
A Recommender Plug-in for Enterprise Architecture Models

Sashikanth Raavikanti1, Simon Hacks2 a and Sotirios Katsikeas1 b

1KTH Royal Institute of Technology, Stockholm, Sweden
2Stockholm University, Stockholm, Sweden

Keywords: Enterprise Architecture, Archi, ArchiMate, Enterprise Modeling, Recommender Systems.

Abstract: IT has evolved over the decades, where its role and impact have transitioned from being a tactical tool to a
more strategic one for driving business strategies to transform organizations. The right alignment between IT
strategy and business has become a compelling factor for Chief Information Officers and Enterprise Archi-
tecture (EA) in practice is one of the approaches where this alignment can be achieved. Enterprise Modeling
complements EA with models that are composed of enterprise components and relationships, that are stored
in a repository. Over time, the repository grows which opens up research avenues to provide data intelligence.
Recommender Systems is a field that can take different forms in the modeling domain and each form of rec-
ommendation can be enhanced with sophisticated models over time. Within this work, we focus on the latter
problem by providing a recommender architecture framework eases the integration of different Recommender
Systems. Thus, researchers can easily compare the performance of different recommender systems for EA
models. The framework is developed as a distributed plugin for Archi, a widely used modeling tool to create
EA models in the ArchiMate notation.

1 INTRODUCTION

IT has evolved over the decades, where its role and
impact have transitioned from being a tactical tool to
a more strategic one for driving business strategies
to transform organizations (Henderson and Venkatra-
man, 1993). With increased digitization of the inter-
connection among products, processes, and services
over the last two decades, the role of IT has been re-
visited to not just view it as an assistance to business
strategy but rather a fusion that creates industry dis-
ruptions. Bharadwaj et al.(Bharadwaj et al., 2013)
termed this phenomenon as ”Digital Business Strat-
egy”. The right alignment between IT strategy and
business has become a compelling factor for Chief In-
formation Officers where misalignment could lead to
a degradation of organization performance and slow
them down in market competition (Coltman et al.,
2015). Enterprise Architecture (EA) allows to achieve
such an alignment (Alaeddini et al., 2017). Enterprise
Modeling (EM) complements EA by providing mod-
els that represent the structure, behavior, and orga-
nization of the enterprise with different stakeholder
viewpoints (Sandkuhl et al., 2014). In practice, EM

a https://orcid.org/0000-0003-0478-9347
b https://orcid.org/0000-0001-8287-3160

is achieved through a language that provides a for-
mal syntax, semantics and notation (Sandkuhl et al.,
2014). A popular language for EA modeling (Bar-
bosa et al., 2019) is ArchiMate that is provided by The
Open Group (The Open Group, 2021a) and Archi1

is an open source modeling tool that supports Archi-
Mate.

EA models are composed of enterprise compo-
nents and relationships, and are stored in a reposi-
tory (Sandkuhl et al., 2014). Over time, the repos-
itory grows as architects design new models or up-
date existing models. Recommender Systems (RS)
can help to manage the challenges related to grow-
ing repositories by providing meaningful suggestions
to the user based on context (Ricci et al., 2011); i.e.,
by providing modeling assistance (Shilov et al., 2021)
and component recommendations (Borozanov et al.,
2019). A plethora of different algorithms can be used
as backbone for a RS in EA modeling. Therefore, we
as researchers are interested in a platform that eases
the scientific comparison of the performance of these
different algorithms. In line, we implement a recom-
mender framework as a plugin for Archi. As the rec-
ommendation algorithms can be implemented in var-
ious technologies, the framework must be able to in-

1https://www.archimatetool.com/

474
Raavikanti, S., Hacks, S. and Katsikeas, S.
A Recommender Plug-in for Enterprise Architecture Models.
DOI: 10.5220/0011709000003467
In Proceedings of the 25th International Conference on Enterprise Information Systems (ICEIS 2023) - Volume 2, pages 474-480
ISBN: 978-989-758-648-4; ISSN: 2184-4992
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



tegrate to external RS outside Archi. The framework
must be resilient to errors during the execution or any
erroneous input. For instance, there can be latency
issues when connecting to systems outside Archi, or
the recommendation systems might not contain ap-
propriate Archi model repository information to gen-
erate recommendations. We define this resilience as
the robustness of the framework. We also focus on
the ease of integration aspect where the framework
can provide the needed information, and the recom-
mendation system can connect to the framework with
as minimal changes as possible. We, thus, explore the
research question:

”How to design an architecture for Archi that pro-
vides easy integration to different recommendation
systems?”

