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Abstract: As machine learning and computer vision techniques and methods continue to advance, the collection of 
naturalistic traffic data from video feeds is becoming more and more feasible. That is especially true for the 
case of bicycles, for which the collection of naturalistic data is not achievable in the traditional vehicle 
approach. This study describes a research effort that aims to extract naturalistic cycling data from a video 
dataset for use in safety and mobility applications. The used videos come from a dataset collected in a previous 
Virginia Tech Transportation Institute study in collaboration with SPIN in which continuous video data at a 
non-signalized intersection on the Virginia Tech campus was recorded. The research team applied computer 
vision and machine learning techniques to develop a comprehensive framework for the extraction of 
naturalistic cycling trajectories. In total, this study resulted in the collection and classification of 619 bicycle 
trajectories based on their type of interactions with other road users. The results confirm the success of the 
proposed methodology in relation to extracting the locations, speeds, and accelerations of the bicycles at a 
high level of precision. Furthermore, preliminary insights into the acceleration and speed behavior of 
bicyclists around motorists are determined. The resulting dataset will be made available to the research 
community once the required approvals have been obtained from the study sponsors. 

1 INTRODUCTION 

Cycling, as a transportation mode, has been taking an 
ever-increasing share of the mobility over the last 
decade. As a sustainable commuting mode, it has 
been the go-to solution of policymakers to lessen 
traffic congestion in central downtown areas without 
further road enlargement. That is justified by the fact 
that short-distance bike commuting often takes less 
time when accounting for congestion and delays in 
public transportation and presents the most efficient 
way to increase the road capacity while maintaining 
existing infrastructure. 

Despite the growing interest in bicycle use in the 
last decade and the urgent need to develop models and 
planning techniques for bicycle traffic operations, 
traffic researchers have minimally investigated the 
traffic flow dynamics of bicycles, unlike vehicular 
traffic flow, which is heavily studied. The observed 
literature gap between vehicular and bicycle traffic 
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research is mostly justified by the scarcity, and even 
the non-existence, of naturalistic cycling data. Most 
of the existing research that investigated bicycles as a 
means of transportation (for simulation purposes)  
(Jia et al., 2007; Jiang et al., 2018; Jiang et al., 2017; 
Li et al., 2021; Qu et al., 2017; Ren et al., 2016) were 
in relation to investigating the interactions of bicycles 
with cars and other possible entities. Technically 
speaking, a significant portion of those studies falls 
under, either the Cellular Automata (CA) model that 
involves discretizing the time and space domain using 
a non-continuous cell grid such as the work of (Jia et 
al., 2007; Jiang et al., 2018; Ren et al., 2016); or the 
social force model approach (Li et al., 2021; Qu et al., 
2017) because of its advantages in terms of 
simulating dynamic lateral dispersion characteristics 
of mixed traffic. However, while these models 
offered a concise theoretical framework for the 
simulation of bicycle longitudinal and lateral traffic 
behavior in a mixed traffic environment, they were 
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limited in their validation work due to the lack of 
naturalistic data capturing such interactions. 

