eduARM: Web Platform to Support the Teaching and Learning of the

ARM Architecture

Maria Inés Alves', Anténio Duarte Aradjo® and Bruno Lima®
YFaculty of Engineering, University of Porto, Porto, Portugal

2INESC TEC and Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto,

Porto, Portugal

3INESC TEC and Department of Informatics Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

Keywords:

Abstract:

Computer Architecture Teaching, ARM Architecture, Simulation, Learning Resources.

Computer architecture is a prevalent topic of study in Informatics and Electrical Engineering courses, though
students’ overall grasp of this subject’s concepts is many times hampered, mainly due to the lack of educational
tools that can intuitively represent the internal behaviour of a CPU. With the evolution of the ARM architecture
and its adoption in higher education institutions, the demand for this sort of tool has increased. Educational
tools, specifically developed for the ARMv8 processor, are scarce and inadequate for what is necessary in an
academic context. In order to contribute towards solving this problem, eduARM, a practical and interactive
web platform that simulates how a ARMv8 CPU functions, was developed and is presented through this paper.
Since this tool’s main purpose is to aid computer architecture students, contributing to an improvement in their
learning experience, it comprises varied concepts of computer architecture and organization in a simple and
intuitive manner, such as the internal structure of a CPU, in both its unicycle and pipelined versions, and
the effects of executing a set of instructions. As to better understand its value, the developed tool was then

validated through a case study with the participation of computer architecture students.

1 INTRODUCTION

Computer Architecture (CA) is a fundamental subject
in higher education technology courses, namely Infor-
matics and Electrical Engineering. Among other top-
ics, this course unit allows students to learn about the
major internal subsystems of a computer, the general
architecture of its platform, and assembly program-
ming.

The Central Processing Unit (CPU) itself and its
internal behaviour is a key study item, and one that
students tend to exhibit difficulties in understanding.
This problem is a result of the scarcity of intuitive ed-
ucational tools that can graphically represent the CPU
and the impact of executing a set of instructions (Nova
et al.,, 2013). A most ideal platform would encour-
age CA students to learn through interactive experi-
mentation, allowing them, for example, to thoroughly
consult the CPU’s datapath, in both its unicycle and
pipelined versions, for each instruction in a set writ-
ten in assembly language.

Another problem is raised with the evolution
and popularity of the ARM architecture, specifically

Alves, M., Araujo, A. and Lima, B.
eduARM: Web Platform to Support the Teaching and Learning of the ARM Architecture.
DOI: 10.5220/0011712800003470

ARMVS. This is currently the most popular instruc-
tion set architecture (ISA) in the industry (Patterson
and Hennessy, 2016), that is widely used in smart-
phones, laptops, and other embedded systems. Con-
sequently, this caused certain higher education insti-
tutions to adapt their syllabus to include the teaching
of this architecture, replacing other common architec-
tures such as MIPS or RISC-V.

Similarly to what was already identified as a prob-
lem in the teaching of the most common processors
(Nova et al., 2013), suitable platforms for teaching
ARMVS are scarce, which increases the need for de-
veloping an adequate software tool, capable of being
used by both teachers and students during classes.

The eduARM web platform serves as an intuitive
and interactive approach to learning the CPU and its
behaviour, supporting both its unicycle and pipelined
versions. The platform allows students to freely ex-
plore the CPU datapath in each stage of execution and
understand how a specific instruction impacts its com-
ponents’ values, write simple assembly programs and
debug them by inspecting the simulator’s results, and
check component latencies and the critical path of an

341

In Proceedings of the 15th International Conference on Computer Supported Education (CSEDU 2023) - Volume 2, pages 341-348

ISBN: 978-989-758-641-5; ISSN: 2184-5026

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

CSEDU 2023 - 15th International Conference on Computer Supported Education

instruction.

Following the present section, this document in-
cludes a review and discussion of related work on
tools for CA education in Section 2, followed by an
overview of the implementation process behind the
eduARM platform in Section 3, and a description of
its user interface in Section 4. The validation process
is detailed in Section 5, and, to finalize, conclusions
are disclosed in Section 6.