Using the steps of Design Science Research
Methodology (DSRM) (Peffers et al., 7 12), we iden-
tify our research problem to be design-centric. The
objective of the solution is to design a plugin with an
architecture that satisfies our research problem, which
also constitutes the main contribution of this work:
A framework to integrate different recommenda-
tion systems into the open source EA modeling tool
Archi. The design and development stage of DSRM
consumed the most effort. We started with the the-
oretical foundations of EA to understand how Archi
supports Enterprise Architects as a modeling toolkit.
We studied the existing implementations of RS in
the Software Engineering (Elkamel et al., 2016; Agt-
Rickauer et al., 2018) and the EM domain (Borozanov
et al., 2019; Shilov et al., 2021). We found that differ-
ent forms of recommendations are possible and rec-
ommendation algorithms become more sophisticated
over time. We considered a component recommenda-
tion strategy (Borozanov et al., 2019; Elkamel et al.,
2016) as most suitable to base our framework on. We
design our framework to contain a Graphical User In-
terface (GUI) component to show recommendations,
a connector that can integrate the plugin to external
systems, and a model to show the relationship be-
tween an object selection and its corresponding rec-
ommendations.

The rest of this paper is structured as following:
Next, we present our extensions to the Archi tool.
Then, we describe how the framework can be used for
different RS and provide first insights from potential
users. Before concluding our work, we shortly shed
light on related work.

Figure 1: Archi Architecture.

2 AN ARCHI FRAMEWORK FOR
RECOMMENDER SYSTEMS

To answer our research question, we rely on the open-
source solution Archi2, which has been designed to
model ArchiMate models. Archi is built on Eclipse
Rich Client Platform (RCP) which provides a modu-
lar architecture. On a high level, Archi is composed of
features that in turn contain sub-features and plugins.
We implemented our RS framework as a sub-feature
to Archi’s editor feature. The high-level architecture
diagram is shown in figure 1.

With Eclipse RCP’s modular plugin concept and
using the Common Closure principle and Common

2https://www.archimatetool.com/

A Recommender Plug-in for Enterprise Architecture Models

475



Reuse principle, we divided our plugin into multi-
ple plugins based on their capabilities such as GUI,
Model, and Connector. We treat each plugin to be
a component. Each component contains classes and
interfaces that are grouped based on The Single Re-
sponsible Principle. These classes change for the
same reason and serve a similar purpose. The plug-
ins are defined with a fully qualified name following
the naming conventions of Archi.

The plugins Model
(com.archimatetool.recommender.model) and
GUI (com.archimatetool.recommender.ui) are on
the top-level in the hierarchy that contain abstract
classes or interfaces. This adheres to Stable Abstrac-
tions Principle. The CompletableRecommender
class use the CompletableFuture concept in Java
for asynchronous communication when connecting
external systems. The RecommenderPreferenceAg-
gregator class provides an abstract implementation
to capture user preferences. New preferences can
be added by providing an implementation of this
class. The RecommenderView class provides an
abstraction of displaying recommendations in a
Tree-based view. These plugins expose their classes
and interfaces for other plugins to extend and provide
their implementation. This also includes other Archi
plugins that provide recommendation algorithms.
The classes are loosely coupled and changes to a
certain plugin will not force the change to other
plugins.

The Connector
(com.archimatetool.recommender.connector)
plugin contains an abstract Connector interface and
provides HTTPConnector as a default implementa-
tion. This addresses the objective to integrate with
external RS. As multiple RS are also possible, we
implemented an observer pattern where a plugin
can subscribe to a certain RS using the Recom-
mendationSubscriber class. This class maintains
the subscription information and communicates it
back to the plugin once it receives recommendation
information. The HTTPConnector provides both
synchronous and asynchronous communication
between the plugin and the external system, with
synchronous as default.

To see the recommender feature in ac-
tion within Archi, a concrete implementa-
tion of GUI and Model classes is needed.
This is addressed using Contribution
(com.archimatetool.recommender.contribution)
plugin. It provides an implementation to show
component recommendations in a tabular format. In
the case of Archi, the component can be an Element
within a model. The table shows a grid where

the columns provide the recommended component
information along with a similarity score (cf. Figure
2).

The Contribution plugin subscribes to the Con-
nector plugin. With the Contributor plugin, we de-
fined a simple JSON schema. This is to address the
robustness objective of the framework where any ex-
ternal RS adheres to this contract and the behavior of
the plugin will not change when we connect differ-
ent RS. As part of the contract, the outgoing request
will send the id of the element or relationship. The
JSON response must adhere to the contract by vali-
dating against the JSON schema. The schema expects
an array of recommendations, where every recom-
mendation must contain its id, type, name, model-id
and a similarity score. The Contributor plugin uses a
RecommendationJSONParser class to parse the re-
sponse. Figure 3 shows the UML class diagram of the
entire plugin.