In addition to the above cycling research that is 
oriented towards capturing the effect of bicycles in a 
mixed traffic environment, a few other studies 
investigated the fundamental concepts behind bicycle 
longitudinal motion based on the assumption that 
there are no major differences between the dynamics 
of single-file bicycle traffic and vehicular traffic. 
These include models specifically developed for 
bicycle motion modeling such as the Necessary 
Deceleration Model (NDM) (Andresen et al., 2014) 
developed in 2012. Another approach used by 
researchers to model the longitudinal motion of 
bicycles investigated the possibility of capturing 
cyclists’ behavior through revamping certain aspects 
of existing car-following models. That is the case, for 
example, in the Intelligent Driver Model (IDM) 
(Treiber et al., 2000) which, after a simple re-
parameterization, was shown to be a good descriptor 
of bicycle-following behavior (Kurtc & Treiber, 
2020). In a similar fashion, driven by the complete 
overlook of the effects that the cyclist and the road 
environment have on bicycle motion behavior, the 
research team proposed a longitudinal motion model 
for bicycles (Fadhloun, 2021) that is derived from the 
Fadhloun-Rakha (FR) car-following model 
(Fadhloun & Rakha, 2020). A common factor 
between the NDM model as well as the proposed 
IDM and Fadhloun-Rakha bicycle-specific 
formulations is that they were all validated against 
cycling data collected in a similar experimental 
setting in which participants were instructed to follow 
one another on a ring-road without the possibility of 
overtaking (Andresen et al., 2014; Kurtc & Treiber, 
2020).  While the used data in these efforts is in 
accordance with their assumptions and the approach 
used is scientifically sound, it is quite clear that those 
models are not capable of capturing the inherent 
naturalistic non-lane-based traffic behavior 
characteristics of bicycles. To address that issue, the 
research team complemented, in a second stage, the 
Fadhloun-Rakha longitudinal bicycle-following 
model with a lateral control module (Alazemi, 2022), 
thus inducing a certain degree of freedom in bicycle 
lateral motion by allowing overtaking maneuvers to 
occur. However, that effort remained theoretical in 
nature due to the unavailability of two-dimensional 
naturalistic cycling data that could serve to validate 
and verify the model formulation.  

While the above studies differed based on their 
purpose and applications, they all share one key 
element. That is to say, the complete lack or 
superficiality of validation work due to the non-

existence of naturalistic cycling data that is well fitted 
for their objectives. In this study, the research team 
tries to fill, at least partially, the apparent gap in 
naturalistic data that exist between vehicular traffic 
and bicycle traffic.  

Specifically, this paper describes a research effort 
that aims to extract naturalistic cycling data from 
video feeds for use in different mobility applications. 
To achieve this objective, the research team first 
applied computer vision, machine learning, and data 
reduction techniques to a video dataset in order to 
identify and extract bicycle trips in the pixelated 
domain of the videos. The selected video dataset is 
the result of a previous Virginia Tech Transportation 
Institute study in collaboration with SPIN in which 
continuous video data at a non-signalized intersection 
at the Virginia Tech campus was collected. Next, 
using the results of a high-precision surveying 
campaign of the observed area, the collected 
trajectories were projected in the Northing-Easting 
coordinate system allowing for the determination of 
the actual locations, speeds, and accelerations of the 
bicycles. Besides its main contribution that resulted 
in the collection of 619 bicycle trajectories, it is 
noteworthy to mention that the trips were classified 
into different scenarios depending on the type of 
interactions the bicyclists had with cars. Subsequently, 
a better understanding of bicyclists’ behavior around 
motorists is achieved. The results could be used to 
analyze the interactions between cyclists and drivers, 
both for safety and capacity studies.  

Concerning its layout, the paper starts with a brief 
overview of the used naturalistic video dataset. That 
is followed with a detailed description of the different 
methodologies and techniques involved in the 
extraction of the naturalistic cycling trajectories from 
the video feeds. Finally, the results and findings of the 
study are presented. 

2 NATURALISTIC DATASET 

Due to the continuous proliferation and 
advancements in machine learning and computer 
vision techniques, it is becoming feasible to acquire 
reliable naturalistic traffic data in a cheap and 
efficient manner from video datasets. That is 
especially true for the case of bicycles as they are not 
as instrumented as cars, which would not allow the 
capture of their full surroundings in the context of a 
naturalistic data collection study. In the case of this 
study, the complete video dataset is the result of a 
previous Virginia Tech Transportation Institute study 
in collaboration with SPIN in which continuous video 
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data at several fixed locations at the Virginia Tech 
campus was collected for a seven-month period. For 
the purpose of this research, only a portion of the 
above dataset at a single location is used. The selected 
dataset was collected over 55 days between the 
months of September and December 2019 using a 
roof-mounted high-definition camera facing a non-
signalized three-way stop intersection. The selected 
dataset includes approximately 810 hours of 3720 x 
1728 pixels videos recorded at a frequency of 30 Hz. 

3 VIDEO PROCESSING 

The first step of this research effort involves the 
identification of the bicycle events from the different 
videos. Given the big size of the video feed, a manual 
data reduction was judged to be infeasible, as it will 
be both a costly and lengthy process. Instead, the 
research team opted for a more automated route that 
makes use of existing object detection techniques. 
Specifically, a two-step object-detection algorithm 
was developed. 

