Security Tools’ API Recommendation Using Machine Learning

Zarrin Tasnim Sworna®?, Anjitha Sreekumar!2, Chadni Islam!? and Muhammad Ali Babar!?3

Keywords:

Abstract:

LCentre for Research on Engineering Software Technologies (CREST), University of Adelaide, Australia

2School of Computer Science, University of Adelaide, Australia

3Cyber Security Cooperative Research Centre, Australia

Security Tools” API, Security Orchestration, API Recommendation, Security Operation Center.

Security Operation Center (SOC) teams manually analyze numerous tools’ API documentation to find appropri-
ate APIs to define, update and execute incident response plans for responding to security incidents. Manually
identifying security tools’ APIs is time consuming that can slow down security incident response. To mitigate
this manual process’s negative effects, automated API recommendation support is desired. The state-of-the-art
automated security tool API recommendation uses Deep Learning (DL) model. However, DL models are envi-
ronmentally unfriendly and prohibitively expensive requiring huge time and resources (denoted as “Red AI”).
Hence, “Green AI” considering both efficiency and effectiveness is encouraged. Given SOCs’ incident response
is hindered by cost, time and resource constraints, we assert that Machine Learning (ML) models are likely to
be more suitable for recommending suitable APIs with fewer resources. Hence, we investigate ML model’s
applicability for effective and efficient security tools’ API recommendation. We used 7 real world security tools’
API documentation, 5 ML models, 5 feature representations and 19 augmentation techniques. Our Logistic
Regression model with word and character level features compared to the state-of-the-art DL-based approach
reduces 95.91% CPU core hours, 97.65% model size, 291.50% time and achieves 0.38% better accuracy, which

provides cost-cutting opportunities for industrial SOC adoption.

1 INTRODUCTION

The frequency of security incidents increased by 358%
from 2019 to 2020 (Instinct, 2021). Security Operation
Centers (SOCs) use Incident Response Plan (IRP) to
respond to the security incidents. IRP is a sequence of
tasks that are performed by orchestrating various secu-
rity tools in a Security Orchestration, Automation and
Response (SOAR) platform in response to a specific
security incident (PAN, 2019). Table 1 shows an ex-
ample IRP for malware investigation from the Cortex
SOAR platform (PAN, 2022). It presents some tasks
of an IRP and the required APIs from different security
tools for executing these tasks. An organization uses
76 security tools on average (Muncaster, 2021). Each
of these tools has a large number of APIs. For instance,
Splunk (Splunk, 2022) and Malware Information Shar-
ing Platform, MISP (MISP, 2022) have around 598 and
398 APIs, respectively. To define, update or execute an
IRP, SOAR developers and SOC teams need to manu-
ally search and select the APIs from diverse security
tools (Sworna et al., 2022). For example, the Phantom
SOAR platform requires around 1900 APIs for execut-

Sworna, Z., Sreekumar, A., Islam, C. and Babar, M.
Security Tools’ APl Recommendation Using Machine Learning.
DOI: 10.5220/0011708300003464

ing IRPs using diverse tools (Phantom, 2021). Hence,
a SOC team with time constraint (PAN, 2019) finds
manually reading documentation to find APIs of these
numerous tools as hard to navigate, cuambersome and
time consuming (Robillard and DeLine, 2011). Such
manual efforts for incident response cause a significant
human burden and contribute to fatigue in SOCs (Viel-
berth et al., 2020). To accelerate incident response
and reduce SOC teams’ burden, there is a dire need
for automated API recommendation support (Sworna
et al., 2022).

To support automated programming language-
specific (e.g., Java) API recommendation, several
Deep Learning (DL)-based approaches have been re-
ported in Software Engineering (SE) literature (Ling
et al., 2020), (Gu et al., 2016). Besides, a set of
SE studies (Cai et al., 2019), (Huang et al., 2018),
(Nguyen et al., 2017), (Ye et al., 2016) used similarity
score (SimScore) (Ye et al., 2016) on DL-based word
embedding for language-specific API recommenda-
tion. The state-of-the-art security tool API recommen-
dation called APIRO (Sworna et al., 2022) presents a
DL-based (i.e., Convolutional Neural Network (CNN))

27

In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 27-38

ISBN: 978-989-758-647-7; ISSN: 2184-4895

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

approach, which outperformed Recurrent Neural Net-
work (RNN)-based DL approach.

Though DL models achieve high accuracy, they
are computationally quite expensive due to the require-
ment of complex hyper-parameter and architecture
tuning, millions and billions of weights and connec-
tions between units and powerful hardware resources
(LeCun et al., 2015). The demand for computing re-
sources to train DL models has increased 300,000-fold
from 2012 to 2019 (Strubell et al., 2019). Moreover,
DL has a black-box nature and running DL even using
powerful hardware and algorithmic parallelization still
requires hours to weeks of long training time (Fu and
Menzies, 2017). For example, Deep-API (Gu et al.,
2016) required 240 hours of GPU time for training
DL-based API usage recommendation.

Furthermore, DL models are environmentally un-
friendly and prohibitively expensive, which is denoted
as “Red AI” (Strubell et al., 2019). The necessary com-
putation power for training a single DL model emitted
626,000 tonnes CO,, which is five times more than
an average car emits throughout its lifetime (Strubell
et al., 2019). As organizations are adopting cloud
environments, the total financial cost of using a DL
model in SOC can be expensive due to the highly mon-
etized cloud environments (Fu and Menzies, 2017).
Hence, “Green AI” (Strubell et al., 2019) is encour-
aged, which considers efficiency as the primary assess-
ment criterion along with effectiveness. However, the
existing DL-based SE studies (Choetkiertikul et al.,
2018), (Mou et al., 2016), (White et al., 2015) did not
focus on computation efficiency (i.e., resource usage).

An increasing number of organizations prefer
sustainability-based designs (i.e., use fewer resources
for acquiring outcome) in industrial SE solutions for
extensive cost-cutting opportunities (Calero and Piat-
tini, 2015). If two competing learning models produce
similar results, the preferred model is the simpler one
to understand and interpret (Fakhoury et al., 2018).
Given SOCs operate under critical cost, time and re-
source constraints (CSCRC, 2022), we assert that tra-
ditional ML-based, compared with DL-based, solution
can be more attractive for SOCs as traditional ML
models are usually simpler, which require less time, re-
source and cost (Fakhoury et al., 2018). However, the
performance of ML and DL varies based on various
contexts such as domain, downstream task and dataset.
For example, in the SE domain, DL outperformed ML
in opinion-based question-answer extraction (Chatter-
jee et al., 2021). In contrast, ML outperformed DL in
finding similar questions in Stack Overflow (Fu and
Menzies, 2017). To support a SOC team by providing
a time and resource efficient and effective security tool
API recommender, there is a gap for an investigation

28

Table 1: An example IRP for malware investigation with
required security tools’ APIs for executing the IRP.

