Visualizing Compiler Design Theory from Implementation Through an

Keywords:

Abstract:

Interactive Tutoring Tool: Experiences and Results

Rafael Del Vado Virseda®?
Computing Systems and Computation Department, Complutense University of Madrid, Spain

Compiler Design Course, Interactive Learning, Interactive Tutoring Systems, Compiler Writing Tools.

In this paper, we analyze the experiences and results obtained by using an Interactive Tutoring Tool (ITT)
(del Vado Virseda, 2020; del Vado Virseda, 2022) to interactively tutoring the learning of the basic theoretical
contents of a course on compiler design. Instead of beginning by studying the theory and then obtaining the
code of its corresponding implementation in each of the phases of compiler construction, we propose to start
from the implementation obtained by the students using automatic code generation tools (del Vado Virseda,
2021). By using ITT, we interactively guide the exploration of the finite state automata and graphs generated
by compiler writing tools, learning the most important theoretical concepts from the implementation, and
increasing the understanding of the theory in relation to the code of its implementation. This work reports
on this educational experience of improving the teaching of theory from the implementation, by using the
interactive visualizations and explorations produced by ITT. As an evaluation of the educational experience
with ITT, the academic results obtained by the students are analyzed, to provide success indicators.

1 INTRODUCTION AND
MOTIVATION

Although Compiler Design is one of the Computer
Science (CS) subjects that best integrates theory and
practice (Aho, 2008), there are many students’ chal-
lenges in understanding Compiler Design theory. As
we discussed in (del Vado Virseda, 2021), a Com-
piler Design course usually focuses on realizing soft-
ware projects in which our students are asked to de-
velop a small compiler, or implement some variant
of a compiler under study (Mak, 2009). The learn-
ing of the structure of a compiler is done from the
implementation, focusing its design and implementa-
tion on the traditional form of a software engineer-
ing project (Waite, 2006). The main disadvantage
of this classical approach is that overemphasizes stu-
dents’ programming skills. Students in a first Com-
piler Design course spending too much time on a soft-
ware engineering portion of a compiler is not a prob-
lem (Nystrom, 2021), but classes covering compiler
development also need to cover a lot of theoretical
material. Thus, as we noted in (del Vado Virseda,
2020), many students dedicate themselves exclusively
to code development, often ignoring the theoretical

(2 https://orcid.org/0000-0002-1942-751X

DelVado Virseda, R.

concepts necessary for a correct implementation.
As a way of approaching this problem, alternative
approaches to a Compiler Design course make use
of compiler-writing tools (Demaille, 2008), ranging
from Flex/JFlex and Bison/CUP to modern tools
such as ANTLR or LISA, to help students write the im-
plementations automatically. A compiler operates in
phases, each on with its particularities, algorithms,
techniques, and tricks. Students traditionally learn,
in each phase in which a compiler is structured, a set
of theoretical concepts about Compiler Design theory
(lexical and syntactic analysis, syntax-directed trans-
lation, symbol table, type checking, code generation,
etc.), and automatically implement these parts of in-
creasing complexity with the tools before proceeding
to the following phase. However, this educational ap-
proach still gives rise to a problem, as the tools often
do not show students many of the details of their use
that are related to theory. Therefore, in many cases,
the tools do not serve to design a complete course
whose objective is to obtain a theoretical understand-
ing of how they work. This not only results in a large
gap between practice and theory, but also results in
students having an incomplete view of the course. As
a result, students spend less and less effort and time
studying their theoretical content.

In this paper, we start from the methodology de-

333

Visualizing Compiler Design Theory from Implementation Through an Interactive Tutoring Tool: Experiences and Results.