3 USAGE OF THE FRAMEWORK

The plugin can connect to any RS that provides an
endpoint over HTTP and provides a JSON response
that complies with the schema. The current imple-
mentation of the plugin supports only one active con-
nection to the external RS. Also, the current im-
plementation supports only synchronous communica-
tion, and we left asynchronous communication as an
avenue for future research.

3.1 Demonstration

As our focus was only on the framework, we have
simulated the external recommendation system by
hosting a REST service using the Java Spring Boot
framework. We have loaded some Archi Model
elements to this external recommendation system
database. Whenever the REST endpoint receives a
GET request, it generates a JSON response with mock
recommendations. The recommendations are dis-
played in a table within Archi as shown in the figure
2. It contains 3 columns with the name of the element,
the documentation property corresponding to that el-
ement and a similarity score calculated from the rec-
ommendation model.

For each recommendation, we can perform two
different actions: Reveal and Replace using the
ComponentViewActions class in the Contribution
plugin. As the recommended component could be-
long to other models also, Reveal would point to the
corresponding model of a recommended component.
The element belongs to 1 bounded context model

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

476



Figure 2: Recommender Plugin.

A Recommender Plug-in for Enterprise Architecture Models

477



Figure 3: Archi Recommender - Class Diagram.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

478



and Plugin Connectors is revealed in the Plugin De-
sign model.

Replace would replace the name of the selected
component with the recommended component. It
also appends the properties from the recommended
component to the selected component. This action
is to demonstrate that we can perform modifications
through the framework.

The plugin is extensible to provide any kind of
new actions by extending this class such as to Revert
the change that was made.

We simulated scenarios with erroneous input and
induced latency to test the robustness of the archi-
tecture. We noticed that the scenarios related to er-
roneous input have no impact, but the thread within
Archi waits for a response which blocks the execu-
tion within Archi. We perceive this to be a limitation
within the Archi framework. This is left as an avenue
for future research.

3.2 First User Feedback

To evaluate the usage of our framework, we consid-
ered technical aspects (ease of integration and ro-
bustness of the architecture) and gathered first feed-
back from Archi users. For the technical evalu-
ation, we collaborated with a developer who pos-
sesses knowledge on Natural Language Processing
for working with text data. We implemented a new
RS that recommends components that have similar
names. The exemplary implementation of a RS with
our framework by the developer showed that some
minor changes were needed: On the RS side, addi-
tional functions were implemented to provide more
information within the request. For example, the de-
veloper expected more parameters such as the type,
name, component id, and model id. To evaluate the
robustness, we provided the plugin with incorrect data
and simulated different types of responses with vari-
ous HTTP codes to verify if the plugin breaks or af-
fects the performance of Archi. There were no latency
issues when accessing RS on localhost or the internet
through ngrok3. The developer suggested the imple-
mentation of a queue in between the plugin and the
external RS to make it more robust when dealing with
multiple requests. Generally, the developer was pos-
itive on the plugin’s error handling, besides that the
synchronous connection caused waiting times. The
integration was perceived as efficient.

We have also collected feedback from Archi users
regarding the usability of the plugin and possible im-
provements. We demonstrated the plugin and re-
ceived positive feedback regarding its usability. One

3https://ngrok.com/

suggested improvement to the plugin was to provide a
possibility to include repository information for mod-
els when requesting recommendations. For instance,
the current implementation only shows recommenda-
tions for models open within the Archi workspace. In-
stead, several repositories should be considered. Most
of the discussion was based on the recommendation
capabilities within the plugin such as the user inter-
face. As our focus is only on the architecture, we
have not captured those discussions as part for this
first step. Providing different GUI capabilities for the
framework is left as an avenue for future research.

4 RELATED WORK

In Software Engineering (SE) and EA, RS is a recent
trend (Elkamel et al., 2016; Shilov et al., 2021). We
used related research to modeling in SE and EA as
rationale for our framework.

In SE, we took a closer look at the UML. E.g.,
Elkamel et al. (Elkamel et al., 2016) developed a
prototype for recommending UML classes that are
semantically similar in terms of their characteris-
tics. Once the recommendations are displayed, the
user can accept one or more of the recommended
classes. For each class, the user can accept all the
attributes and methods or only some of them. An-
other contribution is RS for domain modeling (Do-
MoRe) (Agt-Rickauer et al., 2018). DoMoRe pro-
vides context-sensitive information during domain
modeling and suggests names for model elements that
are ordered by relevance and are semantically similar.
The DoMoRe system integrates with various knowl-
edge bases using mediator-based information. A typ-
ical example to demonstrate the usage of DoMoRe is
to take a modeling use-case for the HealthCare do-
main. Consider there are 2 UML classes Patient and
Doctor, when an association relationship is set from
Doctor class to Patient class, DoMoRe takes the con-
textual information based on the class names, refers
to its knowledge base, and comes up with some rec-
ommendations for the name of the association such as
treats, examines, visits, etc., These contributions used
the applications of RS to address different research
problems. The former addresses redundant classes
and the latter helps in having a shared understanding
of the problem domain across different stakeholders.