IRP Tasks Security ~ Security Tool’s
Tool API
Send file to Cuckoo ~ Cuckoo Post/tasks/create/file
Get task report Cuckoo Get/tasks/report/id/format
Delete malicious file =~ Wazuh delete/manager/files
Block IP/URL IOCs Zeek NetControl::drop_address
NetControl::

Isolate endpoint Zeek quarantine_host

of the applicability of ML over DL.

To address the above-mentioned gap, we empir-
ically investigate the applicability of traditional ML
models for recommending security tools’ API with
significant cost-cutting opportunities. We use the API
documentation of 7 diverse real world security tools
and adopt 19 text augmentation techniques for seman-
tic variation enrichment. We compare and identify
the best performing ML model out of 5 popular ML
models (e.g., Logistic Regression (LR)). We explore 5
feature (e.g., word and character level) representations
techniques for each ML model. Later, we compare
the effectiveness and efficiency of the best performing
ML model with the baselines that are SimScore and
state-of-the-art DL-based APIRO.

Our experimental results show that our best per-
forming ML model for security tool API recommen-
dation is the LR model with word and character level
features as it outperformed the other ML models and
baselines both in effectiveness (e.g., accuracy) and
efficiency (e.g., resource). Our best performing ML
model reduces the required memory (i.e., GB) in terms
of 97.65% model size, 99.13% maximum disk write,
92.86% maximum disk read and reduces 95.91% CPU
core hours compared to APIRO. It also gains 0.38%
better accuracy with 291.50% less training time com-
pared to APIRO. Hence, our best performing ML
model recommends the correct APIs requiring less
time and resources that achieves sustainable design
goals compared to the DL-based approach for fast
incident response in real world SOCs.

The main contributions of this study are:

1. We empirically investigate various simple ML
models and features to choose the best performing
ML model for recommending security tool APIs.

2. We compare our best performing ML model’s ef-
fectiveness with SimScore and DL-based APIRO,
where our best performing ML model outper-
formed the baselines in terms of accuracy, mean
reciprocal rank and mean precision@K.

3. We highlight efficiency showing our best perform-
ing ML model reduces 95.91% and 97.65% of
CPU core hours and model size, respectively with
291.50% less training time compared to APIRO.

Table 2: Security tools’ diversity based on the type of tool,
API and API data source.

Tool Tool API API Data

Name Type Source

Limacharlie EDR REST, Python, JSON, HTML
CLI Commands

Cuckoo Sandbox REST HTML

MISP TIP REST, Python HTML

Zeek NIDS Python, CLI HTML
Commands

Snort NIDS CLI Commands HTML

Wazuh HIDS REST HTML

Splunk SIEM REST YAML, HTML

This paper is structured as follows. Our study de-
sign and results are detailed in Sections 2 and 3, re-
spectively. Sections 4 and 5 present threats to validity
and implications. Section 6 summarises the related
work and Section 7 concludes our paper.

2 STUDY DESIGN

This section presents our Research Questions (RQ),
our security tool APIs’ corpus creation and pre-
processing methods, methods to answer RQs and the
used evaluation metrics.

2.1 Research Questions

The following RQs motivated our empirical study.
RQ1: To What Extent Are the Traditional ML
Models Viable Approaches to Recommend Security
Tools’ API? This RQ investigates to what extent tradi-
tional ML models can perform to recommend security
tools’ API. We also aim to identify the simple statisti-
cal feature representation that helps the ML model to
gain better performance. Thus, we seek to identify the
best performing traditional ML model and feature. An
answer to this RQ will help a SOC team to select the
best performing ML model with features in their SOC
to recommend security tools’ APL

RQ2: How Does Traditional ML Perform Com-
pared to the State-of-the-Art Baselines? In this RQ,
we compare our best performing traditional ML model
that we gained from RQI1 to the following baselines:
(i) APIRO which is the state-of-the-art security tool
API recommendation approach using a CNN-based DL
model (Sworna et al., 2022) and (ii) classical SimScore
approach using a similarity score method on DL-based
word embedding that is widely used for Java API rec-
ommendation (Cai et al., 2019), (Huang et al., 2018),
(Ye et al., 2016). An answer to this RQ will identify
whether the traditional ML model can gain similar,
worse or better performance than DL baselines. This

Security Tools” API Recommendation Using Machine Learning

comparison will help the SOC team to select whether
to adopt the ML model over baselines.

RQ3: What Are the Required Time and Resource
Utilization for Models to Recommend Security
Tools’ API? Since time and resource constraints are
the significant barriers to SOCs’ incident response
(CSCRC, 2022), time and resource utilization must be
evaluated to validate the usability of the API recom-
mendation support in the real world SOC environment.
Delay in API recommendation may cause a delay in
the IRP execution in SOC that may result in a sig-
nificant loss for the organization due to the negative
impact of an attack (Vielberth et al., 2020). Besides,
to respond to the ever increasing and intricate threat
landscape, new security tools and new APIs of the
existing tools are constantly being added to the SOC
(Muncaster, 2021). To keep the security tool API rec-
ommender of SOC up-to-date, re-training the model
is a must. Hence, we analyze time (i.e., training, test-
ing) and resource utilization (e.g., model size, CPU
core hours) of the best performing ML model com-
pared to baselines to inspect the practical usability
for deployment in the real SOC setting. The result of
RQ3 will help the SOC team to choose a sustainable,
time and resource efficient model for automated API
recommendation.

2.2 Security Tool APIs’ Corpus
Construction and Pre-Processing

In this section, we present the methodology for security
tool APIs’ corpus construction and pre-processing.

2.2.1 Security Tool APIs’ Corpus Construction

We created a corpus of APIs using 7 diverse pop-
ular real world security tools. This includes Li-
macharlie (Limacharlie, 2022), MISP (MISP, 2022),
Snort (Snort, 2020), Cuckoo (Cuckoo, 2019), Splunk
(Splunk, 2022), Zeek (Zeek, 2020) and Wazuh (Wazuh,
2022). These diverse types of security tools perform
varied functionalities to ensure security. These tools
also vary in other criteria (e.g., API type and API
data source) as reported in Table 2. The API data
of different tools help us to evaluate our models’ ef-
fectiveness for API recommendation in diverse data
settings. We selected these tools as a common use case
scenario in SOC is detecting endpoint and network
attacks using Endpoint Detection & Response (EDR)
tool (i.e., Limacharlie) and Network Intrusion Detec-
tion System (NIDS) (i.e., Zeek and Snort). Security
information and event management (SIEM) tool (i.e.,
Splunk) helps incident investigation and forensic anal-
ysis in SOC. Besides, SOC collects updated malware

29

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 3: Statistics of API data collected from security tools.