DOI: 10.5220/0011709800003470

In Proceedings of the 15th International Conference on Computer Supported Education (CSEDU 2023) - Volume 2, pages 333-340

ISBN: 978-989-758-641-5; ISSN: 2184-5026

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

CSEDU 2023 - 15th International Conference on Computer Supported Education

scribed in (del Vado Virseda, 2021) to increase the
understanding of the theory of a Compiler Design
course from the concrete implementation generated
by the automatic code construction tools, according
to the various stages that take place during the con-
struction of a compiler. To achieve this goal, we have
developed in this paper an Interactive Tutoring Tool
(ITT), from the initial design ideas set out in our pre-
vious work (del Vado Virseda, 2022) as a particular
instance of an Interactive Tutoring System (ITS) (del
Vado Virseda, 2020). Unlike other educational tools
for teaching compiler constructions (Boyer and Chit-
saz, 2004; Henriques and et al., 2005; Chakraborty
and et al., 2013), and following (del Vado Virseda,
2020), each teacher can choose through ITT the
compiler-writing tools that he/she deems most suit-
able for teaching the course, and combine them in a
modular way in the same educational environment. If
in the future you choose to change these tools or use
another programming language, ITT will still be use-
ful, since the interactive tutoring process performed
by the ITT tool will continue to be valid. Moreover,
the interactive tutoring process carried out by the ITT
tool to explore the finite state automata and graphs
generated by the compiler-writing tools w.r.t. to the
code will remain analogous for tutoring students from
implementation to theory.

The paper is structured as follows. In the follow-
ing section, we discuss the contributions to related
work. Next, we describe the design and use of the ed-
ucational tool ITT. We analyze the methodology and
evaluation applied to obtain success indicators from
our experiences and results. Finally, conclusions and
an outlook for future work close the paper.

2 CONTRIBUTIONS AND
RELATED WORK

Over the past two decades, several strategies have
been designed to be applied in a course on Com-
piler Design within the CS curriculum (Waite, 2006).
First, “emphasize design patterns, teamwork, and pro-
gramming methodology by constructing a compiler to
meet assigned specifications” (software project (Mak,
2009; Nystrom, 2021)). Second, “emphasize the role
of theory to enable automation of compiler tasks, and
illustrate the limitations of that theory” (application
of theory (Aho et al., 2006)). Third, “emphasize the
broad applicability of compiler technology to imple-
ment languages for special purposes” (computer com-
munication support (Henry, 2005)). CS students tend
to achieve higher motivation if they start as early as
possible with a simple, self-built implementation that

334

enables them to apply, as quickly as possible, each
theoretical concept they acquire during their learning
process, i.e., if they have something concrete that they
can manipulate. For this reason, our work focuses
on the second strategy under a different perspective,
focusing on the function of the implementation ob-
tained by using tools for the automation of the com-
piler tasks, in order to emphasize the role of theory.
By this novel approach, we ensure that the importance
of the software engineering strategy in a Compiler
Design course is not underestimated, while avoiding
overemphasis on parsing and syntax-directed transla-
tion theory. The connection with the third strategy is
achieved through the use of ITT, which support com-
puter communication through interactive sessions.
Following (de Oliveira Guimaraes, 2007; Frens
and Meneely, 2006; del Vado Virseda, 2021; del
Vado Virseda, 2022), we have developed a different
course content in which theory is presented progres-
sively through various implementations of varying
complexity. The first implementation is just a lexical-
syntactic analyzer of a simple language of arithmetic
(see Sections 3 and 4), and the last one is a com-
piler for a PL/0 language. The theoretical concepts
are introduced incrementally through interactive ses-
sions from the implementations, and are used as a
motivation to understand the theoretical reasons that
make the implementation works. In this way, the im-
plementations are a motivation to study the theory of
the course. Unlike other works (Mernik and Zumer,
2003; Henriques and et al., 2005), theory does not
come before or after, but at the same time as the un-
derstanding of the implementation and its execution.
While most recent efforts to improve students’
learning in Compiler Design have focused on design-
ing new tools (Sondag et al., 2010; Henriques and
et al., 2005; Chakraborty and et al., 2013), com-
paratively little research has focused on automating
examinations to improve interactive students’ learn-
ing. Our educational experience with ITT provides
new evidence that switching the assessment of stu-
dents’ understanding of the theory from implemen-
tation through interactive sessions improve students’
results. Following (Lorenzo, 2011), our approach
presents the new ITT tool for the automatic evaluation
of the theoretical and practical parts of a Compiler
Design course. Moreover, in recent years, the number
of papers including studies on the educational effec-
tiveness of the diagnostic messages, produced by in-
terpreters and compilers, has increased (Pettit, 2017).
The ITT tool also uses compiler error messages as a
pedagogical tool and as a part of the learning process
of the Compiler Design theory. Taking (Becker, 2019)
as a starting point, we have designed interactive learn-

