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Abstract: Sign language is used by deaf to communicate with other humans. It consists of not only hand signs or gestures
but encompasses also facial expressions and further body movements. To make machine-human interaction
accessible for deaf, automatic sign language recognition has to be implemented which allows a machine to
understand the signs and gestures of deaf. For this purpose, continous sign-language recognition, which is the
mapping of a (visual) sequence of signs forming a (sign) sentence to a sequence of (text) words, has to be
developed. In this work, continuous sign-language recognition using transformers is proposed. Using addi-
tional pose estimation, body markers are extracted and augmented through data imputation and velocity-like
features, and then used together with a transformer network for continuous sign-language recognition. Us-
ing the proposed method, better than state-of-the-art results were obtained on the RWTH-PHOENIX-Weather
2014 dataset, achieving 19.2%/19.5% dev/test word error rate (WER) on the signer-independent subset and
16.9%/17.4% dev/test WER on the simpler multi-signer subset. The feature augmentation was found to im-
prove the baseline word error rate by about 2.7 %/ 2.9 % dev/test.

1 INTRODUCTION

Current estimates suggest that about 20% of the en-
tire population of the world live with hearing loss,
about 430 million of which suffering from disabling
hearing loss (Chadha and Cieza, 2017). Around the
world, a subset of these, the completely deaf, com-
monly use sign language to communicate with other
people. Due to these factors, automatic recognition of
sign language is a very important task to be mastered
by machines (Wen et al., 2021). As sign language
in practice consists of a sequence of combinations
of gestures/hand signs, facial expressions and further
body poses (together called a gloss), to properly rec-
ognize and understand sign language, sequences of
glosses have to be mapped to sequences of words. In
the instance, where no temporal boundaries between
individual glosses are known, the problem is called
continuous sign-language recognition. While the au-
tomatic recognition as described is already difficult
enough, the fact that many different sign-languages
(and dialects) are used throughout the world increases
a complete solution of the problem even more. How-
ever, only one sign-language, the german standard
sign-language, is considered in this work.

1.1 Related Work

Early work about vision based automatic sign-
language recognition dates back at least to the 80s
(Tamura and Kawasaki, 1988) with the field appar-
ently getting track in the mid 90s (Starner and Pent-
land, 1995; Vogler and Metaxas, 1998), where hid-
den markov models were used to recognize hand ges-
tures of a subset of the american sign-language. Large
improvements in automatic sign-language recognition
were achieved in the 2010s with the triumphant ad-
vance of machine learning or more specifically artif-
ical neural networks, especially in the general field
of computer vision. A good overview can be found
in (Rastgoo et al., 2021). Pigou et al. (Pigou et al.,
2015) achieved 91.4% accuracy using convolutional
neural networks for feature extraction and classifica-
tion of 20 Italien gestures. Kumar et al. (Kumar et al.,
2018) extracted face and hand features and used inde-
pendent bayesian classifier combination for recogni-
tion of 51 dynamic sign word gestures. They achieved
an accuracy of up to 96.04 % on this custom dataset.
Mittal et al. (Mittal et al., 2019) used modified LSTM
as well as a convolutional neural network to recognize
sequences of hand gestures. They achieved an accu-
racy of 72.3 % for continuous sign language recogni-
tion on their own dataset.
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Recently, on the RWTH-PHOENIX-Weather
2014 dataset (Koller et al., 2015), which this work
focuses on and to be described in later sections, Cui
et al. (Cui et al., 2017) combined convolutional neu-
ral networks with bidirectional long-short term mem-
ory (BiLSTM), one of the most popular approaches
in the literature, and used staged optimization. They
achieved a word error rate of 39.4 %/38.7 % dev/test.