. Total Mean Word
izc(:)lllrlty API ﬁzrln Num of Count_ in‘
Words | Description
Python 146
Lima- REST 84 2395 8.81
charlie Sensor Commands 42
REST API 23
Cuckoo | Distributed Cuckoo 12 685 18.47
Process 9
Automation & MISP 66
MISP PyMISP Python Lib 20 5424 14.05
PyMISP Python 312
Python 63
Zeek NetControl 31 1571 13.90
Command-Line 19
Snort Snort (Up-to 2.2) 145 1577 10.88
Wazuh REST 152 2387 15.70
Splunk REST 598 4065 6.81
Total 1722 | 17504 10.73

*API num means the number of APIs collected from the API document.

information from Threat Intelligence Platform (TIP)
(i.e., MISP) and analyses malware using sandbox tools
(i.e., Cuckoo). For threat detection and response of
a particular host, SOC uses Host Intrusion Detection
Systems (HIDS) (i.e., Wazuh).

Since different security tools provide their API doc-
umentation in different formats (e.g., JSON, HTML),
we built different scrapers using diverse libraries. We
utilized BeautifulSoup (Beautifulsoup, 2020) library
for parsing Splunk, Cuckoo and Zeek HTML pages,
Python built-in JSON package to parse Limacharlie
JSON data and Python YAML module to parse Wazuh
YAML pages. Lastly, we created a unified API corpus,
API., of security tools by gathering the data collected
from these seven tools. As shown in Table 3, we col-
lected 1722 APIs and their respective descriptions,
parameters and return values. The total word count of
the API descriptions is 17k. For each API description,
the average word count is 10.73.

2.2.2 Security Tool API Corpus Pre-Processing

We pre-processed the APIs’ textual descriptions as data
pre-processing contributes to the success of the model
in the data science pipeline (Biswas et al., 2021).
Noise and Stop-Word Removal: To clean APIs’ tex-
tual description, we removed noises to retain the al-
phanumerical data along with underscore and minus
in the description. Underscore was retained to pre-
vent the formation of sub-terms from a single term
(e.g. attribute_identifier). Minus was retained to keep
argument representations (e.g. -u). We removed stop-
words using the NLTK (Steven Bird and Loper, 2009)
English stop-word list.

Lowercasing: We performed lowercasing to represent
words of different cases (e.g., Cuckoo, cuckoo) to the
same lower-case form (e.g., cuckoo).

30

Lemmatization: We performed WordNet-based
lemmatization using NLTK (Steven Bird and Loper,
2009) to represent a word’s inflected forms (e.g., get-
ting, gets) to its dictionary-based root form (e.g., get).

API Clustering: We created clusters of APIs of a

tool, which differ based on class name, method name,
parameters or representations, but have identical API
description (Sworna et al., 2022). Clustering helps
to provide a comprehensive view of APIs of a tool
that performs the same intended task. We performed
automated API clustering by exact description match-
ing with a Python script. The clustering created a list
of 55 API clusters by merging 143 APIs. Our clus-
tering resulted in the API corpus of 1466 distinctive
descriptions with the corresponding APIs.
Text Augmentation: Since natural language queries
can have synonyms, para-phrases and spelling mis-
takes, we enrich the API corpus with diverse text
augmentation techniques for semantic variation en-
richment. We enriched the API descriptions of API.
corpus using various text augmentation techniques
(e.g., synonym substitute using Wordnet, synonym
substitute using PPDB) to improve the model’s perfor-
mance. Implementing text augmentation is challeng-
ing as substituting some words may change the context
and semantics. For instance, synonym substitute using
Wordnet substitutes the word ‘PID’ with ‘Pelvic in-
flammatory disease’ that changes the context as ‘PID’
is a file of Snort tool (Snort, 2020). Hence, we need
to build an immutable word list, which will not be
changed during augmentation. The immutable words
refer to domain-specific words (e.g., malware, HIDS)
that are usually Nouns (Sworna et al., 2022). Firstly,
we created a list of words under the Noun tag from
API, using NLTK (Steven Bird and Loper, 2009) POS
tagger and Universal Part-of-Speech Tagset. Then, we
built the immutable word corpus by inspecting that list.
Two researchers performed immutable word selection
with Cohen’s Kappa (McHugh, 2012) of 0.78, which
indicates substantial agreement.

For text augmentation, 19 different suitable aug-

mentation techniques were used, which are reported
to improve the performance of security tools’ API rec-
ommendation (Sworna et al., 2022). We implemented
these augmentation techniques (listed in our online Ap-
pendix ') on the API corpus using NLPAug (Ma, 2019)
library. Hence, the augmented corpus AP/, included
the original data and augmented data.
Processed API Corpus: To build the processed API
corpus, the augmented API descriptions of the corpus
were further processed by removing noises and stop-
words, lowercasing and lemmatizing.

Uhttps://tinyurl.com/2bjhp5x8

2.3 Research Methods to Answer RQs

This section presents the research methods used for
answering our RQs. We ran our experiments in a
computing cluster including 10 CPU cores with 10GB
RAM of Linux NeXtScale system (Intel X86-64). We
augmented data for each API adopting text augmen-
tation techniques from the labeled data of API docu-
mentation as API documentation provides API with
relevant description representing labeled data. Thus,
the augmented data mitigated the need of time and
effort consuming manual labeling of a large number of
data for validating the prediction model. We randomly
shuffled our corpus and performed stratified 80-20
train-test split, which is commonly used in the liter-
ature (Yenigalla et al., 2018), (Sworna et al., 2022).
We performed 10-fold cross-validation on that 80%
train dataset for hyper-parameter optimization, which
is the recommended practice for learning-based mod-
els (Scikit-learn, 2022b). We used the 20% test dataset
for the models’ evaluation. Since queries can have syn-
onyms, para-phrases and contextual similar words, our
generalized test query set represents a wider variety of
Natural Language (NL) queries as the augmented de-
scription ensures NL variation of the API descriptions
as queries (Sworna et al., 2022).

RQ1. Traditional ML Models’ Performance In-
vestigation: In this RQ, we explore five traditional
ML models for security tool API recommendation
such as (i) Naive Bayes (NB); (ii) Support Vector Ma-
chine (SVM); (iii) Logistic Regression (LR); (iv) Ran-
dom Forrest (RF); and (v) eXtreme Gradient Boosting
(XGB). These models belong to different categories
such as Bayesian networks, Support vector machines,
Regression and Ensemble. We consider these mod-
els as they are representative of the most investigated
models and considered state-of-the-art in SE for docu-
mentation classification (Fucci et al., 2019), security
text prediction (Le et al., 2020) and SE-specific text
prediction and classification (Fu and Menzies, 2017).
Besides, the adoption of two to five representative ML
models is a usual practice in the literature (Fakhoury
et al., 2018), (Fucci et al., 2019).

Our goal is to study how well simple ML, with-
out complex feature engineering or Natural Language
Processing (NLP) techniques (e.g., NN-based embed-
dings), can recommend security tools’ API. Hence,
we consider simple statistical features that are easy to
compute and improve the performance of ML mod-
els (Haque et al., 2022). To obtain the relevant fea-
tures from the API corpus, we used different Term
Frequency-Inverse Document Frequency (TF-IDF)-
based feature representations. For each ML model,
we compared TF-IDF-based word level, word n-gram

Security Tools” API Recommendation Using Machine Learning

Table 4: Hyper-parameters of ML models and baselines (for
best performing features of ML models).