The first step of the proposed algorithm uses a 
cascade detector based on the histograms of oriented 
gradients (HOG) with 11 stages to detect potential 
regions of interest that might be bicycles in the video 
frames. The number of stages used to train the 
detector is not random. In fact, the research team 
initially used a database composed of 400 positive 
images and 900 negative images to train detectors 
with different number of stages (5, 7, 9, 11, and 13) 
and a false alarm rate fixed at 2.5%. The number of 
training images and stages were purposefully set 
relatively low in order to ensure a quick training 
process. The focus of the research team, at this level, 
was to ensure that the number of stages of the detector 
is high enough to detect a significant percentage of 
the true positives regardless of the number of false 
positives as these will be addressed and eliminated 
later. Next, the trained detectors were run on a one-
hour video from the database at 5-second intervals to 
quantify their performance. The outputs from this 
step consisted of bounded areas that highlight regions 
that might be inclusive of bicycles in the examined 
video frame, as illustrated in Figure 1. 

 
Figure 1: Sample output of HOG detectors. 

The following metrics were used to assist with the 
evaluation of each of the detectors: 
 The number of true positives: These refer to the 

bounded areas identified correctly by the 
detectors in that they contain a bicycle. 

 The number of false positives: These 
correspond to the bounded areas identified 
wrongfully by the detectors. 

 The number of false negatives: These account 
for the cases in which a bicycle was present in 
the video frame without being detected. 

It is noteworthy to mention that all the detectors, 
regardless of their number of stages, were able to 
identify 42 out of the 44 bicycle trips. However, a 
deeper look into the results using the above metrics 
highlighted the huge differences between them. 
Figure 2 plots the variation of the true positives 
(Figure 2.a), false positives (Figure 2.b), and false 
negatives (Figure 2.c) against the number of stages 
used to train the detector. The main revelation from 
the figures is that the total number of false positives 
significantly decreases as the number of training 
stages increases. However, the observed decrease is 
also accompanied by a decrease in the number of true 
positives and an increase of the number of false 
negatives. Based on the observed patterns, it is 
evident that the detector with 11 stages is the best 
among those investigated albeit a relatively high 
number of false positives (a total of 1994). To address 
that issue, the bicycle-detection algorithm was 
complemented with another technique with the main 
objective of decreasing the occurrences of false 
detections. 

In fact, in the second stage of the algorithm, the 
highlighted areas of interest are selected for further 
examination using a semantic segmentation network 
that attempts to classify every pixel in them and 
assign them to different classes. For that purpose, the 
research team selected an existing pre-trained 
DeepLabv3+ network (Chen et al., 2018), which  
is a convolutional neural network (CNN) designed for  
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Figure 2: Variation of the detector metrics as a function of 
the number of training stages a) True positives; b) False 
positives; c) False negatives. 

semantic image segmentation. The network is 
available for download at the Mathworks website and 
was trained using the CamVid dataset (Brostow et al., 

2009) from the University of Cambridge. The dataset 
consists of a collection of street-level images that are 
segmented at the pixel-level using 32 semantic 
classes (such as bicyclist, pedestrian, and car) as 
shown in Figure 3. 

 
Figure 3: Sample image from the CamVid dataset. 

As mentioned earlier, the main reason behind the 
semantic segmentation phase is to eliminate the false 
positives that were detected by the HOG detector in 
the previous step. That was achieved through a 
comparison between the number of pixels that were 
classified as bicyclist and the total number of pixels 
in the investigated area. If the ratio between the two 
values is greater than a set threshold of 5% in at least 
one of the highlighted regions, the examined video 
frame is saved for manual confirmation. Otherwise, it 
is rejected (Figure 4). The application of the semantic 
segmentation algorithm over the areas identified by 
the HOG detector proved to be quite successful. In 
fact, the number of frames selected for further 
investigation decreased from 683 frames for the 
standalone HOG detector to 89 frames when the two 
algorithms together without any decrease in the 
number of bicycles detected. The algorithm was able 
to detect accurately 42 out of the existing 44 bicycle 
events (95.5%). 