Zhou et al. (Zhou et al., 2020) used multi-
cue networks consisting of convolutional layers for
pose and feature extraction and BiLSTM for map-
ping the extracted features to words. With their ap-
proach, they achieved a word error rate (WER) of
21.1 %/20.7 % dev/test. Papastratis et al. (Papastratis
et al., 2021) achieved 23.7 %/23.4 % dev/test WER
using a context-aware generative adversarial network.
Most recently, Hu et al. (Hu et al., 2022), by com-
bining so called temporal lift pooling with BiLSTMs,
achieved a state-of-the-art WER of 19.7 %/20.8 %
dev/test, for the first time obtaining below 20 % dev
WER. Furthermore, Zuo et al. (Zuo and Mak, 2022)
achieved a WER of 20.5 %/20.4 % dev/test, which
is state-of-the-art for the test set, through combin-
ing spatial attention consistency with transformer net-
works.

While some publications make use of trans-
former models, and a few make use of dedicated
pose/landmark estimation frameworks, no publication
uses data imputation techniques to improve the land-
mark estimation before attempting to recognize the
glosses. However, in (Bansal et al., 2021) the pos-
sible gains by superior landmark extraction became
apparent. Therefore we believe, that a considerable
improvement in word error rate can be achieved by
combining state-of-the-art landmark estimation with
data imputation techniques to decrease the error in the
landmark estimation.

1.2 Contribution

In this work, we propose to first extract landmarks of
the respective signers of the used dataset, to error cor-
rect these landmarks using a k nearest neighbor neural
network and to augment these landmarks by several
features, including velocity-like features as in (Bansal
et al., 2021) as well as features allowing to recognize
gloss borders more easily. The feature augmentation
is described in detail in Section 2.3. Then, a trans-
former neural network is used to map this sign lan-
guage representation to the german words. For land-
mark extraction, we use the recently published frame-
work MediaPipe (Lugaresi et al., 2019), which we
found to be rather reliable except in case of strong
motion blur and some occlusions. Error correction

targeted these problematic instances, where the land-
mark extraction failed, and attempted to interpolate
missing markers. This work is structured as follows:
First, the dataset, the feature augmentation and the
utilized transformer network are described in Section
2. Then, the obtained word error rates as well as an
ablation study and error analysis are presented in Sec-
tion 3. These results are then discussed and compared
to other authors in Section 4. The manuscript con-
cludes in Section 5.

2 METHODS AND MATERIALS

2.1 Dataset

In this work the RWTH-PHOENIX-Weather 2014
continuous sign language recognition dataset was
used. It consists of video recordings of the sign
language transcript of the german weather forecast
throughout the years 2011-2013 as shown on the ger-
man television channel Phoenix. The sampling rate fs
of all videos is 25 frames per second, each frame be-
ing of size 210 x 260 pixels. The videos show only the
box of the signer. In total, nine different signers make
up the entire dataset. The dataset is split into two sub-
sets: a multi signer subset and a signer independent
subset:

• Multi signer subset: This subset has a total num-
ber of 6841 videos, 77271 tokens/glosses and
837865 frames. It is divided into three data splits:
a train set of 5672 samples, a development set
with 540 samples and a test set of 629 samples.
All nine signers appear in the three data splits.
This subset has a vocabulary size of 1295 signs.

• Signer independent subset: This subset has a to-
tal number of 4667 videos, 53034 tokens/glosses
and 655378 frames. It is divided into three data
splits: a train set with 4376 samples, a develop-
ment set with 111 samples and, a test set of 180
samples. With the exception of signer 05, all nine
signers appear in the train set. The development
set and the test set are signed only by the unseen
signer 05. This subset has a vocabulary size of
1135 signs.

Due to the developement and test set of the signer
independent subset being signed by the only signer
not included in its train set, it poses a considerable
greater challenge than the multi signer subset.
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Figure 1: Pipeline of the proposed algorithm. For each image of a sequence of glosses markers are extracted using the
MediaPipe framework. In this example, MediaPipe failed to extract the right elbow landmark. Then, feature augmentation
is performed including velocity features. These augmented features are fed to a transformer network which generates an
output for each frame of the video, most being padding symbols included after the final recognized gloss. Finally, in the
post-processing, the padding symbols are removed, yielding the final output of words W1, . . . ,Wp.