Model Feature Tuned Hyper-parameter

NB Word+Char alpha: 0.06271, fit_prior: False
C: 2.60, tolerance: 5.82e-05, fit_intercept:
LR Word+Char True, max_iter: 250, solver: Ibfgs,

warm_start: True

C: 8.68, linear kernel, gamma: 3.56
criterion: gini, max_depth: none,
max_features: auto, n_estimators: 100
gamma: 0.16, learning rate: 0.13,
XGB Word+Char max_depth: 10, min_child_weight: 1.0,
n_estimators: 27

window size: 5, min_count: 1, embedding
dim: 300, workers: 3, skip-gram(sg): 1, hi-
erarchical_softmax(hs): 1

For fastText:- word_ngrams: 1, window:
5, embedding dim: 300, workers: 3,
min_count: 1, skip-gram(sg): 1, hierarchi-
cal_softmax(hs): 1. For CNN:- embedding
dim: 300, batch: 64, dropout: 0.5, epoch
num: early stop with patience: 50, filter
size:(3, 4, & 5), num of hidden node: 100,
L2R: 0.0001, filter num: 100

SVM Char
RF Word+Char

SimScore Word2Vec

APIRO FastText

level, character (char) level and the combination of
word and char level features along with NLP/text-
based features. We chose these five feature represen-
tations as they are commonly used and showed good
performance in the existing literature (Haque et al.,
2022), (Xia et al., 2014) of cyber security and SE do-
main. NLP/text-based features that we chose are the
count of word, character, noun, verb, adjective, adverb,
pronoun and word density. Other NLP features such
as punctuation (removed in pre-processing), and case
(lower-cased in pre-processing) were not applicable as
they were irrelevant to our corpus.

For char level features, we chose an n-gram range
of 2-4 characters as the vocabulary size did not in-
crease after the value 4. Similarly, for word n-gram
features, we chose the n-gram range of 2-4. We tuned
each model’s hyper-parameter based on Bayesian Opti-
misation (Feurer and Hutter, 2019) using the Hyperopt
library (Bergstra et al., 2013). To find optimal values
for parameters, we used Bayesian Optimisation for its
robustness against the evaluation of noisy objective
function and because it outperforms the other hyperpa-
rameter optimization approaches (e.g., random search)
(Snoek et al., 2012). Each model for each feature rep-
resentation was tuned individually. For conciseness, in
Table 4 we report the tuned hyperparameter values of
each model for only the best performing feature rep-
resentation (detailed in Section 3.1). We used Scikit-
learn (Scikit-learn, 2022a) and Gensim (Rehtifek and
Sojka, 2010) to implement our ML models.

RQ2. Comparison with Baselines: To answer RQ?2,
we compared the performance of the best perform-
ing traditional ML model that we identified in RQ1
with two baselines. Firstly, to implement the state-of-
the-art security tool API recommender called APIRO
(Sworna et al., 2022), we used their fastText embed-

31

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

100.00% g90.85% 92.64% 93.16% 93.26% 94.80% 94.73% 93.22%
80.00%
60.00%
40.00%

20.00%

m Word Level mWord N-Gram Level

6.51% 176.73%, 6.80% 76.20%
14.20% 13.25% 1674
8.12%
0.00% _
NB SVM LR RF

Char level

94.65% 94.86% 93.23%93.72% 93.93% 91209 92.53% 92.75%

%
10.99% 6.54%

XGB

Text/NLP m Word+Char Level

Figure 1: Acc of ML models with different feature representations.

ding (Bojanowski et al., 2017) based CNN approach.
We first built a security tool API-specific fastText em-
bedding on API, corpus using Gensim (Rehtifek and
Sojka, 2010). We built the CNN model based on the
fastText embedding using Keras (Chollet et al., 2015)
library. We followed the same hyper-parameter tuning
process of APIRO (Sworna et al., 2022) and report our
best parameter setting in Table 4.

To implement another baseline, SimScore, we used

Word2Vec (Mikolov et al., 2013) and IDF-weighted
cosine similarity score approach that is commonly
adopted in the existing studies for Java API recom-
mendation (Cai et al., 2019), (Huang et al., 2018), (Ye
et al., 2016). Unlike the existing studies (Cai et al.,
2019), (Huang et al., 2018) we do not consider the
Stack Overflow (SO) data (i.e., we rely on API doc-
umentation), and our approach is not confined to a
language-specific model as we consider diverse secu-
rity tool’s data for a unified solution. The parameter
values for SimScore are shown in Table 4.
RQ3. Efficiency Evaluation: To answer RQ3, we
evaluated the best performing ML model (identified in
RQ1) with baselines of RQ2 in terms of required time
(i.e., train, test) and resource utilization (e.g., model
size, core hours in terms of CPU-time elapsed).

2.4 Evaluation Metrics

To answer RQ1 and RQ2, we evaluated our ML models
and baselines using Accuracy (Acc), Mean Reciprocal
Rank (MRR) and Mean Precision@K (MP@K). These
metrics are widely used for API recommendation by
the relevant literature (Huang et al., 2018), (Rahman
et al., 2016), (Ye et al., 2016). To answer RQ2, we
used delta (Fakhoury et al., 2018), which denotes the
performance difference between two models. To an-
swer RQ3, we evaluated the required time (i.e., train,
test) and resource utilization (i.e., model size, maxi-
mum disk write, maximum disk read, core hours for
CPU-time elapsed, User compute CPU, System /O
CPU and total CPU used) (Fakhoury et al., 2018).
Acc refers to the percentage of queries for which a
recommender can recommend the actual API.

32

Ace(Q) =):qEQActrtQal_APl(q)

Here, Q refers to the list of all test queries.
Actual_API(q) provides 1 if the actual API is recom-
mended and O otherwise.

MRR denotes if the system returns the correct re-
sult at a high-ranked position. Reciprocal rank denotes
the multiplicative inverse of the rank of the actual
API in the top-K results returned by a recommender.
MRR is the average for all search queries in the test
data. Here, Rank, is the actual API’s rank for an input

query.

% (1)

1 1
] Z Rank,

qe0
MP @K denotes the mean of precision@K for all
the test queries. A higher value of MP@K is expected
for a low value of K.
.. TPos@K
" |0| (TPos@K) + (FPos@K)

Here, TPos@K denotes True Positives@K and
FPos@K denotes False_Positives@K.

MRR(Q) 2

MP@K(Q) 3)

3 RESULTS

The RQ evaluation results are presented in this section.

3.1 RQI. Traditional ML Models’
Performance Investigation

Figure 1 shows the performance comparison of 5
ML models with 5 feature representations in terms
of Acc for recommending security tools’ API. Table
5 presents the performance comparison of the ML
models with diverse features in terms of MRR, MP@1,
MP@2 and MP@3. Our results show that LR using the
combination of word and char level TF-IDF features
outperforms all the other models by achieving 94.86%
Acc, which indicates its ability to recommend correct
APIs. Except for SVM, for all the other models, the

Table 5: Comparison of ML models using different features
in terms of MRR, MP@1, MP@2 and MP@3.