With the algorithms ready, the different videos of 
the database were processed using the HOG detector 
in conjunction with the semantic segmentation at 5-
second intervals. That is mainly due to the heavy 
computational toll of those algorithms. However, that 
did not have much effect on the accuracy of the 
algorithm in bicycle detection as demonstrated 
earlier. Furthermore, to further illustrate the 
performance of the algorithm in relation to false 
positives, it was run on the 4-hour video between 
6AM and 10AM on Christmas day, which is a period 
in which no bicycles were present. The algorithm 
saved only 21 frames for further investigation out of 
the 2880 frames examined (< 1%). 
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Figure 4: Sample output after semantic segmentation. 

4 EVENT PROCESSING 

The previous step resulted in an image database in 
which the video frames selected for further 
investigation were saved separately with pertaining 
information to the date, time, and timestamps in their 
respective videos. Through a manual data reduction 
process, the resulting database was investigated to 
identify the different cycling trips and noting their 
start times and end times. The result of this process 
was the identification of a total of 2259 cycling 
events.  

More importantly, the data reductionists were 
instructed to classify the identified events based on 
whether the bicycle interacted with other entities or 
not during this trip. That is of utmost importance 
when it comes to validating existing bicycle behavior 
models. For instance, the portion of trips in which the 
bicycle is traveling without any impact from the 
surrounding traffic will be mostly useful for the 
validation of bicycle motion models (in the free-flow 
regime where no leader is involved). However, when 
it comes to mobility studies investigating bicycle 
interactions with cars (or other modes), information 
about the interacting entities along with the 
trajectories of the bicycles is necessary for any 
validation work.  

In that regard, the research team defined 56 
scenarios to classify the bicycle trips based on the 
following criteria. The first criterion relates to the 
motion behavior of the car. The interacting car with 
the bicycle is categorized by whether it is moving 
straight, turning, or coming to a complete stop. The 
second classification criterion captures the relative 
position of the bicycle in relation to the car. The 
bicycle can be behind, ahead, or next to the car. The 
next criterion looks at whether the bicycle is in the 
path or out of the path of the car. Finally, the last 
criterion investigates the relative direction of the 
bicycle velocity vector in comparison to that of the 

car. Here, the categorization can take one out of five 
possible values. The direction of the bicycle velocity 
vector relative to the car can be either: same, either 
oncoming, stationary, lateral, or receding. 

The definitions of the scenarios along with the 
total number of events identified for each scenario are 
presented in Appendix 1. Out of the 2259 events 
identified by the data reduction team, about 70% 
(1580) of the trips fall under the first scenario in 
which the bicycle was traveling independently of 
other traffic with no observed interactions. It is 
noteworthy to mention that the predominance of the 
first scenario is quite understandable given that the 
Virginia Tech campus is very cyclable-friendly, and 
bicycle trips can generally be completed on the 
sidewalk without having to go on the road. The 
remaining trips concern scenarios in which 
interactions did occur. The results show that these are 
mostly concentrated in four specific scenarios, 
namely: scenarios 2, 10, 43 and 44. The probability 
density function of the trip durations are presented in 
Figure 5.a and Figure 5.b, which illustrate the 
duration distribution histograms for the trips with no 
interactions (Scenario 1) and the trips with 
interactions (remaining scenarios), respectively. The 
figures confirm that most of the trips have a duration 
between 10 and 20 seconds with an average of 16.1 
seconds and a median of 14.0 seconds. 

 

 
Figure 5: Histogram of the duration distribution for a) Trips 
with no interactions; b) Trips with interactions. 
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5 TRAJECTORY EXTRACTION 

With the start and end times of the different trips 
known along with identifying information about the 
type of interactions occurring with motorists, the 
corresponding video sections are isolated and 
prepared for the next step, which relates to the 
extraction of the trajectories in the video pixel 
domain.  