Although valuable projects in this domain were
found, showcased in the State of the Art, none are
capable of completely responding to this problem.
Nonetheless, these tools’ good practices and features
presented a solid starting point for the development of
the eduARM web platform, an intuitive and interac-
tive approach to teaching and learning of the ARMv8
architecture.

2 STATE OF THE ART

Throughout this section, several tools dedicated to
CA education are presented, their various features are
discussed, as well as their positive and negative as-
pects. Finally, a comparison is made between the pre-
sented tools, highlighting which features were con-
sidered the most important for the platform and what
contribution its development can give to the field.

This section focuses solely on open-source tools
dedicated to RISC architectures, namely MIPS,
RISC-V and ARM, as these make up a much less
complicated processor compared to CISC architec-
tures (Gupta and Sharma, 2021), and are thus com-
monly adopted in CA courses.

SPIM is a self-contained MIPS simulator that
runs assembly language programs, considered the
most widely known and used MIPS simulator (Larus,
1990), both for education and the industry. Although
SPIM can be used for debugging assembly programs,
in order for the tool to thoroughly support the teach-
ing of CA, CPU datapath visualization is missing.

WebMIPS is an educational web-based MIPS sim-
ulation environment written in the ASP language.
This tool is a five stage MIPS pipeline simulator (Bra-
novic et al., 2004) and solely supports the MIPS ar-
chitecture and the pipeline version of the CPU, which
poses a great disadvantage. The platform can thus be
seen as outdated and easily surpassed by other similar,
more recent tools.

MARS, the Mips Assembly and Runtime Simu-
lator (Vollmar and Sanderson, 2006), was designed
as an alternative to SPIM, tackling most of its short-
comings and greatly outperforming it. Despite be-
ing a robust and useful tool for assembly debugging,

342

MARS has no CPU datapath visualization, no support
for pipelined architectures and is not available on the
Web.

DrMIPS is an open-source graphical simulator of
the MIPS processor, specifically designed for teach-
ing and learning CA (Nova et al., 2013). While this
project provides students with a robust and highly in-
tuitive tool that includes fundamental principles lec-
tured in CA, it exclusively supports the MIPS archi-
tecture, preventing its adoption in more recent higher
education courses. Nevertheless, its focus on edu-
cation and multitude of functionalities and visualiza-
tion make DrMIPS a valuable platform whose vision
served as a model for the tool presented in this paper.

RARS, or RISC-V Assembler and Runtime Sim-
ulator (Landers, 2017), is a direct port of the MIPS
simulator MARS. RARS, much like its MIPS counter-
part, focuses intensively on assembly debugging, con-
taining essentially the same features and also lacking
CPU datapath visualization and support for pipelined
architectures.

The BRISC-V Simulator is a browser-based as-
sembly programming simulator, which, together with
BRISC-V Explorer, makes up the BRISC-V Platform
(Agrawal et al., 2019). Similarly to several of the
already presented educational platforms, BRISC-V is
more focused on assembly debugging and does not in-
clude a display of the CPU datapath, as well as lack-
ing support for a pipeline version of the CPU.

The BRISC-V Explorer is an educational tool for
exploring CPU design, allowing the creation of single
or multi-core RISC-V processors. As the BRISC-V
Explorer provides a platform for CPU architecture de-
sign, this can be helpful for students to understand its
components on a deeper level. Since this tool is more
focused on architectural design, it is better suited for
more advanced CA classes (Agrawal et al., 2019).

VisUAL is an ARM emulator developed as a
cross-platform tool for ARM education, particularly
ARMV7 (Arif, 2015). Although this tool is not as fo-
cused on the CPU and its internal behaviour, and more
on assembly debugging, it includes multiple educa-
tional features that are useful for students and can be
taken into consideration while designing a new tool.
VisUAL only supports ARMv7, which was already re-
placed by ARMvS in certain institutions, not being
suitable for aiding those students any longer.

The Graphical Micro-Architecture Simulator, also
called simply LEGvS Simulator, is a web based
ARMvV8-A ISA simulator, which, albeit still in BETA
version, delivers a complete and interactive environ-
ment for CPU visualization, both its unicycle and
pipelined versions (ARM, 2021). Despite being a
very complete platform, this simulator lacks certain

eduARM: Web Platform to Support the Teaching and Learning of the ARM Architecture

important features for education, such as a data mem-
ory display, visualization of input and output values
in each component, and a more complete register file.
Component latencies and the critical path are also not
included in the platform.