Visualizing Compiler Design Theory from Implementation Through an Interactive Tutoring Tool: Experiences and Results

Interactive Tutoring Tool

lexer implementation lexyy.c Open
parser implementation syntactictab.c Open
automaton syntactic.dot Open
tool | FLEX+BISON £} © No recovery Insertion Delete
ANTLR ’*
CUP-+JFLEX

Import Close

Figure 1: ITT Interface requesting implementation files.

ing sessions on compiler warnings, runtime errors,
error messages, shift/shift and shift/reduce conflicts
(Aho et al., 2006), to correct students’ performance,
track their progress, and tutor their study plans.

Finally, in the last two decades, a series of visu-
alization tools have been designed to teach Compiler
Design (Urquiza-Fuentes et al., 2011; Sondag et al.,
2010). Visualization has been integrated frequently in
Computer Science Education (Naps and et al.1, 2002),
and these tools are very effective in helping students
understand the transformation process from source
programs at various stages of the compilation process
(Vegdahl, 2000; Godbolt, 2021). For this reason, the
interactive tool ITT allows the implementation to vi-
sualize more closely each theoretical concept in re-
lation to its corresponding stage of the compilation
process. Integrating these visualizations with the pro-
gram’s execution, ITT allows the student to improve
the error correction and debugging with each of the
levels of representation of the source language.

However, the ITT tool is not just another visual-
ization tool for understanding code generation, but al-
lows the interactive exploration of the finite state au-
tomata and graphs generated by automatic code gen-
eration tools underlying the implementation. The ITT
tool enables the materialization of the theory from
the implementation so that the student can manipulate
them and better understand their relationship with the
obtained code by compiler writing tools. Focusing
on the interactive exploration of each automata por-
tion of compilation generated by the compiler writing
tools (as opposed to the full compiler tool chain), to
interactively explain compiler theory and implemen-
tation instead of only automata visualization, is the
primary contribution of this work.

3 THE INTERACTIVE
TUTORING TOOL ITT

Our educational experience uses ITT as a particu-
lar instance of our previous interactive tutoring sys-

IMPLEMENTATION

INTERACTIVE

TUTORING INTERACTIVE INTERACTIVE

ENVIRONMENT

\ TooL SESSION
lexyy.c syntactictab.c @ XML DFA

. / i LALR(1). xml DFA jar

syntactic.dot

AUTOMATON

Figure 2: From the implementation to theory: Design and
use of ITT for the interactive exploration of a DFA in XML.

tem (del Vado Virseda, 2020), a computer system
designed to interactively tutor traditional learning
from theory to implementation in a Compiler Design
course, providing immediate and customized instruc-
tion and feedback to our students. Unlike other sim-
ilar educational systems (Mernik and Zumer, 2003;
Henriques and et al., 2005), ITT can be used para-
metrically and modularly with a number of compiler-
writing tools that the teacher considers most appropri-
ate for the development of the course, following our
methodology described in (del Vado Virseda, 2021).
Now, the main novelty is that with ITT students start
now with their own implementations in C/C++ or
Java, along with DOT format files to generate and
interactively explore the attribute graph and the fi-
nite automata underlying the code of the implemen-
tation, developing our preliminary ideas presented in
(del Vado Virseda, 2022). ITT interactively guides
the students in the use of some theoretical tool, link-
ing the most significant fragments of your code with
the most classical theory concepts (del Vado Virseda,
2021). We describe the use and experience of ITT
through an example of one of the first grammars that
books use to teach compilers (Aho et al., 2006).
Students begin their learning from a specification,
provided by the teacher, of a very simple formal lan-
guage, for example, for the recognition and evalua-
tion of arithmetic expressions (Aho et al., 2006). This
specification is composed, in the first place, by the file
lexical.l, which contains the lexical specification
of the language consisting of an intuitive regular ex-
pression to recognize (yytext) and evaluate numbers
as positive integer and fixed-point values, together

with zero (yylval.real) as TOKEN_NUM tokens:
DIGIT [0-9]
{DIGIT}+ (" ." {DIGIT}+)? { yylval.real = atof (yytext);
return TOKEN_NUM; }