There are two approaches that can be used to 
achieve the latter. The first approach is quite 
straightforward but is only possible for a relatively 
low number of trajectories. For each of the 
trajectories, a simple script is used to extract the 
frames from the video at 0.2 seconds allowing for the 
user to manually click on the position of the bicycle 
and the vehicles interacting with it. Two moving 
perpendicular lines are implemented to assist a data 
reductionist to detect the intersection of the front of 
the bicycle wheel with the pavement as shown in 
Figur 6. In the background, the script saves the 
location of the clicks in the (x, y) domain of the video 
frames (a 3720×1728 pixel grid); thus collecting the 
trajectories for further processing. It is necessary to 
note here that if any obstructions interfering with a 
precise collection of the bicycle location from the 
video frame exist (such as a car, a tree, or a structure), 
the bicycle coordinates will not be collected for that 
specific timeframe. An interpolation algorithm will 
be used in a later stage to get an estimate at those time 
steps.  

Given that the described process for the extraction 
of the bicycle trajectories is quite tedious both in 
relation to the time and cost involved, the research 
team opted to limit its use, at this time, to the 
extraction of bicycle trajectories associated with 
scenarios in which interactions with a vehicle 
occurred, and for which a significant number of 
events exists. In that regard, the research team applied 
the aforementioned process to extract the trajectories 
falling under scenario 2, 10, 43, and 44. This resulted 
in the collection of 619 trajectories. 

Before moving on to the description of the next 
step, we would like to note that our final objective is 
to extend this work to the extraction of the bicycle trip 
events that occurred over the entire seven-month 
period and for all the 14 locations on campus. 
However, achieving that would require to introduce a 
certain level of automation to complete the trajectory 
extraction process. In fact, only 1.2 out of the 
available 49.5 terabytes of available videos were used 
so far. Assuming, hypothetically, that a perfect 
proportionality exists between the number of bicycle 
trips and the size of the video database, the expected 

number of trips expected to be found in the entire 
video dataset would be in excess of 90,000. Even 
more, once the tasks requiring manual labor are 
removed, the research community would have access 
to a comprehensive automated trajectory extraction 
framework that can be applied to similar videos. 

In that regard, the research team is currently 
working on developing an automated tool for the 
extraction of the trajectories that can replace the data 
reduction process. Without going into much detail  as  

 
Figure 6: Sample screenshot from the trajectory collection 
process. 

 
Figure 7: Image filtering using edge detection techniques. 

 
Figure 8: Detection of bicycle wheel using Hough 
Transform. 
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this is still a work in progress, the concept of the 
algorithm consists of using the Hough transform for 
the detection of bicycle wheels allowing the 
determination of their contact point with the road 
surface. To achieve that, edge detection techniques 
are first used to isolate the bicycle trip on a black and 
white background as shown in Figure 7. After that, 
Hough transform is used to detect the wheels as 
shown in Figure 8. However, the research team is 
currently still working on solving the most 
challenging part of this process, which deals with the 
fine-tuning of the algorithm in relation to the 
assignment of the detected points to their 
corresponding trajectories and the automatic 
exclusion of false positives. 

6 INTERSECTION SURVEYING 

In order to convert the extracted trajectories into 
naturalistic trajectories, a grid map overlay of GPS 
coordinates at specific locations, which are easily 
identifiable both in the video frames and in the field, 
is needed. In fact, the aforementioned map is the 
element that would allow the conversion of the pixel-
based trajectories into distance-based trajectories 
using the multi-step algorithm described thereafter. 

To achieve the stated objective, the research team 
started by creating a mesh of approximately 400 
points as shown in Figure 9. As the figure shows, the 
points are heavily concentrated around the edges of 
the sidewalks and the road crossings because they are 
the easiest to identify in the videos as well as in the 
field.  That is quite useful for the next step as both the 
sidewalks and the road crossings are the most used by 
the bicyclists to complete their trips. Initial  attempts  

 
Figure 9: An aerial view of the surveyed area and the 
collection points. 

 to collect the GPS coordinates at the specified 
locations were made using accessible tools such as 
Google Earth and existing GPS mobile applications. 
However, those attempts proved unsuccessful due to 
the  small  distances  involved  and  the  relative  low 
accuracy of those tools when used in this context. As 
a result, a surveying campaign using professional 
high-precision tools was conducted to acquire the 
required coordinates, which are expressed in the 
Northing-Easting-Elevation coordinates system. 
Since the investigated area is relatively flat, the 
elevation data can be ignored without major 
repercussions on the results. In what follows, we will 
refer to the data collected in this step by the transform 
matrix. 

