
Towards Security-Aware Microservices: On Extracting Endpoint Data
Access Operations to Determine Access Rights

Amr S. Abdelfattah a, Micah Schiewe b, Jacob Curtis c, Tomas Cerny d and Eunjee Song e

Computer Science, ECS, Baylor University, One Bear Place #97141, Waco, TX 76798-7356, U.S.A.

Keywords: Static Analysis, Microservices, Access Rights.

Abstract: Security policies are typically defined centrally for a particular system. However, the current mainstream
architecture - microservices - introduces decentralization with self-contained interacting parts. This brings
better evolution autonomy to individual microservices but introduces new challenges with consistency. The
most basic security perspective is the setting of access rights; we typically enforce access rights at system
endpoints. Given the self-contained and decentralized microservice nature, each microservice has to imple-
ment these policies individually. Considering that different development teams are involved in microservice
development, likely the access rights are not consistently implemented across the system. Moreover, as the
system evolves, it can quickly become cumbersome to identify a holistic view of the full set of access rights
applied in the system. Various issues can emerge from inconsistent settings and potentially lead to security
vulnerabilities and unintended bugs, such as incorrectly granting write or read access to system data. This pa-
per presents an approach aiding a human-centered access right analysis of system endpoints in microservices.
It identifies the system data that a particular endpoint accesses throughout its call paths and determines which
operations are performed on these data across the call paths. In addition, it takes into account inter-service
communication across microservices, which brings a great and novel instrument to practitioners who would
otherwise need to perform a thorough code review of self-contained codebases to extract such information
from the system. The presented approach has broad potential related to security analysis, further detailed in
the paper.

1 INTRODUCTION

Proper access control enforcement is difficult for de-
centralized computing. One major challenge in mi-
croservice systems is the lacking of a centralized view
of the system. This leads to inconsistent data access,
violation of privacy, and disruption of data integrity,
etc. While documentation and security policies indi-
cate the intended access rights for a system, documen-
tation can quickly fall out of date, and policies can
be incorrectly implemented in the ever-changing de-
centralized environment, leaving the source code of
the system the only reliable source to determine ac-
cess rights. This type of analysis is very important
since separate teams typically implement microser-
vices that interact with data that need to consistently

a https://orcid.org/0000-0001-7702-0059
b https://orcid.org/0000-0001-6173-7397
c https://orcid.org/0000-0002-0295-564X
d https://orcid.org/0000-0002-5882-5502
e https://orcid.org/0000-0002-8680-9411

enforce Create, Read, Update, and Delete (CRUD)
authorization security policies in the system.

We recognize Role-Based Access Control
(RBAC) involvement, but still, to determine which
roles to apply on which system endpoint, a lower-
level granularity must be considered broadly driven
by the underlying system data. Most role-based
access control enforcements are specifically in place
to prevent illegal access to data, represented as
data entities in databases. Thus, in more detail,
by identifying CRUD operations performed on the
various data entities, one can get a robust idea of the
permissions allotted to specific control flows.

This paper proposes a methodology to analyze mi-
croservice systems’ REST endpoints with respect to
the CRUD operations performed on data entities as-
sociated with these endpoints. It is set to account for
entities across inter-service calls to reflect the decen-
tralized system nature. Having such information has
broad application potential, such as being able to de-
termine differences between the expected set of re-

Abdelfattah, A., Schiewe, M., Curtis, J., Cerny, T. and Song, E.
Towards Security-Aware Microservices: On Extracting Endpoint Data Access Operations to Determine Access Rights.
DOI: 10.5220/0011707500003488
In Proceedings of the 13th International Conference on Cloud Computing and Services Science (CLOSER 2023), pages 15-23
ISBN: 978-989-758-650-7; ISSN: 2184-5042
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

15

quired permissions as defined in the code on a given
endpoint and the inferred set of CRUD rules given as
output by our tool.

The approach analyzes the system code to (1)
gather information about inter-service calls and to (2)
infer what CRUD operations are performed based on
specified data-source calls within each endpoint’s call
paths. Next, (3) we integrate these results and com-
pute the full set of CRUD accesses performed by each
endpoint by analyzing the inter-service call flow to
determine the extra CRUD operations each endpoint
runs indirectly via called services.