Secondly, the student is provided with the syntax-
semantics specification of the language through the
file syntactic.y. This specification is formed by
an intuitive attribute grammar, with which the stu-
dent can introduce arithmetic expressions in different
lines, each of them ending in a line break "\n’. In

335

CSEDU 2023 - 15th International Conference on Computer Supported Education

3.14 + 5 * 8.67

Result: 46.489998

GRAMMAR

0 $accept: input $end

1 input: /* vacio */
2 | input line

3 line: '\n'
4 | exp '\n'

nputexp'+'exp'*'exp I§

5 exp: TOKEN_NUM
[exp '+' exp
7 exp 'x' exp

|| step | Reset | Freeze | Thaw | Trace | Remove

N s

®

Send | '+ '#' | TOKEN_NUM | '\n' | input | line | exp
0| 1 1| s
1] 2 3 s4 s5 | s6
[2]
s 5 s
3 3 [E)
2 2 2
9 8 57
0 4 14 2
r3 [Send, TOKEN_NUM, '\n'] 2 =
s3 s7
[
7

PARSING TABLE

r4 [Send, TOKEN_NUM, "\n’

1

case 8: IMPLEMENTATION

#line 52 “"syntactic.y"

{ (yyval.real) = (yyvsp[(1) - (3)].real) *
(yyvsp[(3) - (3)].real); }

break;

® Input

Input
3.14+5*8.67

Click to Open Input File

Cancel (EENOKEND

«)
SYNTAX TREE

Figure 3: Graphical and interactive ITT environment (1).

addition, the attributes and semantic equations neces-
sary for the evaluation of its result are included:

input : L
| input line /* r2
line : "\n’ /* r3

exp '\n’ { printf('Result: %f’, $1); } /* rd

exp : TOKEN_NUM { 8% = 81; } /* 15
| exp "+’ exp { $5 =81+ 83; } /* 16
| exp "*' exp { $$ =81 * $3;)} e

7

From these two files, students generate their own im-
plementation in C++ by using the Flex/Bison tools
(Levine, 2009; del Vado Virseda, 2022): The file
lex.yy.c with the implementation of the scanner,
and the file syntactic.tab.c with the implementa-
tion of the LR parser. In addition, the student gets
the file syntactic.dot with the Deterministic Fi-
nite Automaton (DFA) underlying the implementa-
tion files. When the student executes ITT, imple-
mented in a ITT. jar file, the student is asked to en-
ter the files with the lexical, syntax-semantics imple-
mentation, the DFA automaton, as well as to indi-
cate the concrete tools used to obtain the implemen-
tation, in this case, FLEX+BISON (see Figure 1). From
these three files, ITT has all the information needed to
create an interactive session, similar to other graphi-
cal tools as JFLAP (Rodger et al., 2011) (see Figure
2). The ITT tool translates the syntactic.dot file
into the file LALR (1) .xml in XML (Adams and Trefftz,

336

2004), so that it can be executed by our interactive
environment DFA. jar, which contains the DFA asso-
ciated to the grammar rules r1, r2, etc., and the links
to the code fragments corresponding to its implemen-
tation in syntactic.tab.c:

<xml version="1.0" encoding="UTF-8" standalone="no">
<structure>
<type> dfa </type>
<automaton>
<!--The list of states.-->
<state id="0" name="0">
<x> 350.0 </x>
<y> 49.0 </y>
<label> rl [Sdefault_rl_link] </label>
<initial/>
<final/>
</state>
<!--The list of transitions.-->
<transition>
<from> 0 </from>
<to> 1 </to>
<read> input [$default_sift_link_01] </read>
</transition>
</automaton>
</structure>

4 FROM IMPLEMENTATION TO
THEORY

When the interactive session starts, ITT.jar opens
a window in which executes the files with the im-