2.2 Feature Extraction

For feature extraction the framework MediaPipe, re-
cently published by Google (Lugaresi et al., 2019),
was used in its python implementation (MediaPipe,
2020). It was used to extract a total of 75 land-
marks covering hands, arms, shoulders and parts of
the face. The extracted landmarks can be seen in Fig.
1. Except for frames exhibiting heavy motion blur
and some occlusions of one of the hands the marker
extraction appeared to be very reliable. Each land-
mark M(i) is represented by its three cartesian coordi-
nates x(i),y(i) and z(i), i.e. we can identify according
to M(i) = (x(i),y(i),z(i)).

2.3 Feature Augmentation

The sequence of length N of L feature vec-
tors Fn := (M(1)

n , . . . ,M(L)
n ) with landmarks M(i)

n =

(x(i)n ,y(i)n ,z(i)n ), n = 1,2, . . . ,N and L = 75, obtained
by applying MediaPipe to a video recording consist-
ing of N frames, was augmented in several ways: the
sequence Fn was corrected by a k nearest neighbor
algorithm as performed in (Yao and Ruzzo, 2006)
implemented through sklearn. This k nearest neigh-
bor regression was used only to correct any marker
M(i)

n which MediaPipe failed to extract, which are
indicated by empty dictionary entries. For its in-
terpolation it used the adjacent markers of future or
previous time steps. Furthermore, the L2-norm of
∆M := (M(1)

n+1 −M(1)
n , . . . ,M(L)

n+1 −M(L)
n ) was used as

an additional feature. The idea was, that minima of
the velocity of the signer could help to identify the
borders of the individual glosses, where a signer could
come to a brief hold. Thirdly, the center of mass of
each hand was included as a feature. Finally, the ve-
locity of both hands and the individual fingers was

used as an additional feature, i.e.

v(i)n =
M(i)

n+1 −M(i)
n

T
(1)

with n = 1, . . . ,N−1 and i iterating through all mark-
ers of each hand including the center of mass and
T = 1

fs
. The substraction in Eq. 1 is to be under-

stood componentwise in the natural sense. The idea
was motivated by glosses like Regen (engl. rain) and
Schnee (engl. snow) which use identical gestures ex-
cept for the movement of the fingers, where for snow
the fingers are moving and resting for rain.

2.4 Transformer Structure

The encoder and decoder of the transformer consisted
of eight layers, each using eight heads. The embed-
ding dimension d was set to d = 512. The expansion
factor e was set to four, yielding an input/output size
of the linear layers of e · d = 2048. The total num-
ber of parameters was 108,859,665. Initital results
suggested that reducing the number of parameters to
80 million decreases the performance to some degree.
Larger numbers were not tested due to the computa-
tional complexity involved. Positional encoding used
sine and cosine encoding, as described in (Vaswani
et al., 2017). Swish served as activation function. The
maximum sequence length of both, encoder and de-
coder, was set to M = 300, which was the maximum
number of frames encountered in the entire dataset.
Given a ground truth sentence of W words, during
training the target output was padded at the end us-
ing M-W padding symbols.

2.5 Proposed Algorithm

The overall algorithm is depicted in Fig. 1. A
video consisting of N frames is fed to MediaPipe

ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods
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Table 1: Word error rate (WER) and share of insertion or
deletion errors achieved by the Full learner on the develop-
ment and test set of the multisigner subset. Only substitu-
tion errors occured.