Security Tools” API Recommendation Using Machine Learning

Table 6: Comparison of best performing ML model with the
baselines in terms of Acc, MP@K and MRR.

Model Feature MRR MP@1 MP@2 MP@3
Word 94.15 90.85 47.95 32.50
Word N-Gram 80.16 75.90 41.26 28.13
NB Char 95.17 92.64 48.27 32.54
Text/NLP 13.12 8.16 6.64 5.62
Word+Char 95.61 93.16 48.47 32.68
Word 96.01 93.17 48.82 3291
Word N-Gram 79.99 75.58 41.23 28.18
RF Char 96.29 93.61 48.67 32.84
Text/NLP 2292 16.99 11.97 9.73
Word+Char 9629 94.03 48.76 32.87
Word 95.19 91.79 48.62 32.89
Word N-Gram 78.35 73.47 40.36 27.78
SVM Char 96.77 94.58 49.02 33.01
Text/NLP 20.03 13.09 10.18 8.42
Word+Char 96.62 94.22 49.03 33.05
Word 94.35 91.20 47.99 32.48
Word N-Gram 5.30 4.96 2.68 1.87
XGB Char 95.01 92.54 48.21 32.52
Text/NLP 10.89 6.58 5.25 4.65
Word+Char 9520 92.76 48.26 32.57
Word 95.90 93.23 48.90 32.96
Word N-Gram 9590 76.19 41.34 28.23
LR Char 96.79 94.65 49.03 32.98
Text/NLP 19.87 13.30 10.04 8.20

Word+Char 96.96 94.86 49.12 33.05

best performing feature representation was the combi-
nation of word and char level feature, while the char
level feature showed the best performance for SVM.
This indicates that the combination of word and char
level TF-IDF is the most beneficial feature representa-
tion for API description as this combination use both
word and char for learning the semantics of the API
description to provide better results. NLP/text-based
features had the least Acc, MRR and MP@K.

The top 3 best performing ML models for security
tool APIs recommendation are LR, SVM and RE. LR’s
high performance is an indication of a high correla-
tion between the feature and target variable (Bailly
et al., 2022). LR and SVM perform well for text data
due to linear separation and the ability to generalize
high dimensional features typical for text data (Fucci
et al., 2019). Furthermore, SVM is capable of learning
independent of the feature space and regularization
allows it to resist over fitting. Whilst RF and XGB are
both decision-tree-based ensemble models, RF outper-
formed XGB. One of the reasons can be the high num-
ber of APIs in our dataset. As for XGB, the number of
trees to be trained is [number of iterations]*[number
of APIs], whereas RF only requires [number of itera-
tions] trees. RF classifier accumulates decisions from
each tree for the final decision. Hence, RF has strong
generalization achieving high Acc without over-fitting
compared to XGB (Misra and Li, 2020). Overall, our
results show that the LR model outperformed all the
other ML models including the ensemble ones (i.e.,

Model Acc MRR MP@! MP@2 MP@3
Best performing ML 94.86 96.96 94.86 49.12 33.05
SimScore 80.01 8398 80.01 4291 29.28
APIRO 9450 96.70 9450 49.04 3290

RF and XGB). LR using the combination of word and
char level features outperforms all the other models
and achieves 96.96 MRR, which indicates its ability to
recommend the correct API at a higher ranked position
in the recommended list of APIs.

From these findings, we do not recommend the
use of NLP/text-based features for recommending
security tool APIs. We chose LR with the combi-
nation of word and char level features as the best
performing ML model for recommending security
tool APIs, as it outperformed all the other ML mod-
els with various feature representations in terms of
all the evaluated effectiveness metrics.

0.15
MP@3 o — 3.7

0.08
g VPO e —— .2
= & 036
g P @ S 155
0.26
MR 12,98
0.36
Acc I 14.85
0 2 4 6 8 10 12 14 16

Delta Score of best performing ML (LR)

M Best performing ML (LR) vs APIRO
M Best performing ML (LR) vs SimScore

Figure 2: Delta Score of our best performing ML model
with APIRO and SimScore baselines, where positive values
indicate better performance of our ML model.

3.2 RQ2. Comparison with Baselines

Table 6 presents the Acc, MP@K and MRR for our
best performing ML model (LR with the combination
of word and char level features as discussed in RQ1)
and the two baselines. Figure 2 shows the delta score
which denotes the performance difference of our best
performing ML model with SimScore and APIRO, re-
spectively for each metric. In Figure 2, any horizontal
bar above zero represents that our best performing
ML model performs better and the higher the value of
delta, the better our best performing ML model per-
forms. Any bar below zero indicates that the baseline
performs better. As shown in Figure 2, all the bars are
above zero representing that our best performing ML
model outperforms baselines in terms of Acc, MRR,
MP@1, MP@2 and MP@23.

Our experimental result shows that our best per-
forming ML model achieved deltas in the range of
0O<delta<0.36. A prior study (Fakhoury et al., 2018)

33

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 7: Comparison of our best performing ML model with the baselines in terms of resource utilization.

Approach CPU time Total CPU User CPU System Model Max Disk Max Disk
elapsed used (core (Com- CPU size (GB) Write Read
(core hours) pute): (I/0): (GB) (GB)
hours) (core (core
hours) hours)
Best performing ML (LR) 6.27 0.74 0.63 0.11 0.12 0.11 0.03
SimScore 166.17 16.80 15.90 0.91 0.01 0.62 38.47
APIRO 24.14 18.11 17.89 0.22 5.10 12.63 0.42
Improve. SimScore 96.23% 95.60% 96.04% 87.91% -1100% 82.26% 99.92%
Improve. APIRO 74.03% 95.91% 96.48% 50.00% 97.65% 99.13% 92.86%

160

140

Best performing ML (LR) APIRO SimScore

Train (minute) Test (Sec/query)

Figure 3: Time comparison of our best performing ML
model and baselines for security tool API recommendation.

recommended the applicability of ML over DL in SE
by achieving deltas for their ML model in the range of
-0.1<delta<0.3 for linguistic smell detection. In line
with the resultant deltas (Fakhoury et al., 2018), our
achieved resultant deltas make the applicability suit-
able for using ML over DL (i.e., APIRO) for security
tool API recommendation. Besides, our best perform-
ing ML model significantly outperformed SimScore
baseline by achieving 18.57% and 15.45% improve-
ment in terms of Acc and MRR. It indicates that our
best performing ML model can recommend correct
APIs at a higher ranked position in the recommended
list of APIs.

Our result shows that our best performing ML
model outperforms the SimScore and DL-based
APIRO baselines. Hence, our best performing ML
model is recommended for security tool API recom-
mendation.