Visualizing Compiler Design Theory from Implementation Through an Interactive Tutoring Tool: Experiences and Results

0
@ s s s

7\ 3 3 L£]

r2 [$end, TOKEN_NUM, "\n' r2 r2 r2

ot

TOKEN_NUM | "\n' | input | line | exp
1 1| 1
52 s3 sa s5 | s6

59 58 s7
4 4 4

3.14 + 5 * 8.67
Result: 46.489998

a s3 s10
s3 s7

r3 [Send, TOKEN NUM, '\n] 10 3
11 _ 7

— .
. T — CONFLICTS
T T < o'
6
3 e
11 /
r5 [Send, TOKEN NUM, "\n’ [Zre" =,] / /K/’.\\\(D
,\a"o,, " “ / — \/o\ S
5
@ @
@ | $accept: input $end| case 5:
1 input: /* vacio */ #line 46 "syntactic.y"
2 | input line { printf(“Resultado: %f\n", (yyvspl(1) - (2)].real)); }
break;
[inputsend § iline:l '\n"\ . =
exp n case 6:
5 exp: TOKEN_NUM #line 58 "syntactic.y"
6 | exp '+' exp { (yyval.real) = (yyvsp[(1) - (1)].real); }
g break;
7 | exp 'x' exp

||| Step | Reset | Freeze | Thaw | Trace | Remove

Figure 4: Graphical and interactive ITT environment (2).

plementation provided by the student. If the com-
pilation is successful (errors are shown in the text
box in Figure 1), the student enters an arithmetic ex-
pression as input, for example, 3.14 + 5% 8.67, and
the result of the evaluation of the expression, in this
case, 46.489998, appears in the window (see Figure
3, upper left corner). Next, DFA.jar opens a new
window with the interactive session, in which the
graphical visualization of the main theoretical con-
tents underlying the implementation execution will
appear (see Figure 3, upper part): The DFA re-
sponsible for directing the analysis process, and the
state transition table with which to traverse the au-
tomaton from its initial state 0 to the different fi-
nal states, highlighted with double circles. The stu-
dent’s goal is to enter sequences of tokens that rep-
resent and correspond to the arithmetic expression
entered in the execution (e.g., students enter the se-
quence 3.14 + 5 % 8.67, corresponding to the expres-
sion inputexp’+’exp’ *'exp’\n’) as shown in the
lower right corner of Figure 3. Thus, using the state
transition table, the student will try to start from the
initial state of the DFA and reach one of the final
states, each of which has a grammar rule associated.
When the student successfully reaches a final state
(in the example, the student clicks on the final state
11), ITT displays this fact in green color, and shows
the student the grammar rule responsible for the re-
duction applied during the execution, in this case, the
rule r7 (i.e., exp exp '*' exp). Inaddition, ITT
shows the bottom-up construction of the syntax tree

achieved up to that moment (see Figure 3, bottom),
as well as the code fragment of the implementation
in syntactic.tab.c for the reduction/shift, and the
evaluation of the attributes in the semantic equation
$$ = $1 * $3associated with the grammar rule r7.
The student’s ultimate goal is to interactively intro-
duce sequences of tokens until successfully complet-
ing the construction of the syntax tree, as shown in
Figure 4. During this analysis process, the student
clicks on the final states to visualize and debug the
complete code trace corresponding to the execution
of the implementation, and at the same time, under-
stand how the DFA works and how its associated state
transition table is used. The student will also un-
derstand and identify the existence of DFA states in
which shift/shift or shift/reduce conflicts (Aho et al.,
2006) may appear, as in the example with states 10
and 11, indicated in red in the table. Students can then
perform several sessions with ITT to visually better
understand why the value 46.489998 is obtained dur-
ing the execution, instead of 70.5738, and why it is
necessary to establish priorities and associativity be-
tween arithmetic operators to avoid ambiguity in the
starting grammar given in syntactic.y (i.e., $left
T+ %left '),

Thus, ITT does not require the student to start with
a correct grammar without conflicts and errors. The
ITT tool offers functionality to debug grammars and
resolve conflicts and errors, using them as an educa-
tional tool to deepen the understanding of theoretical
design concepts (Becker, 2019). If at any time the