Subset #ins/#del (%) and WER (%)

Signer Independent
Multisigner

del/ins WER Dev WER Test
0.0/0.0 19.72 19.52
0.0/0.0 16.91 17.39

which extracts the landmarks. These are augmented
as described in Sec. 2.3, yielding feature vectors
F1, . . . ,FM with Fk = 0 when k > N. These were then
propagated to the transformer. The transformer maps
this sequence of feature vectors to sequences of words
Ŵ1, . . . ,ŴM. This output still contains padding sym-
bols at the end. In the final step, all padding sym-
bols are removed, yielding the final output sequence
W1, . . . ,WP with Wk = Ŵk for k = 1, . . . ,P to ob-
tain the final output of the algorithm. This output was
then used to assess the performance, either through
the cross-entropy loss or the word error rate.

2.6 Training

In all cases, the transformer was trained for 220
Epochs using the cross-entropy loss, a batch size of
four and a learning rate of 0.09 using stochastic gradi-
ent descent. The learning rate was updated with a fac-
tor of 0.7 if the evaluation loss did not improve across
two epochs. Dropout was set to 0.2 in all layers. A
fixed random seed was used such that all transformers
were initialized identically.

2.7 Evaluation

The main metric to assess the performance of the pro-
posed algorithm is the word error rate (WER) on the
respective dev and test sets. The WER is computed
according to

WER = ( #insertions+#deletions+#substitutions
#words ) ·100% (2)

where #insertions, #deletions and #substitutions as
well as #words are the respective sum across the en-
tire respective dev or test set.

An ablation study was performed to evaluate the
benefit of the feature augmentation. As baseline
model, labeled MediaPipe learner, the immediate out-
put of MediaPipe served as input of the transformer.
Empty outputs of MediaPipe were replaced with ze-
ros. Next, the MediaPipe learner was augmented by
the L2-norm feature as described in Section 2.3 and
this model was labeled L2 learner. The L2 Learner
was augment through data imputation as described
in Section 2.3 and this model was labeled Imputed
learner. Finally, the Imputed learner was augment by
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Figure 2: Evolution of the word error rate (WER) of the
respective ablation models on the development set of the
multisigner subset. The best word error rates are summa-
rized in Table 2.

all other feature augmentations described in Section
2.3, i.e. the center of gravity of each hand was added
as well as the velocity of the handmarks. This model
was labeled Full learner.

3 RESULTS

The word error rates achieved on the development and
test set of the multisigner and signer independent sub-
sets are reported in Table 1 together with the amount
of deletion and insertion errors in percent. Actually,
only substitution errors occured. Better than state-
of-the-art word error rates of 16.9/17.4 % dev/test
were achieved on the multisigner subset and state-of-
the-art word error rates of 19.7/19.5 % dev/test were
achieved on the signer independent dataset. A com-
parison to the previous state-of-the-art and a selection
of further relevant results is given for the multi signer
subset in Table 3 and for the signer independent sub-
set in Table 4. To the best of our knowledge, we im-
proved the state-of-the-art for the multisigner subset
by 2.8% on the developement set and 3% on the test
set. Furthermore, To the best of our knowledge, we
improved the state-of-the-art for the signer indepen-
dent subset by 25.4% on the development set and by
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Figure 3: Evaluation loss across training epochs for all ab-
lation models. It is apparent, that the training had not yet
quite fully converged.
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Table 2: Best word error rate and share of insertion or dele-
tion errors achieved by each learner on the multisigner dev
and test set.

Learner WER (%) and #del/ins (%)

MediaPipe learner
L2 learner

Imputed learner
Full learner

del/ins Dev Test
0.0/0.0 19.66 20.20
0.0/0.0 19.54 20.09
0.0/0.0 17.88 17.50
0.0/0.0 16.91 17.39

24.6% on the test set. Note that for the signer in-
dependent subset, which poses a considerably more
difficult problem, only one result was found in the lit-
erature.