Within EA research, Borozonaov et al. used ma-
chine learning (ML) techniques to reduce repository
pollution which arises when models have redundant
components that are semantically similar (Borozanov
et al., 2019). This is demonstrated with a client-
server architecture, and as a plugin for Archi, where

A Recommender Plug-in for Enterprise Architecture Models

479



Archi sends model information in an XML format
(The Open Group, 2021b) to a recommendation sys-
tem outside Archi. Once the response is received, the
recommendations are displayed to the Enterprise Ar-
chitects. Another research uses ML for EA model
prediction which reduces the manual effort during the
modeling process (Shilov et al., 2021). With the help
of Graph Neural Networks, models have been built
for node classification and edge prediction. This helps
modeling by extracting patterns and best practices.

5 CONCLUSION

As main contribution of this work, we designed an
architecture for a recommender plugin for Archi that
could easily integrate with an external RS. The cur-
rent implementation of the plugin is lightweight in
terms of the amount of data exchange. Hence, there
were no latency issues. For evaluation, we imple-
mented a connection to an external RS and collected
feedback from the user and research community re-
garding the usability of the plugin. Further evalua-
tion can be done, with other RS that have a different
implementation and have other requirements for data
exchange. The plugin framework is also extensible to
add new features. However, we only implemented a
simple RS using the current framework to showcase
its use. The current implementation is tailored for a
component-based RS. With a more sophisticated rec-
ommender framework in terms of GUI, the plugin can
be more generic to accommodate different forms of
recommendation. For instance, context-based recom-
mendations (Agt-Rickauer et al., 2018) and enterprise
model prediction (Shilov et al., 2021). This is left as
an avenue for future research.

6 ADDITIONAL MATERIAL

The source code of the plugin can be accessed via our
github repository4. Additionally, we prepared a short
video to present the tool5.

REFERENCES

Agt-Rickauer, H., Kutsche, R.-D., and Sack, H. (2018).
DoMoRe-a recommender system for domain model-
ing. In MODELSWARD, pages 71–82.

4https://github.com/sashikanthr/archi-recommender
5https://youtu.be/iA51FG39omE

Alaeddini, M., Asgari, H., Gharibi, A., and Rashidi Rad, M.
(2017). Leveraging business-IT alignment through en-
terprise architecture—an empirical study to estimate
the extents. Information Technology and Manage-
ment, 18(1):55–82.

Barbosa, A., Santana, A., Hacks, S., and Stein, N. v. (2019).
A taxonomy for enterprise architecture analysis re-
search. In 21st International Conference on Enter-
prise Information Systems, volume 2, pages 493–504.
SciTePress.

Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., and Venka-
traman, N. (2013). Digital business strategy: To-
ward a next generation of insights. MIS Quarterly,
37(2):471–482.

Borozanov, V., Hacks, S., and Silva, N. (2019). Using ma-
chine learning techniques for evaluating the similar-
ity of enterprise architecture models. In Giorgini, P.
and Weber, B., editors, Advanced Information Sys-
tems Engineering, pages 563–578. Springer Interna-
tional Publishing.

Coltman, T., Tallon, P., Sharma, R., and Queiroz, M. (2015).
Strategic IT alignment: Twenty-five years on. Journal
of Information Technology, 30(2):91–100.

Elkamel, A., Gzara, M., and Ben-Abdallah, H. (2016). An
UML class recommender system for software design.
In 2016 IEEE/ACS 13th International Conference of
Computer Systems and Applications (AICCSA), pages
1–8.

Henderson, J. C. and Venkatraman, H. (1993). Strate-
gic alignment: Leveraging information technology for
transforming organizations. IBM Systems Journal,
32(1):472–484.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. (2007-12). A design science research
methodology for information systems research. Jour-
nal of Management Information Systems, 24(3):45–
77.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduc-
tion to recommender systems handbook. In Ricci,
F., Rokach, L., Shapira, B., and Kantor, P. B., edi-
tors, Recommender Systems Handbook, pages 1–35.
Springer US.

Sandkuhl, K., Stirna, J., Persson, A., and Wißotzki, M.
(2014). Enterprise modeling. Springer.

Shilov, N., Othman, W., Fellmann, M., and Sandkuhl, K.
(2021). Machine learning-based enterprise modeling
assistance: Approach and potentials. In Serral, E.,
Stirna, J., Ralyté, J., and Grabis, J., editors, The Prac-
tice of Enterprise Modeling, pages 19–33. Springer
International Publishing.

The Open Group (2021a). ArchiMate® 3.1 specification.
The Open Group (2021b). ArchiMate® model exchange file

format for the ArchiMate modeling language, version
3.0.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

480