3.3 RQ3. Efficiency Evaluation

Table 7 shows the comparison of the resource utiliza-
tion of our best performing ML model (LR with word
and char level features) with baselines (i.e., APIRO
and SimScore). The memory (in terms of GB) con-
sumption reduction percentages by our best perform-
ing ML model compared to APIRO are 97.65% model
size, 99.13% maximum disk write and 92.86% max-
imum disk read. Our best performing ML model
also significantly reduces the required core hours com-
pared to APIRO in terms of 74.03% CPU time elapsed,

34

96.48% User compute CPU, 50.00% System I/O CPU
and 95.91% total CPU used. Hence, DL-based APIRO
is highly resource consuming as it consumes more re-
sources than our best performing ML model. Similarly,
another baseline SimScore also requires more mem-
ory than our best performing ML model in terms of
82.26% maximum disk write and 99.92% maximum
disk read, except for model size, where SimScore’s
model size is smaller than our best performing ML
model. However, the Acc of SimScore 1s 18.57% less
than our best performing ML model and SimScore
requires more core hours than our best performing ML
model with a percentage increase of 96.23% CPU time
elapsed, 96.04% User compute CPU, 87.91% System
I/0 CPU and 95.60% total CPU used. Hence, the
drastically high resource utilization of the DL-based
approach strongly justifies the use of our less resource
consuming ML approach.

The time for training and testing each model is
shown in Figure 3. For training, DL-based APIRO
requires 291.50% more time than our best performing
ML model. Though SimScore requires less training
time than our best performing ML model, the Acc of
SimScore is 18.57% lower than our best performing
ML model as mentioned earlier. Besides, SimScore
requires 3.40 seconds per query, whereas our best per-
forming ML model and APIRO both require less than a
second to answer a query in terms of testing time. Sim-
Score requires the maximum testing time compared to
the other models as it calculates the cosine similarity
score for the query with each API description of the
training corpus.

Our results show that DL-based APIRO re-
quires a significantly large amount of resources
(e.g., memory, CPU time, Disk read and write) and
significantly high training time compared to our
best performing ML model. Hence, considering
both the effectiveness (e.g., Acc, MRR) and the
efficiency (e.g., time and resources), our best per-
forming ML model performs significantly better for
security tool API recommendation than baselines
and provides significant cost-cutting opportunities
to be adopted in the real world SOCs.

4 THREATS TO VALIDITY

The representativeness of the experimental data to the
real world SOC environment is the primary threat to
validity. We address this threat by conducting exper-
iments on data collected from 7 real world security
tools that are widely used in SOCs.

Enriching the security tool API corpus by adding
more security tools’ data is a continuous process. Our
dataset may not cover each possible query. Besides,
answering queries having extreme rare terms can be
difficult for our approach. However, our generalized
approach enables re-training of the model for deal-
ing with such queries, where additional augmented
text and new augmentation techniques can be used to
handle the extreme rare terms.

To ensure a fair and valid comparison, we imple-
mented our ML models and baselines in the same en-
vironment using the same pre-processing steps on the
same dataset. We ran each experiment ten times and
reported the average to mitigate the experimental ran-
domness of results, which is a common repeat scheme
for learning-based models (Wang et al., 2019). The
chosen optimal hyper-parameters for traditional ML
models may not ensure the best result to recommend
suitable APIs. To minimize this threat, we used 10-
fold cross-validation and the state-of-the-art Bayesian
Optimisation for choosing optimal hyper-parameters.

S IMPLICATIONS

Our results generated implications for both practition-
ers and researchers based on our analysis.

5.1 Implication for Practitioners

Resource constraint is considered as one of the signifi-
cant challenges for utilizing Al-based (e.g., ML, DL,
NLP) solutions (Fu and Menzies, 2017). We present
important and deep insights into the comparative anal-
ysis of ML, DL and similarity score-based approaches
for security tool API recommendation. The findings
can enable practitioners to understand the resource uti-
lization of the investigated approaches before choos-
ing a particular Al-based approach to automating the
security tool APIs recommendation. Instead of pre-
ferring DL-based solution, practitioners may also con-
sider the use of traditional ML models, specifically
Small to Medium-sized Enterprises (SMEs) with lim-
ited resource and time allocation for ensuring security
(CSCRC, 2022). Since the use of DL is expensive,
most SOC will desire to use a simple ML approach.
As LR achieved better performance than DL with rela-

Security Tools” API Recommendation Using Machine Learning

tively less amount of time and resources, practitioners
may consider LR for automated security tool API rec-
ommendation. Besides, the adoption of new security
tools and APIs requires re-training of a model. As ML
showed significantly lower training time compared to
the DL approach, ML is a viable option for practition-
ers to re-train a model to cope with the evolving threat
landscape with significant cost-cutting opportunities
that helps achieve sustainable design.

5.2 Implication for Researchers

Our best performing ML model motivates sustainable
design presenting a cautionary tale to researchers to
keep resource constraints in mind for real world ap-
plicability, as cost, resource and time constraints may
present significant barriers to the industrial adoption
of a proposed solution. This cautionary recommenda-
tion based on a completely different task (i.e., security
tool API recommendation) strengthens this suggestion
by the prior studies (Fakhoury et al., 2018), (Fu and
Menzies, 2017). In the future, researchers can focus
on automated execution of the recommended APIs for
executing an Incident Response Plan (IRP) in response
to a security incident. Our best performing ML model
can also be explored for query answer recommenda-
tions from other artifacts of security tools (e.g., user
guide and tutorial).

6 RELATED WORK

This section summarizes the related work on security
incident response and API recommendation.

6.1 Cyber Security Incident Response

Different SOAR platforms (e.g., Swimlane (Swimlane,
2022), D3 (D3, 2017) and ThreatConnect (ThreatCon-
nect, 2019)) leverage APIs for incident response. How-
ever, developers and users of these SOAR platforms
manually look for the required APIs from the docu-
mentation to create, update and execute IRPs (Sworna
et al., 2022). APIRO is a DL-based foundation frame-
work for security tool API recommendation to sup-
port incident response using a CNN approach (Sworna
et al., 2022). In contrast to our study, APIRO does not
focus on resource utilization to mitigate SOC’s cost
and resource constraints (CSCRC, 2022).

6.2 API Recommendation in SE

The existing studies on programming language specific
APIs recommendation are mostly code, Stack Over-

35

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

flow (SO) or documentation based approaches. For
code based studies, a set of studies (He et al., 2021),
(Ling et al., 2020), (Ling et al., 2019), (Xu et al., 2018),
(Gu et al., 2016), (Raghothaman et al., 2016), (Chan
etal., 2012), (McMillan et al., 2011) used open source
GitHub code repositories for recommending API us-
ages and code snippets. These code based approaches
perform time consuming complex code analysis.

The SO based approach is used for API recom-
mendation (Wu et al., 2021), (Zhou et al., 2021), (Cai
et al., 2019), (Huang et al., 2018), (Rahman et al.,
2016). However, SO is slow at covering new APIs
(Parnin et al., 2012) and SO data is less reliable as it
may cause security flaws in code due to considering
unreliable suggestions (Acar et al., 2016). To mitigate
these issues, we use the comprehensive security tool
APIs documentation.