3.1 Ablation

Word error rates for all ablation models are summa-
rized in Table 2. The evolution of the word error curve
for the development set is depicted in Fig. 2. Around
epoch 140 the differences between the ablation mod-
els become somewhat apparent. The word error rate
of the vanilla MediaPipe learner was 19.7 %/20.2 %
dev/test and for the Full learner 16.9 %/17.4 %. This
results in an absolute improvement of 2.8 %/2.8 %
dev/test. The loss curve for the development set of the
multi signer subset for all ablation models is depicted
in Fig. 3. As the slope of the evaluation curves had not
yet approached zero, it is reasonable to assume that
the word error rate could have been improved even
further if the training had continued.

4 DISCUSSION

Going by the word error rate of the MediaPipe learner
as given in Table 2, the transformer achieves out-
of-the-box, aside from some initial investigations re-
garding, e.g., the learning rate, state-of-the-art results.
This is impressive, seeing that the previous state-of-
the-art approaches (Hu et al., 2022; Zuo and Mak,

Table 3: Word error rate (WER) of the Full learner as de-
fined in Section 2.7 on the development and test set of mul-
tisigner subset together with a selection of results from the
literature, including the previous state-of-the-art.

Method WER (%)

(Koller et al., 2015) CSLR
(Cihan Camgoz et al., 2017) SubUNets

(Chen et al., 2021) RL transformer
(Koller et al., 2017) CNNs-BiLSTM

(Hao et al., 2021) SMKD
(Aditya et al., 2022) Spatio-Temporal CSLR

(Zuo and Mak, 2022) C2SLR
(Hu et al., 2022) Temporal lift pooling

Ours

Dev Test
55.0 53.0
40.8 40.7
38.0 38.3
27.1 26.8
20.8 21.0
20.5 21.5
20.5 20.4
19.7 20.8
16.9 17.4

Table 4: Word error rate (WER) of the Full learner as de-
fined in Section 2.7 on the development and test set of signer
independent subset together with a selection of results from
the literature, including the previous state-of-the-art.

Method WER (%)

(Koller et al., 2017) Re-Sign
Ours

Dev Test
45.1 44.1
19.7 19.5

2022) required a considerable greater engineering ef-
fort. However, seeing that continuous sign language
recognition at its core means to learn a translation of
sequences of feature vectors, which could be inter-
preted as a special representation of a language, to
sequences of words, its performance is not that sur-
prising anymore. Transformers continue to have great
success in natural language processing (Chernyavskiy
et al., 2021), and as such seem to be well suited for the
issue of continuous sign language recognition once
the three language streams, i.e. hand signs, facial ex-
pressions and other body movements, are adequately
captured in the input data.

The benefit of the L2-norm was minor, which
could be explained by only some body parts, e.g., the
hands, being close to resting when a signer empha-
sizes a gloss. Perhaps introducing seperate L2-norms
for individual body parts could help to identify gloss
borders.

The greatest benefit was observed by data impu-
tation. The explanation is obviously that important
landmarks are sometimes not extracted by MediaPipe
and that the transformer cannot restore them on its
own. Noisy imputation appears to be better than miss-
ing data.

The introduction of the velocity of the landmarks
and the center of gravity of each hand gave a notice-
able boost on the development set, however, on the
test set only a marginal improvement of about 0.1 %
was observed. Such a small difference might be not
systematic. Generally, the transformer should be able
to compute velocity on its own. Introducing landmark
velocity despite this fact was motivated by the fact
that a neural network generally only attains local min-
ima. Adding reasonable features might help to steer
the training towards better local minima.

Due to the computational complexity, repeating
the ablations a few times was impossible. Thus
chance cannot be entirely ruled out as an explana-
tion of the observed differences in the ablation study.
However, because we fixed the random seed, the ini-
tialization was identical for all four ablations. This
suggests the features as the cause of the improved
word error rate.

The proposed approach to continuous sign lan-
guage recognition has a few obvious advantages com-
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pared to other methods: Due to extracting key land-
marks first with a separate, reliable framework, the
feature extraction generalizes out of the box to novel
data. This explains the very similiar performance of
our approach on the more difficult signer independent
subset. Additionally, it can be in principle guaran-
teed, that only relevant features are considered and
the causes of recognition errors can be more easily
tracked to either feature extraction or the mapping
from feature space to output space.

