curacy of state-of-the-art methods is obtained from
their respective published papers. The results from
each task indicate that the proposed method is still
competitive. The average accuracy of the proposed
method is 78%, which is an improvement over the
previous best method, WinTR (Ma et al., 2021). Note
that the proposed method outperformed CoVi (Na
et al., 2021a), the previous best method on the Office-
31 dataset, by 4.9% on average. This experiment of-
fers more insight into the value of utilizing the pro-
posed method. While the proposed method slightly
outperforms the alternatives in this case, it also of-
fers a more robust solution that works on different
datasets.

Table 3 holds the results for the VisDa-2017
dataset. The results are compared on category and
overall level. Similar to previous experiments, the ac-
curacy of state-of-the-art methods is obtained from
their respective published papers. The results from
each category indicate that the proposed method is
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operating as intended. The average accuracy of the
proposed method is 91.8%, which is a significant im-
provement over the previous best method, WinTR
(Ma et al., 2021). The proposed method offers a no-
ticeable improvement in this experiment.

5 CONCLUSION

This paper proposed a practical domain adaptation
method that utilizes a labeled subset from the target
domain and low- and high-pass filters to create inter-
mediate domains. The iterative creation of interme-
diate domains helps the model quickly adapt despite
a significant gap between domains. The effectiveness
of the proposed method is shown with empirical ex-
periments on public benchmark datasets. The pro-
posed method outperforms the current state-of-the-art
methods by a noticeable margin while maintaining ro-
bustness over different datasets.
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