The code based and SO based approaches can only
cover the frequently used and discussed APIs (Xie
et al., 2020). Hence, our approach uses API documen-
tation so that our approach is not unable to recommend
APIs that are less frequently used. Besides, a study
(Xie et al., 2020) consider API documentation to man-
ually identify, categorize verbs and manually generate
verb-phrase patterns for matching functionality verb-
phrases of API description and query. It is highly time
and labor-intensive to perform these huge manual anal-
ysis on each API documentation of the wide range of
security tools that a SOC can utilize. Thus, we avoid
these manual efforts and adopt automated data aug-
mentation and the ML-based approach to recommend
security tool API. Another study (Fucci et al., 2019)
used the ML-based approach to annotate knowledge
types (e.g., purpose, quality and environment) to API
documentation, in contrast, we recommend security
tool API from diverse API documentation.

7 CONCLUSION

SOC:s face cost, time and resource constraints to re-
spond to numerous security incidents. Hence, our
study inspires Green-Al and sustainable design by pre-
senting a cautionary tale to keep resource constraints
in mind for real world applicability of security tools’
API recommendation. We performed an empirical
study comparing 5 simple ML models with various
feature representations compared to the complex DL
models aiming at both efficiency and effectiveness
for recommending security tools’ API. Using APIs
of seven widely used real world security tools, our
best performing ML model achieved an exemplary
reduction of resource and time with better Acc and
MRR compared to baselines including the state-of-the-

36

art DL-based approach. Our empirically derived best
performing ML model with its tremendous time and re-
source efficiency including better effectiveness makes
it a viable approach to be adopted in real world SOC
with significant cost-cutting opportunities. Our future
research will focus on extending our best performing
ML model by using the recommended APIs for au-
tomated execution of the security incident response
plans in SOC.

ACKNOWLEDGEMENTS

The work has been supported by the Cyber Security
Research Centre Limited whose activities are partially
funded by the Australian Government’s Cooperative
Research Centres Programme. This work has also been
supported with super-computing resources provided by
the Phoenix HPC service at the University of Adelaide.

REFERENCES

Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M. L., and
Stransky, C. (2016). You get where you’re looking for:
The impact of information sources on code security. In
2016 IEEE Symposium on Security and Privacy (SP),
pages 289-305. IEEE.

Bailly, A., Blanc, C., Francis, E., Guillotin, T., Jamal, F,,
Wakim, B., and Roy, P. (2022). Effects of dataset size
and interactions on the prediction performance of lo-
gistic regression and deep learning models. Computer
Methods and Programs in Biomedicine, 213:106504.

Beautifulsoup (2020). Beautiful soup package.
https://tinyurl.com/yf27edhf. Accessed October
1, 2022.

Bergstra, J., Yamins, D., and Cox, D. (2013). Making a
science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures. In
International conference on machine learning, pages
115-123. PMLR.

Biswas, S., Wardat, M., and Rajan, H. (2021). The art and
practice of data science pipelines: A comprehensive
study of data science pipelines in theory, in-the-small,
and in-the-large. arXiv preprint arXiv:2112.01590.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. (2017).
Enriching word vectors with subword information.
Transactions of the Association for Computational Lin-
guistics, 5:135-146.

Cai, L., Wang, H., Huang, Q., Xia, X., Xing, Z., and Lo,
D. (2019). Biker: a tool for bi-information source
based api method recommendation. In Proceedings
of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 1075—
1079.

Calero, C. and Piattini, M. (2015). Introduction to green in
software engineering. In Green in Software Engineer-
ing, pages 3-27. Springer.

Chan, W.-K., Cheng, H., and Lo, D. (2012). Searching con-
nected api subgraph via text phrases. In Proceedings of
the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, pages 1-11.

Chatterjee, P., Damevski, K., and Pollock, L. (2021). Au-
tomatic extraction of opinion-based q&a from online
developer chats. In 2021 IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE),
pages 1260-1272. IEEE.

Choetkiertikul, M., Dam, H. K., Tran, T., Pham, T., Ghose,
A., and Menzies, T. (2018). A deep learning model for
estimating story points. I[EEE Transactions on Software
Engineering, 45(7):637-656.

Chollet, F. et al (2015).
https://github.com/fchollet/keras.
tober 20, 2022.

CSCRC, CSIRO’s Data6l, C. (2022). Small
but stronger: Lifting sme cyber security.
https://tinyurl.com/2juxjnk6. Accessed October
21, 2022.

Cuckoo (2019). Cuckoo: Automated malware analysis.
https://cuckoosandbox.org/. Accessed October 20,
2022.

D3 (2017). Enterprise incident & case management solu-
tion for security orchestration, automation & response.
https://tinyurl.com/Sbcwkuk4. Accessed October 20,
2022.

Fakhoury, S., Arnaoudova, V., Noiseux, C., Khomh, F., and
Antoniol, G. (2018). Keep it simple: Is deep learning
good for linguistic smell detection? In 2018 IEEE 25th
International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), pages 602—611.

Feurer, M. and Hutter, F. (2019). Hyperparameter optimiza-
tion. In Automated Machine Learning, pages 3-33.
Springer, Cham.

Fu, W. and Menzies, T. (2017). Easy over hard: A case study
on deep learning. In Proceedings of the 2017 11th joint
meeting on foundations of software engineering, pages
49-60.

Fucci, D., Mollaalizadehbahnemiri, A., and Maalej, W.
(2019). On using machine learning to identify knowl-
edge in api reference documentation. In Proceedings
of the 2019 27th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 109-119.

Gu, X., Zhang, H., Zhang, D., and Kim, S. (2016). Deep
api learning. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 631-642.

Haque, M. U., Kholoosi, M. M., and Babar, M. A. (2022).
Kgsecconfig: A knowledge graph based approach for
secured container orchestrator configuration. In 2022
IEEE 29th International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER). IEEE.

He, X., Xu, L., Zhang, X., Hao, R., Feng, Y., and Xu, B.
(2021). Pyart: Python api recommendation in real-time.

Keras.
Accessed Oc-

Security Tools” API Recommendation Using Machine Learning

In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), pages 1634-1645. IEEE.

Huang, Q., Xia, X., Xing, Z., Lo, D., and Wang, X. (2018).
Api method recommendation without worrying about
the task-api knowledge gap. In 2018 33rd IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), pages 293-304. IEEE.

Instinct, D. (2021). Research study by deep instinct.
https://www.helpnetsecurity.com/2021/02/17/malware-
2020/. Accessed February 10, 2022.

Le, T. H. M., Hin, D., Croft, R., and Babar, M. A. (2020).
Puminer: Mining security posts from developer ques-
tion and answer websites with pu learning. In Proceed-
ings of the 17th International Conference on Mining
Software Repositories, pages 350-361.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.
nature, 521(7553):436-444.

Limacharlie (2022). Official limacharlie page.
https://www.limacharlie.io/. Accessed October
20, 2022.

Ling, C., Lin, Z., Zou, Y., and Xie, B. (2020). Adaptive deep
code search. In Proceedings of the 28th International
Conference on Program Comprehension, pages 48-59.