WepSIM is a modular and intuitive online educa-
tional simulator of the CPU, supporting both MIPS
and RISC-V architectures (Garcia-Carballeira et al.,
2019). Being available on the web, the platform is
highly portable and can be run from any web browser
or from a text-based command line. WepSIM, albeit a
complete platform, can be too dense or complex, and
does not support a pipeline version of the CPU nor
implementation of latencies and the critical path.

CREATOR is a generic web-based simulator for
assembly programming developed by the same au-
thors as WepSIM (Camarmas-Alonso et al., 2021).
Unlike its older counterpart, CREATOR does not in-
clude a display of the CPU datapath, as it is a tool
more focused on assembly programming instead of
CPU visualization and configuration.

In order to efficiently analyse these existing tools
and what a new platform should include, a few key
requirements were established. The educational plat-
form should be available on the Web, through the
browser, removing the need for downloads and mak-
ing it accessible to anyone regardless of operating sys-
tems or platform specifications. The tool should allow
its users to visualize and examine the CPU datapath
and provide an area for assembly programming, so
students can write their own code, debug it, and ex-
plore its effects on the CPU. Both the unicycle and
pipelined versions of the processor should be sup-
ported, as well as latencies and the critical path, for
students to analyse the CPU’s performance. Finally,
the platform should support ARMvVS, considering ed-
ucational tools for this architecture are scarce, as ex-
plained previously in Section 1.

To evaluate whether these tools would meet all the
requirements established for a complete and suitable
platform to teach the ARM architecture, table 1 is pro-
vided.

Despite each tool having its strengths and useful
features, none can satisfy all the requisites proposed.
More specifically, even though all of them can teach
assembly programming, only a few also focus on the
CPU and its datapath. Most lack support for both
the unicycle and pipeline versions of the processor,
as well as latency and critical path implementation.

Seeing as none of the works presented can com-
pletely respond to the problem identified, even more
so with most of them lacking support for ARMVS, a
platform that can aggregate the positive features of
these tools and provide what they are lacking would

be the ideal solution. It would also present a source of
innovation in the field, which is what this project aims
to achieve, and whose implementation is thoroughly
explained in the next section.

3 IMPLEMENTATION

3.1 Requirements Specification

The development of this educational platform must
take several CA concepts into account, handling
the multiple topics students learn in classes. After
analysing the state of the art and the functionalities
of existing educational tools, the requirements for a
new platform were specified as follows:

* Must be simple and intuitive, so students can eas-
ily interact with the platform and understand its
concepts, avoiding unnecessary elements or visual
clutter

» Represent the CPU datapath in both its unicycle
and pipelined versions, which the user can inter-
change accordingly

 Provide an interface for assembly coding, so stu-
dents can write their own instructions and explore
what happens in the CPU with their execution,
showing detailed information on all data and con-
trol signals, as well as display how these instruc-
tions are encoded in machine code

* Execute a set of instructions provided step-by-
step, allowing the user to forward or go back to a
certain instruction and understand what its effects
on the CPU are

* Allow visualization of registers and data memory
contents, as well as latencies and the CPU critical
path

* Be available on the Web, hence providing easy ac-
cess to anyone, regardless of their operating sys-
tem or computer specifications

Each of the requirements above was taken into
consideration while planning for the platform’s de-
velopment, ensuring that the finished product would
accomplish all objectives and adequately respond to
CA students’ needs.

3.2 Development Process

After the platform’s requirements specification, the
first step of development was to ensure it would run on
the web. A simple web app was created, and, within
it, two distinct layers were conceived - the fron-
tend, encapsulating all user interface-related work and

343

CSEDU 2023 - 15th International Conference on Computer Supported Education

Table 1: Comparison of requirements met by the tools.

CPU Unicycle & | Latency &

Web datapath Assembly pipiline critical gath ARMv8
SPIM No No Yes No No No
WebMIPS Yes Yes Yes No No No
MARS No No Yes No No No
DrMIPS No Yes Yes Yes Yes No
RARS No No Yes No No No
BRISC-V Yes Yes Yes Yes No No
VisUAL No No Yes No No No
LEGv8Sim | Yes Yes Yes Yes No Yes
WepSIM Yes Yes Yes No Yes No
CREATOR | Yes No Yes No Yes No

client-side operations, and the backend, handling the
server and all CPU simulation logic. Connecting
these segments allows the web platform to run in its
entirety, with each request sent by a user’s actions be-
ing received and handled server-side.