A possible downside, shared with others, of the
current approach is the necessity of setting some
fixed maximum number of input and output symbols.
While this could be set rather high, and thus should
not be greatly disadvantagous in practice, it is a flaw
in the design, as a dynamic output length would be de-
sirable. For that, the proposed algorithm would have
to output the respective gloss boundaries, such that
the input video sequence can be cut at the beginning
and the corresponding word could be flushed out of
the output buffer.

One of the most glaring differences to other works
is the absence of insertion and deletion errors of our
model. Only substitution errors occured. In fact,
the number of words at the output of the transformer
after the post-processing stage always matched the
ground truth number of words. This suggests, that
the transformer is able to correctly estimate gloss
borders resulting in the correct number of individual
glosses. During the training, in earlier epochs, in-
sertion and deletion errors still occur but vanish near
the end of the training. We double checked our code
and analyses to verify its correctness and were un-
able to find any mistake. No other work combined
MediaPipe with transformers on the RWTH-Phoenix-
Weather 2014 dataset and as such we cannot make
detailed comparisons to other works in this specific
point. All learners of the ablation making only sub-
stitution errors can be attributed to the fixed random
seed used and the lack of cross-validation due to the
involved computational complexity.

Despite the promising results of this work, the
word error rate still appears to be way too high for
practical applications. The word error rate translates
to about one incorrect word out of six. A reason-
able recognition system should achieve word error
rates well below 10 %. Furthermore, in real situa-
tions, noise due to background humans should pose
a considerable problem.

4.1 Comparison to Other Work

Perhaps the publication closest to our work is (Bansal
et al., 2021), where MediaPipe alongside other pose

estimation frameworks was also combined with a
transformer network, and even velocity features were
considered, although the authors did not report a ab-
lation results to assess the feature importants. Their
work however is concerned with american sign lan-
guage. They also found the combination of Medi-
aPipe and a transformer to perform very well, how-
ever, they found hidden markov models to perform
better. More specifically, MediaPipe was found to
perform the best in conjunction with the transformer
out of three evaluated pose estimation frameworks
and improved the performance by up to about 10 %
with respect to the worst performing pose estimation
framework. This underlines the importance quality of
the landmark extraction.

In (Camgoz et al., 2020) a transformer was also
used for sign language recognition and translation.
The authors report a word error rate of 24.6 &/24.5 %
dev/test for their best implementation on the very si-
miliar PHOENIX14T dataset, which offers only a
marginally smaller vocabulary. These word error
rates are about 5 % worse than our corresponding Me-
diaPipe learner. Their transformer network appears to
be identical to the one used in this work. Specifically,
the number of parameters was likely the same as ours.
They did not, however, use MediaPipe for feature ex-
traction but rather their own convolutional neural net-
works. These might extract suboptimal features. Con-
sidering the benefit of using MediaPipe in conjunction
with a transformer according to (Bansal et al., 2021),
this appears to be a rather plausible explanation and
is in the range of improvement observed by Bansal et
al. (Bansal et al., 2021) in a few instances.

5 CONCLUSIONS

This work investigated automatic continuous sign lan-
guage recognition using transformers on the RWTH-
Phoenix-Weather 2014 dataset. For feature extrac-
tion, Google’s MediaPipe framework was applied.
Through feature augmentation that included intro-
ducing velocity information, state-of-the-art word er-
ror rates of 16.9 %/17.4 % dev/test were achieved on
the multisigner subset and state-of-the-art word error
rates of 19.7 %/19.5 % dev/test were achieved on the
more difficult signer independent subset. The feature
augmentation was found to improve the baseline word
error rate by about 2.7 %/ 2.9 % dev/test.
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