337

CSEDU 2023 - 15th International Conference on Computer Supported Education

Sond] = | 5 m— =
L mich.. _ O % 7;. '+ Toxu:luum };\ |n;m line | exp
3.14 + 5 = 52 53 s4 s5 56
N - 0
_ | . . 5
v [£] 3 [£]
r2 r2 r2
ERRORS 4 2 - 4 i;
s3 s10
s3 s7
=
7
r4 [Send, TOKEN_NUM, '\n']
@ if (0 < yysize && yysize <= yymsg_alloc) o Input
{
(void) yysyntax_error (yymsg, yystate, yychar); ot
yyerror (yymsg); =
=> 3.14+5*
inputexp'+'exp""\n" ﬁ else e *
{ Click to Open Input File
yyerror (YY_("syntax error"));
if (yysize !'= 0)
goto yyexhaustedlab; Cancel oK

Step | Reset | Freeze | Thaw | Trace | Remove

Figure 5: Interactive ITT debugging of errors and conflicts.

student enters an incorrect token sequence, or a final
state with an incorrect reduction is reached, ITT dis-
plays it in red color (see Figure 5). In addition, ITT
will show the part of the syntax tree it has built up to
that point, as well as the code fragment of the imple-
mentation that is responsible for identifying this er-
ror. The student will better understand how to resolve
these conflicts and errors, and if it is necessary, re-
design the grammar in syntactic.y to obtain a new
implementation with which to run again the interac-
tive session provided by ITT.

S METHODOLOGY AND
EVALUATION

Following our previous methodology of evaluation
in (del Vado Virseda, 2021), Figure 6 shows the re-
sults achieved by means of the application of ITT
by several groups of students in a Compiler Design
course, over several consecutive academic years, on
each phase in which a compiler is structured. The re-
sults of our experience have been obtained as the ITT
tool and its underlying methodology have been devel-
oped and applied.

During the 2018-2019 course, ITT was tested for
the first time with good results (see Figure 6), with 39
students contributing their ideas and criticisms for its
development and implementation (17 with ITT and
22 in traditional course with only compiler writing
tools). The average was 5.89 points, a step above the

338

traditional method without ITT.

In the 2019-2020 course, ITT was applied for
the first time in a controlled and supervised environ-
ment to evaluate its application (del Vado Virseda,
2022). Students were carefully selected to follow the
traditional tool-based learning method or using ITT
throughout the course (to prevent students who are
more likely to do well in the course are also more
likely to choose to use ITT). Of the total number of
students enrolled, 24 students were selected to use
ITT and 17 students followed the traditional method.
The students who followed the classical method ob-
tained an average of 5.93 points, similar to the results
already obtained in the 2018-2019 course. Students
using ITT obtained now a higher average of 6.44.

The 2020-2021 academic year was affected by
COVID-19, which resulted in classes going virtual.
To facilitate the remote delivery of the main theo-
retical concepts, we developed in more detail the re-
mote instance of ITT presented in Sections 3 and 4.
On this occasion, 33 students were selected to follow
the new learning method using ITT, and only 11 stu-
dents were selected to follow the traditional learning
method from theory to implementation, using notes
and recorded lectures prepared by the teacher together
usual compiler-writing tools. The average obtained
by the students who used ITT increased to 7.0 points,
while the average obtained by the students who fol-
lowed the traditional method increased to 6.15 points.
We have used specific quizzes for the topics where
the ITT tool can be used, comparing the projects and

Visualizing Compiler Design Theory from Implementation Through an Interactive Tutoring Tool: Experiences and Results

I Lexical analysis with ITT Lexical analysis in traditional course
Syntax analysis with ITT I Syntax analysis in traditional course

I Syntax-directed translation with ITT Il Syntax-directed translation in traditional course
Code Generation with ITT Code generation in traditional course

0 - 10 grading scale

2018-2019 2019 - 2020 2020 - 2021

Figure 6: Results in each compiler phase with/without ITT.

exam grades with and without using the tool (see Fig-
ure 6). The evaluation compares students learning un-
der each approach in the same group, in which stu-
dents following the traditional method only make use
of the compiler-writing tools, instead of our tool ITT
on the phases where the interactive tool can be used.