3.2.1 Simulation Logic

Having established the foundation for both layers, the
program’s backend was the first to be thoroughly im-
plemented. To accurately simulate the CPU, each of
its components was simulated individually. In order
to achieve this, a JavaScript class was implemented
for every component, storing inputs, outputs, latency,
and its own distinct execution behaviour, which will
run when that component is scheduled to operate.

The order in which every component operates is
defined through a JSON file, where all CPU ele-
ments are represented through objects. This config-
uration file is then used in another JavaScript class,
called "CPU”, responsible for establishing the con-
nections between the various defined components and
ultimately executing a program. This class encapsu-
lates all simulation logic, containing a method, “exe-
cute”, that given an instruction’s machine code, will
compute the execution method of each component se-
quentially, in the order defined by the JSON file. The
results of a CPU component’s operation are thus prop-
agated to its connected components, and, if the in-
struction changes registers or writes to memory, the
CPU’s register file and data memory are updated.

For students to understand exactly how much time
the unicycle processor takes to execute a set of in-
structions, latencies were implemented into the plat-
form. Additionally, the platform highlights the criti-
cal path of each instruction, defined as the sequence
of components that, altogether, take the longest to ex-
ecute.

The same implementation method was applied to
the CPU’s pipeline version, which required the ad-

344

dition of pipeline registers, four in total, that act as
an intermediary between two pipeline stages, storing
values between cycles. Besides this, forwarding was
implemented into the platform, with the addition of
a forwarding unit capable of handling dependences
between instructions, as well as a hazard detection
unit that solves more complicated hazards that require
pipeline stalling.

As the CPU simulation logic implemented is sig-
nificantly heavy on operations, running its calcula-
tions client-side would overload the user’s machine
and thus be extremely inefficient. Having a dedicated
web server that runs the simulation and handles all
requests made on the frontend was the approach se-
lected to solve this problem, with the creation of an
application programming interface (API) able to com-
municate with the frontend layer and answer its re-
quests, receiving, altering, and sending back data.

4 USER INTERFACE

The application’s user interface was designed with the
objective of providing students with a user friendly
and interactive environment for studying. In order
to achieve this, the interface was kept mostly sim-
ple, avoiding any visual clutter and the addition of too
much information, which could end up confusing stu-
dents and ultimately doing more harm than good. The
finished product’s homepage is shown in Figure 1.

The platform’s most prominent element is the
CPU datapath, on its left side, with its components
and corresponding connections. In this visual rep-
resentation, control lines and related components are
colored blue. On top of the diagram, two more tabs
besides the CPU one can be seen: “Assembly” and
“Machine Code”. The former is dedicated to writing
assembly code, while the latter displays each instruc-
tion’s machine code after compiling a program.

On the screen’s rightmost area, the content of each

eduARM:

Change format ¥

Web Platform to Support the Teaching and Learning of the ARM Architecture

EduARM

Change version

& CcPu <[> ASSEMBLY 01 MACHINE CODE &% REGISTERS £ DATA MEMORY
Ele (e e [
» IAdd L I — ‘X‘ ‘X‘ ‘x‘ ‘x;i‘
— M Ee e B B
1 e ’ | S D e CR Y R i
] (e (o [=o [a]o
eft \
| Ho B e [
\ [e] (] (=] [0
Reg ster Bank . » ‘:‘ ‘Z‘ ‘Z‘ - ‘I‘ -
Al .L BRENY
\ ‘ «“ Compile P Execute
.. Previous ext
U | £ LJ
‘ . — —
‘ U O Reset ‘ . o
erformance
Sign
Extenc d
Register X0 HEX ~0000000000000000 BIN 00
Figure 1: Homepage of eduARM.

register, from X0 to X31, is displayed. By changing
a register’s value, its hexadecimal and binary repre-
sentations will also be displayed in the two fields at
the bottom of the page, always on their 64-bit format.
The content of these can also be filled in by the user,
and the corresponding conversions will be made to the

register file.