7 RESULTS 

The final phase in this research deals with the 
conversion of the extracted trajectories that are 
currently expressed in the video pixel domain to 
actual naturalistic trajectories allowing access to the 
distances traveled along with the associated speed and 
acceleration profiles. That would constitute the final 
product of this study and would allow traffic 
researchers to validate their theories and models 
against the resulting naturalistic bicyclist dataset. The 
trajectory transformation process is achieved using 
the following multi-step algorithm: 

1. A linear interpolation algorithm is used initially 
to complement the extracted trajectories with 
estimated values at the level of the time steps for 
which the determination of the bicycle location 
was impossible due to the presence of visual 
obstructions. 

2. Next, the trajectories are exponentially 
smoothed using a smoothing factor of 0.5. The 
purpose of the exponential smoothing operation 
is to address the noise and the zigzag-like 
features that might be present as a result of the 
manual trajectory extraction process. At this 
level, the trajectories will look similar to the two 
sample trajectories presented in Figure 10. 

3. For each of the observations composing a 
trajectory, one of the closest convex hulls 
containing the observation and delimited by 
three points from the transform matrix is 
identified. 

4. Since we have access to the coordinates of the 
points defining the convex hull in both 
coordinate systems, the coordinates of the 
trajectory observation could be approximated in 
the Northing-Easting coordinate system using a 
triangulation algorithm. 

Towards Building a Naturalistic Cycling Dataset Capturing Bicycle/Car Interactions

41



5. Once Step 4 is completed for all the 
observations, the speed profile associated with 
the obtained trajectory is determined and 
smoothed through the application of a third 
order Savitzky–Golay filter. 

6. In a similar fashion to Step 5, the acceleration 
profile is obtained from the smoothed speed 
profile and smoothed using a similar Savitzky–
Golay filter. 

The speed profile, the distance traveled, and the 
coordinates of the trajectory in the Northing-Easting 
coordinate system are updated backwards to account 
for the effect of the two-layer filtering that was 
applied. 

 

 
Figure 10: Sample trajectories in the pixel domain. 

Sample results from this step are presented in 
Figure 11 and Figure 12. Figure 11 shows the 
resulting trajectories in the Northing-Easting 
coordinate system corresponding to the two 
trajectories presented in Figure 10. The figure 
demonstrates the success of the proposed multi-step 
algorithm in conserving the shape and main features 
of the extracted trajectory. Meanwhile, Figure 12 
illustrates the distance traveled, speed, and 
acceleration profiles corresponding to the trajectory 
presented in Figure 10.a and Figure 11.a. 

 

 
Figure 11: Sample naturalistic trajectories after the 
triangulation procedure. 

Finally, the histograms of the instantaneous 
accelerations and speeds from all the 619 trajectories 
is investigated to confirm the consistency of the 
obtained values with bicycle behavior. The results, 
which are plotted in Figure 13, show that the results 
are concentrated around low acceleration levels and 
speeds that are quite typical for bicyclists. 
Furthermore, the range of the observed values can be 
confirmed to be physically feasible for a bicycle. A 
deeper look at the results is possible by looking at the 
histograms corresponding to each of the four 
investigated scenarios separately. For example, the 
results for Scenario 2 are presented in Figure 14. 
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Figure 12: Extraction of the distance traveled, speed, and 
acceleration profiles for a naturalistic trajectory a) Distance 
traveled; b) Speed profile; c) Acceleration profile. 

 

 
Figure 13: Histogram of the instantaneous accelerations and 
speeds of the aggregated extracted trajectories. 