6 RESULTS AND SUCCESS
INDICATORS

Finally, we have conducted statistical analysis to ex-
amine the effect of using ITT with students in a Com-
piler Design course. In the last year, the individual
projects and exams have been the same, but there
were two groups of students. Those who have fol-
lowed the traditional method of learning from theory
to the implementation provided by compiler-writing
tools (without ITT), and those who have learned the
theory of the course from the implementation with the
help of ITT. We have tested, from the results and sur-
veys presented in Section 5, the following research
hypothesis: Students who learn the theory of a Com-
piler Design course from the implementation by using
the interactive sessions generated by ITT, have been
successful in the course by obtaining better results,
motivation, and interested than with traditional learn-
ing methods without ITT.

For this purpose, we performed x>-tests of inde-
pendence for hypothesis testing with the SPSS soft-
ware and the calculation of confidence intervals of
95%. We tested Hy (there is independence between
the variables ITT use and Success in the course), and
H; (there is no independence). The two variables are
coded as follows: ITT use is coded with the number 1
if the ITT tool is used and 2 in the negative case, and
Success in the course is coded with the number 1 if
the final exam is passed and a positive motivation has
been recorded, and 2 in the negative case. The statisti-
cal table in Figure 7 shows the value of the continuity
correction statistic as a 2 x 2 table whose value was

Chi-Square Tests

Asymptotic
Significance Exact Sig. Exact Sig. Point
Value df (2-sided) (2-sided) (1-sided) Probability

Pearson Chi-Square 12,139 1 <,001 ,001 ,001
Continuity Correctionb 1 ,002

Likelihood Ratio 12,539 1 <,001 ,001 ,001
Fisher's Exact Test m ,001

Linear-by-Linear 11,734 1 <,001 ,001 ,001 ,001
Association

N of Valid Cases 4
a. 1 cells (25,0%) have expected count less than 5. The minimum expected count is 2,93,

b. Computed only for a 2x2 table
¢. The standardized statistic is 3.426.

Figure 7: Chi-Square tests of independence for the use and
evaluation of the ITT tool in a Compiler Design course.

9.337, with one degree of freedom. If we look at the
Fisher’s exact statistic for the exact sig. (bilateral) col-
umn, which we call p, this value indicates the prob-
ability of obtaining a difference between the groups
greater than or equal to the observed one, under the
null hypothesis Hy of independence. As this proba-
bility is less than oo = 0.05 (since p = 0.001 < 0.05),
we conclude with a significance level of 5% that the
starting hypothesis Hy should be rejected, so we must
assume H; (i.e., the two variables are not indepen-
dent, but associated). Therefore, the use of ITT to
interactively learn theory from implementation tends
to increase grades and motivation.

7 CONCLUSIONS AND FUTURE
WORK

Compiler Design has resulted in a beautiful combina-
tion of practice and theory in Computer Science (Aho
et al., 2006). However, theory and practice are not
mutually exclusive, but are intimately connected, so
that they coexist and support each other. Although
new resources are being developed to balance theory
and practice to get students better connect the prac-
tice and theory of compiler design (Nystrom, 2021),
educational approaches based on traditional compiler
books (Aho et al., 2006; Wirth, 1996) seem to have
become obsolete to bridge the gap that students en-
counter between Compiler Design theory, and tools
for designing modern compilers

This work has shown how to use the ITT tool
to set interactive learning connections between the
key phases in the implementations achieved by the
compiler-writing tools, and specific portions of com-
piler theory. The use of ITT with an interactive graph-
ical interface, to engage students and enhance the un-
derstanding of the theory from the implementation,
gives students a first-hand understanding of how the-
ory and practice can be beneficially interwoven.

339

CSEDU 2023 - 15th International Conference on Computer Supported Education

Our main future work consists of enabling ITT
to interactively use other tools, such as LISA or
ANTLRTree, with which to better visualize the values
of inherited and synthesized attributes from the code.
We are also intending to use ITT with other com-
piler writing tools following (Chakraborty and et al.,
2013). We are also working on using other imple-
mentation languages following (Godbolt, 2021), such
as C#, Java code, provided by the JFlex/CUP tools,
and Python implementations.