After a user writes the code and changes the nec-
essary registers, the program is ready to be executed.
The user can press "Compile” and the machine code
of each of the program’s instructions will appear in
the "Machine Code” page, along with their position
on the instruction memory and their assembly code.
In the case of the platform identifying any compila-
tion errors, these will appear as an alert on top of the
page, and the program will not proceed unless these

are fixed.

Having successfully compiled the program,
user can then proceed by clicking the “Execute” but-
ton, and the datapath will showcase, for each instruc-
tion, the internal behaviour of the CPU. Any changes
to data memory, in the case of executing memory ac-
cess instructions, can be checked in the ”"Data Mem-

ory” tab, next to "Registers”.

After execution, the datapath will display the state
of the last instruction written. The user can freely cy-

cle through instructions by using the “Previous”
”Next” buttons next to “Execute”.

code written in the ”Assembly” tab.

Below this area,
the current instruction’s machine code and its differ-
ent fields are presented, also updating when cycling
through instructions. The instruction’s assembly code
is also displayed in this area and highlighted on the

Connections that are considered relevant for each
instruction, that is, that carry any sort of relevant data,
are painted black. The various CPU components can
be hovered over in order to see their IDs, latencies,
inputs and outputs’ current values. These values can
also be converted to either their binary or hexadecimal
formats by selecting the desired representation with
the “Change format” button on the top left side of the
screen.

Additionally, two buttons entitled “Reset” and
”Performance” are located below the execution con-
trols. The former will reset the program for the
user, setting all registers and memory values to zero
and reverting the datapath to its original state. ~Per-
formance” grants access to the CPU’s critical path,
whose connections and components will be high-
lighted red.

By connecting both the simulation logic and the
user interface, the platform is able to execute sim-
ple assembly programs and provide the correspond-
ing datapath visualization. This includes the results
of the assembly operations on the registers and the
data memory, as well as the input and output values
of each CPU component in that state.

The button ”Change version” in the top right cor-
ner of the page can be used to change between the
unicycle and pipelined versions of the CPU. While
the unicycle is the one chosen as default, the user can
press this button to switch to the pipeline version, pre-
sented in figure 2.

Five pipeline stages are represented with colors
on top of the datapath. Unlike the unicycle version,
a CPU state will represent the five stages in a clock

the

and

345

CSEDU 2023 - 15th International Conference on Computer Supported Education

Change format ~

® cru

<[> ASSEMBLY

IF/p

’ '\D/X

e
.,

Register X0 HEX 0000000000000000

EduARM

01 MACHINE CODE

[MEM ws

s REGISTERS

[=]o

«
Previous|

Compile

Change version

£ DATA MEMORY

\m‘a x| 0

‘ Jo [(= [m

EM ‘ 7 (s * [‘ 0 ‘ "9‘ 0 ol
xs ‘E 0 ‘I‘ 0 s 0

X6 ‘Xi"\‘ ‘)‘22‘3 x30| 0

x |0 ‘Z‘ 0 ‘j 0 | 0

P Execute | PP Next

["D Reset J l @ Performance J

BIN

00

Figure 2: Pipeline datapath of eduARM.

cycle, which could have five instructions at the same
time. Because of this, the number of steps is now five
times higher, and the ”Previous” and “Next” buttons
do not iterate through instructions, but rather through
clock cycles. Which instruction is in each stage can
be seen in the area below the execution buttons.

Regarding forwarding and hazard detection, when
either unit identifies a problem, their datapath com-
ponent will be highlighted purple. If a stall occurs,
the processor will not do any relevant operations and
a ”bubble” is added to the instruction flow.

This section closes the process behind the imple-
mentation of the platform, which was then tested by a
group of students through a case study, whose results
and discussion are presented in the next chapter.

S VALIDATION

The developed platform, in order to completely ful-
fill its intended objectives, must be validated by its
intended audience. This audience, in the case of ed-
uARM, is comprised of Informatics and Electrical En-
gineering students who are learning CA. It is only
possible to understand the true value of the platform
when it is tested by students.