8 CONCLUSIONS AND FUTURE 
WORK 

In the context of a better understanding of bicyclists’ 
behavior, this paper described the development of a 
comprehensive framework that would allow for the 
collection of naturalistic cycling trajectories from 
video feeds. Even though the current naturalistic 
dataset is composed of only 619 trajectories, it will be 
useful to traffic researchers in several mobility 
applications such as the validation of studies 
investigating bicycle motion behavior like the model 
(Alazemi, 2022) developed by the research team. 
Furthermore, the collected trajectories will contribute 
to a better understanding of bicyclists’ behavior 
around cars leading to a better understanding of the 
interactions between bicycles and other modes of 
transportation. More importantly, the significance of 
this work will be further accentuated once the 
trajectories of the cars and other entities interacting 
with the bicycles is extracted. 
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Figure 14: Histogram of the instantaneous accelerations and 
speeds of the extracted trajectories corresponding to 
Scenario 2. 

The research team faced two main challenges 
during this study. The first challenge deals with 
automating the process of extracting the bicycle 
trajectories from the videos through the detection of 
bicycle wheels. In fact, the number of trajectories in 
the resulting dataset is limited due to the problems 
encountered while trying to complete that process. 
Once those problems are addressed and the process is 
entirely automated, the size of the trajectory database 
will increase significantly. More importantly, the 
proposed methodology will be completely 
transferable for use by other researchers at different 
locations. The second challenge relates to the 
collection of the transform matrix needed to 
transform the video trajectories into actual 
trajectories. Due to the small distances involved, 
typical tools such as Google Maps and existing GPS 
applications cannot be used; instead, a professional 
surveying campaign of the observed area is needed. 

Overall, the findings of this research seem to be 
consistent with actual bicycle behavior, which is 

generally characterized by low acceleration levels. As 
a future work, the research team plans to continue 
extending this dataset and complement it with the 
trajectories of the entities interacting with the 
bicycles. Once that is achieved, this work will result 
in a complete and comprehensive naturalistic dataset 
that, not only include data relevant to the bicycle, but 
also information about any vehicles or entities that 
had an influence on its behavior. 
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APPENDIX 

Scenario 
Number 

Criteria Total Criteria 1 Criteria 2 Criteria 3 Criteria 4 
1 No interactions 1580
2 Straight Ahead In path Same 304
3 Straight Ahead Out of path Same 13
4 Straight Ahead In path Oncoming 7 
5 Straight Ahead Out of path Oncoming 2 
6 Straight Ahead In path Stationary 0 
7 Straight Ahead Out of path Stationary 0 
8 Straight Ahead In path Lateral 8 
9 Straight Ahead Out of path Lateral 1 

10 Straight Behind In path Same 132
11 Straight Behind Out of path Same 6 
12 Straight Behind In path Receding 1 
13 Straight Behind Out of path Receding 0 
14 Straight Behind In path Stationary 0 
15 Straight Behind Out of path Stationary 0 
16 Straight Behind In path Lateral 1 
17 Straight Behind Out of path Lateral 0 
18 Straight Next Out of path Same 12
19 Straight Next Out of path Receding 0 
20 Straight Next Out of path Stationary 0 
21 Straight Next Out of path Lateral 0 
22 Turning Ahead In path Same 6 
23 Turning Ahead Out of path Same 0 
24 Turning Ahead In path Oncoming 0 
25 Turning Ahead Out of path Oncoming 1 
26 Turning Ahead In path Stationary 0 
27 Turning Ahead Out of path Stationary 0 
28 Turning Behind In path Same 1 
29 Turning Behind Out of path Same 0 
30 Turning Behind In path Receding 0 
31 Turning Behind Out of path Receding 0 
32 Turning Behind In path Stationary 0 
33 Turning Behind Out of path Stationary 1 
34 Turning Next Out of path Same 0 
35 Turning Next Out of path Receding 0 
36 Turning Next Out of path Stationary 0 
37 Stopping Ahead In path Same 0 
38 Stopping Ahead Out of path Same 0 
39 Stopping Ahead In path Oncoming 0 
40 Stopping Ahead Out of path Oncoming 0 
41 Stopping Ahead In path Stationary 0 
42 Stopping Ahead Out of path Stationary 0 
43 Stopping Ahead In path Lateral 123
44 Stopping Ahead Out of path Lateral 60

Total 2259
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