REFERENCES

Adams, D. R. and Trefftz, C. (2004). Using xml in a com-
piler course. SIGCSE Bull., 36(3):4-6.

Aho, A. V. (2008). Teaching the compilers course. SIGCSE
Bull., 40(4):6-8.

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006).
Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley.

Becker, B. A. e. a. (2019). Compiler error messages consid-
ered unhelpful: The landscape of text-based program-
ming error message research. ITICSE-WGR °19, page
177-210. ACM.

Boyer, T. P. and Chitsaz, M. (2004). Ice™ and ice/t™:
Tools to assist in compiler design and implementation.
SIGCSE Bull., 36(4):55-57.

Chakraborty, P. and et al. (2013). A compiler-based toolkit
to teach and learn finite automata. Comput. Appl. Eng.
Educ., 21(3):467-474.

de Oliveira Guimardes, J. (2007). Learning compiler con-
struction by examples. SIGCSE Bull., 39(4):70-74.

del Vado Virseda, R. (2020). An interactive tutoring system
for learning language processing and compiler design.
In ITiCSE’20, page 552. ACM.

del Vado Virseda, R. (2021). Learning compiler design:
From the implementation to theory. In ITiCSE’21,
pages 609-610. ACM.

del Vado Virseda, R. (2022). ITT: an interactive tutor-
ing tool to improve the learning and visualization
of compiler design theory from implementation. In
SIGCSE’22, page 1074. ACM.

Demaille, A. e. a. (2008). A set of tools to teach compiler
construction. In ITiCSE 08, page 68-72.

Frens, J. D. and Meneely, A. (2006). Fifteen compilers in
fifteen days. SIGCSE Bull., 38(1):92-96.

Godbolt, M. (2021). Compiler explorer.

Henriques, P. R. and et al. (2005). Automatic generation
of language-based tools using the LISA system. [EE
Proc. Softw., 152(2):54-69.

Henry, T. R. (2005). Teaching compiler construction using
a domain specific language. SIGCSE, 37(1):7-11.

Levine, J. R. (2009). flex and bison - Unix text processing
tools. O’Reilly.

Lorenzo, E. J. e. a. (2011). A proposal for automatic eval-
uation in a compiler construction course. In /TiCSE
’11, page 308-312. ACM.

340

Mak, R. (2009). Writing Compilers and Interpreters: A
Software Engineering Approach. Wiley Publishing,
3rd edition.

Mernik, M. and Zumer, V. (2003). An educational tool for
teaching compiler construction. IEEE Trans. Educ.,
46(1):61-68.

Naps, T. L. and et al.l (2002). Exploring the role of visu-
alization and engagement in computer science educa-
tion. ACM.

Nystrom, R. (2021). Crafting Interpreters. Genever Ben-
ning.

Pettit, R. S. e. a. (2017). Do enhanced compiler error mes-
sages help students? results inconclusive. SIGCSE
*17, page 465-470, New York, NY, USA. ACM.

Rodger, S. H., Qin, H., and Su, J. (2011). Changes to jflap
to increase its use in courses. ITiCSE 11, page 339,
New York, NY, USA. ACM.

Sondag, T., Pokorny, K. L., and Rajan, H. (2010). Frances:
A tool for understanding code generation. SIGCSE
’10, page 12-16. ACM.

Urquiza-Fuentes, J., Manso, F., Veldzquez-Iturbide, J. A,
and Rubio-Sanchez, M. (2011). Improving compilers
education through symbol tables animations. ITiCSE
’11, page 203-207. ACM.

Vegdahl, S. R. (2000). Using visualization tools to teach
compiler design. volume 16, page 72-83, Evansville,
IN, USA. Consortium for Computing Sciences in Col-
leges.

Waite, W. M. (2006). The compiler course in to-
day’s curriculum: Three strategies. SIGCSE Bull.,
38(1):87-91.

Wirth, N. (1996). Compiler construction. International
computer science series. Addison-Wesley. slightly re-
vised November 2005.