The method deemed the most appropriate was val-
idating the platform through a survey, sent by e-mail
to former CA students of the Faculty of Engineering
of the University of Porto (FEUP). A total of 15 stu-
dents participated in this study, with 9 of them also
providing qualitative feedback and reporting bugs.

The survey sent to students opens with a small

346

contextualization of the work and explanation of the
study’s objectives, being followed by a total of 17
questions grouped into three different sections.

The first group of questions relates to the back-
ground and general vision of the students on the CA
course. The purpose of this survey section was at-
tempting to understand what difficulties students felt
during the course, and how challenging the CPU and
its datapath are to comprehend.

Its first question attempts to understand how stu-
dents perceive the CA course by asking them to
measure its difficulty. The majority of participants
(53,4%) claim the course has either a difficulty level
of 6 and 7 out of 10, as shown in Figure 3, which im-
plies the course unit is considered mildly challenging.

.
W oo

) 320%)

2(133%)

1(6.7%)

1(67%)

0(0%) 0(0%) 0(0%)

Figure 3: Results of Question 1.

The second question asks students to evaluate how
difficult the CPU’s concepts and behaviour are to un-
derstand. As seen in Figure 4, results obtained were
diverse, similarly to question 1, with most participants
(80%) placing this subject’s difficulty level between
6 and 8, thus implying the majority of CA students
found the CPU rather difficult to understand.

The final question in the form’s first section asks
students whether they believe having access to a
platform capable of simulating the CPU’s behaviour

eduARM: Web Platform to Support the Teaching and Learning of the ARM Architecture

5(33,3%)
4(26,7%)

3(20%)

1(6.7%) 1(67%) 1(6,7%)

0(0%) 0(0%) 0(0%) 0(0%)

1 2 3 4 5 6 7 8 9 10

Figure 4: Results of Question 2.

would have helped them better understand these top-
ics, with 100% choosing the option ”Yes”.

The next survey section includes an exercise with
eight questions about the execution of a provided as-
sembly program, that should be solved using the plat-
form. The results obtained in this part are not as sig-
nificant, since they mostly evaluate whether the stu-
dent chose the right answer or not, which could de-
pend on a variety of factors. Rather, the questions
presented in the exercise are merely intended to allow
the students to fully explore the platform’s features.

The form closes with an area for students to offer
their overall feedback, both quantitative and qualita-
tive.

The first question of this feedback section, ques-
tion 12, asks students to quality the platform regard-
ing its usability and how intuitive it is. On a scale of
1 to 5, results were considered positive when equal to
4 or above, which was the case of Question 12, with
80% of the participants giving a 4 or the maximum
score of 5 to the interface, as seen in Figure 5.

7 (46,7%)

1 2 3 4 5

Figure 5: Results of Question 12.

The next question’s purpose is to understand ex-
actly how useful the platform is for CA classes, ask-
ing students to measure how much they think having
access to the tool would have improved their compre-
hension of the lectured topics. The scores obtained
were, once again, very positive, as 80% of the stu-
dents chose the highest option, as shown in Figure 6.

Figure 6: Results of Question 13.

Afterward, question 14 aims to analyse how this
platform would make learning more enjoyable for stu-
dents. Most students (93,4% chose either option 4
or 5) seem to believe the platform would greatly im-

prove their learning experience, as illustrated through
Figure 7.

8

Figure 7: Results of Question 14.

The next question asks students to measure how
useful the platform would be for their studying out-
side the class. The majority of the participants agree
that having access to this platform would benefit their
studying, with 86,7% selecting either option 4 or 5, as
seen in Figure 8.

9 (60%)

1 2 3 4 5

Figure 8: Results of Question 15.

Question 16 inquires how much the students think
having access to the platform would have improved
their final CA grade, when they frequented the course.
Each student’s response will naturally be influenced
by how low or high their final grade was - neverthe-
less, more than half (60%) of the answers were posi-
tive, with scores of either 4 or 5, as shown in Figure

1 2 3 4 5

Figure 9: Results of Question 16.

The final question of the survey is very straight-
forward, simply asking the participants whether they
would use the tested platform, were it available when
they had the CA course unit. Results were extremely
positive, with 100% of the students selecting option
”Yes”.