Ling, C.-Y., Zou, Y.-Z., Lin, Z.-Q., and Xie, B. (2019).
Graph embedding based api graph search and recom-
mendation. Journal of Computer Science and Technol-
0gy, 34(5):993-1006.

Ma, E. (2019). Nlp augmentation.
https://github.com/makcedward/nlpaug. ~ Accessed
October 20, 2022.

McHugh, M. L. (2012). Interrater reliability: the kappa
statistic. Biochemia medica, 22(3):276-282.

McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., and
Fu, C. (2011). Portfolio: finding relevant functions and
their usage. In Proceedings of the 33rd International
Conference on Software Engineering, pages 111-120.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111—
3119.

MISP (2022). Malware information sharing platform.
https://www.misp-project.org. Accessed October 20,
2022.

Misra, S. and Li, H. (2020). Chapter 9 - noninvasive fracture
characterization based on the classification of sonic
wave travel times. In Misra, S., Li, H., and He, J.,
editors, Machine Learning for Subsurface Characteri-
zation, pages 243-287. Gulf Professional Publishing.

Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z. (2016).
Convolutional neural networks over tree structures for
programming language processing. In Thirtieth AAAI
conference on artificial intelligence.

Muncaster, P. (2021). Organizations now have 76
security tools to manage. https://www.infosecurity-
magazine.com/news/organizations-76-security-tools/.
Accessed October 20, 2022.

Nguyen, T. D., Nguyen, A. T., Phan, H. D., and Nguyen, T. N.
(2017). Exploring api embedding for api usages and
applications. In 2017 IEEE/ACM 39th International

37

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

Conference on Software Engineering (ICSE), pages
438-449. IEEE.

PAN (2019). Palo alto networks: The state of soar re-
port. https://start.paloaltonetworks.com/the-2019-state-
of-soar-report.html. Accessed October 21, 2020.

PAN (2022). Palo alto networks: Cortex xsoar.
https://xsoar.pan.dev. Accessed September 3, 2022.

Parnin, C., Treude, C., Grammel, L., and Storey, M.-A.
(2012). Crowd documentation: Exploring the coverage
and the dynamics of api discussions on stack overflow.
Georgia Institute of Technology, Tech. Rep, 11.

Phantom (2021). Splunk phantom: Harness the
full power of your security investments with
security orchestration, automation and response.
https://tinyurl.com/4493kSnk. Accessed September
3,2022.

Raghothaman, M., Wei, Y., and Hamadi, Y. (2016). Swim:
Synthesizing what i mean-code search and idiomatic
snippet synthesis. In 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE),
pages 357-367. IEEE.

Rahman, M. M., Roy, C. K., and Lo, D. (2016). Rack: Auto-
matic api recommendation using crowdsourced knowl-
edge. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering

(SANER), volume 1, pages 349-359. IEEE.

Iviehﬁfek, R. and Sojka, P. (2010). Software Framework
for Topic Modelling with Large Corpora. In Proceed-
ings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, pages 45-50, Valletta, Malta.
ELRA.

Robillard, M. P. and DeLine, R. (2011). A field study of api
learning obstacles. Empirical Software Engineering,
16(6):703-732.

Scikit-learn (2022a). Api reference. https:/scikit-
learn.org/stable/modules/classes.html#module-
sklearn.metrics. Accessed October 20, 2022.

Scikit-learn (2022b). Cross-validation: evaluating estimator
performance. https://tinyurl.com/4ue9k44b. Accessed
October 20, 2022.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical
bayesian optimization of machine learning algorithms.
Advances in neural information processing systems,

25.

Snort (2020). Snort users manual 2.9.16.
https://tinyurl.com/2p8ferjm. Accessed October
20, 2022.

Splunk (2022). Splunk: Siem, aiops, application manage-
ment. https://www.splunk.com/. Accessed October 20,
2022.

Steven Bird, E. K. and Loper, E. (2009). Natural Language
Processing with Python. O’Reilly Media Inc.

Strubell, E., Ganesh, A., and McCallum, A. (2019). En-
ergy and policy considerations for deep learning in nlp.
arXiv preprint arXiv:1906.02243.

Swimlane (2022). Security orchestration, au-
tomation and response (soar) capabilities.
https://tinyurl.com/2p82wjvu. Accessed October 20,
2022.

38

Sworna, Z. T., Islam, C., and Babar, M. A. (2022). Apiro:
A framework for automated security tools api recom-
mendation. ACM Trans. Softw. Eng. Methodol. Just
Accepted.

ThreatConnect (2019). Everything you need to know about
soar. https://tinyurl.com/ythp7sfx. Accessed October
20, 2022.

Vielberth, M., Bohm, F., Fichtinger, 1., and Pernul, G. (2020).
Security operations center: A systematic study and
open challenges. IEEE Access, 8:227756-227779.

Wang, S., Phan, N., Wang, Y., and Zhao, Y. (2019). Ex-
tracting api tips from developer question and answer
websites. In 2019 IEEE/ACM 16th International Con-
ference on Mining Software Repositories (MSR), pages
321-332. IEEE.

Wazuh (2022). Wazuh website. https://wazuh.com. Accessed
October 20, 2022.

White, M., Vendome, C., Linares-Vasquez, M., and Poshy-
vanyk, D. (2015). Toward deep learning software repos-
itories. In 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories, pages 334-345.

Wu, D, Jing, X.-Y., Zhang, H., Zhou, Y., and Xu, B. (2021).
Leveraging stack overflow to detect relevant tutorial
fragments of apis. In 2027 IEEE International Confer-
ence on Software Analysis, Evolution and Reengineer-
ing (SANER), pages 119-130.

Xia, X., Lo, D., Qiu, W., Wang, X., and Zhou, B. (2014).
Automated configuration bug report prediction using
text mining. In 2014 IEEE 38th Annual Computer
Software and Applications Conference, pages 107-116.

Xie, W., Peng, X., Liu, M., Treude, C., Xing, Z., Zhang, X.,
and Zhao, W. (2020). Api method recommendation via
explicit matching of functionality verb phrases. In Pro-
ceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 1015—
1026.

Xu, C., Sun, X., Li, B, Lu, X., and Guo, H. (2018). Mulapi:
Improving api method recommendation with api usage
location. Journal of Systems and Software, 142:195—
205.

Ye, X., Shen, H., Ma, X., Bunescu, R., and Liu, C. (2016).
From word embeddings to document similarities for
improved information retrieval in software engineering.
In Proceedings of the 38th international conference on
software engineering, pages 404—415.

Yenigalla, P., Kar, S., Singh, C., Nagar, A., and Mathur, G.
(2018). Addressing unseen word problem in text clas-
sification. In International Conference on Applications
of Natural Language to Information Systems, pages
339-351. Springer.

Zeek (2020). Zeek: An open source network security mon-
itoring tool. https://zeek.org/. Accessed October 20,
2022.

Zhou, Y., Yang, X., Chen, T., Huang, Z., Ma, X., and Gall,
H. C. (2021). Boosting api recommendation with im-
plicit feedback. IEEE Transactions on Software Engi-
neering.