5.1 Threats to Validity

Since the form was sent during summer break, and the
study was already limited to a specific group of stu-
dents, adherence was low. Nonetheless, student feed-
back was highly positive, with the participants find-
ing the platform adequate and useful for CA classes.
These results could be further improved if student ad-

347

CSEDU 2023 - 15th International Conference on Computer Supported Education

herence to the survey was higher, whose low values
were a consequence of the timing chosen for valida-
tion.

Another important aspect that would reinforce the
platform’s validation is the inclusion of the pipelined
CPU version. Due to this version not yet being com-
pleted at the time of user testing, the survey only
contemplates the unicycle version of the CPU, which
limits the validity of the platform, as the pipelined
version is a key part of the project and essential for
understanding the CPU’s more complex behaviour.
Nevertheless, testing the unicycle brought forth valu-
able feedback on how to improve the interface, which
helps towards refining the platform to become its best
possible version.

6 CONCLUSIONS

The platform described throughout this paper aspires
to be of use to both computer architecture teachers
and students in the academic community, as well
as presenting a source of innovation in the field of
ARMVS educational tools capable of simulating the
CPU.

Considering the use of simulators is believed to
greatly improve students’ understanding, this work
expects to aid in the comprehension of subjects that
would otherwise be difficult to understand through
more conventional teaching methods. Thus, the
developed platform offers an interactive approach
to learning the CPU’s components and overall be-
haviour, for both its unicycle and pipelined versions.

The successful adoption of this platform in CA
classes would further emphasize that the goals of this
project were accomplished, and that CA students have
access to an intuitive and adequate platform capable
of helping them further comprehend the topics lec-
tured in classes and, ultimately, positively contribut-
ing to their academic success.

REFERENCES

Agrawal, R., Bandara, S., Ehret, A., Isakov, M., Mark, M.,
and Kinsy, M. A. (2019). The brisc-v platform: A
practical teaching approach for computer architecture.
In Proceedings of the Workshop on Computer Archi-
tecture Education, pages 1-8.

Arif, S. (2015). Visual - a highly visual arm emulator. https:
/Isalmanarif.bitbucket.io/visual/index.html.

ARM (2021). Graphical micro-architecture simulator.
https://www.arm.com/zh-TW/resources/education/
education-kits/legv8.

348

Branovic, 1., Giorgi, R., and Martinelli, E. (2004). Web-
mips: a new web-based mips simulation environment
for computer architecture education. In Proceedings
of the 2004 workshop on Computer architecture edu-
cation: held in conjunction with the 31st International
Symposium on Computer Architecture, pages 19—es.

Camarmas-Alonso, D., Garcia-Carballeira, F., Del-Pozo-
Pufial, E., and Mateos, A. C. (2021). A new generic
simulator for the teaching of assembly programming.
In 2021 XLVII Latin American Computing Conference
(CLEI), pages 1-9. IEEE.

Garcia-Carballeira, F., Calder6n-Mateos, A., Alonso-
Monsalve, S., and Prieto-Cepeda, J. (2019). Wepsim:
an online interactive educational simulator integrating
microdesign, microprogramming, and assembly lan-
guage programming. /EEE Transactions on Learning
Technologies, 13(1):211-218.

Gupta, K. and Sharma, T. (2021). Changing trends in com-
puter architecture : A comprehensive analysis of arm
and x86 processors. [nternational Journal of Scien-
tific Research in Computer Science, Engineering and
Information Technology, pages 619—631.

Landers, B. (2017). Rars - risc-v assembler and runtime
simulator. https://github.com/TheThirdOne/rars.
Larus, J. R. (1990). Spim s20: A mips 12000 simulator.
Technical report, University of Wisconsin-Madison

Department of Computer Sciences.

Nova, B., Ferreira, J. C., and Aragjo, A. (2013). Tool to sup-
port computer architecture teaching and learning. In
2013 Ist International Conference of the Portuguese
Society for Engineering Education (CISPEE), pages
1-8. IEEE.

Patterson, D. A. and Hennessy, J. L. (2016). Computer
organization and design ARM edition: the hardware
software interface. Morgan kaufmann.

Vollmar, K. and Sanderson, P. (2006). Mars: an education-
oriented mips assembly language simulator. In Pro-
ceedings of the 37th SIGCSE technical symposium on
Computer science education, pages 239-243.