To assess our approach, we implemented a proto-
type tool and performed a case study on an established
microservice benchmark with 41 microservices. We
compared our results to the ground truth to assess our
results. Our results are promising for being able to
successfully accomplish this in a large microservice
codebase and indicate high accuracy for the identifi-
cation of the full set of per-entity CRUD operations in
the microservices-based system.

In summary, the approach provides analysts with
a centralized view of endpoints and their data access
operations to determine proper access rights in mi-
croservice systems. Therefore, our approach aims to
support a human-centered security analysis by pro-
viding the following benefits: (1) help security ana-
lysts to determine access roles to be applied on end-
points of new microservices; (2) help to analyze in-
consistent access rights across already specified end-
point access roles by assessing the intra-service and
inter-service inconsistencies across microservices; (3)
help to promote security-aware system evolution by
detecting whether performed code changes promoted
changes in data access operations and if they should
lead to endpoint access rights updates.

This paper is organized as follows: Section 2 in-
troduces related work, while Section 3 introduces the
proposed approach analysis, design and implementa-
tion details. Section 4 describes performed case study
followed by discussion on limitations and threats to
validity in Section 5. Conclusions are given in Sec-
tion 6.

2 RELATED WORK

Modern software has seen a shift to highlight the im-
portance of maintaining robust authorization security
in its applications. One example of this is commonly
seen in microservices with RBAC corresponding to
CRUD permissions which are used for controlling ac-
cess to resources such as database tables or entities.
As a result of this, we have seen increased importance

in uncovering bugs related to incorrect permissions
being applied in code bases or locating permission er-
rors by omissions within the source code. Another
important topic is inferring access permissions in soft-
ware systems, which we will also outline later.

Modern microservice systems face many chal-
lenges (Bogner et al., 2021). These relevant to our
work include: lack of a centralized system view, tech-
nological heterogeneity, insufficient documentation,
and decentralized team coordination. We aim to alle-
viate some of these challenges by providing a central-
ized view of all CRUD operations executed by end-
points within a microservice system in a language-
agnostic fashion; this will yield better automated doc-
umentation and team coordination.

A method to identify conflicting applications of
RBAC at the endpoint level in a microservices (Das
et al., 2021) utilizes the roles defined on the JSR-375
endpoints and, similar to our approach, utilizes inter-
service calls to detect inconsistencies. In contrast, this
paper focuses on the CRUD accesses each endpoint
makes as opposed to the explicit roles defined on the
endpoints. In particular, we aim to infer the complete
set of CRUD accesses made on various entities to de-
termine both the security policies and the roles explic-
itly defined on endpoints.

Solutions using machine learning were proposed
in (Le et al., 2015) to infer access roles for web apps.
However, they determine access permissions for users
based on dynamic analysis using existing user roles
to crawl the webpages. The approach deals with in-
consistent access rules by human intervention, which
is another downside of this approach. Our work au-
tomates the inference of CRUD access roles only by
analyzing the source code of the systems involved.

An access log mining solution (Xiang et al., 2019)
tracked changing access permissions in systems and
determined access control policy changes. However,
the system must have been deployed, and thus poten-
tially vulnerable to malicious attacks if there was an
unintended access control bug. By shifting the anal-
ysis from run-time to only source code, we can avoid
these sorts of vulnerabilities up front.

A static analysis tool named FixMeUp finds and
repairs access control bugs in PHP applications (Son
et al., 2013) since it is not uncommon for develop-
ers to accidentally omit these when writing applica-
tions. High-level specifications for identifying access
control statements are provided as input to the sys-
tem. However, their approach does not guarantee the
resulting program is semantically correct and recom-
mends reviewing the changes made by the tool. While
their approach also seeks to infer the access permis-
sions on endpoints as we do, here the goals and as-

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

16

sumptions are radically different. FixMeUp seeks to
create a single solution for PHP applications, assum-
ing access permissions are incorrect and attempting a
repair. Our approach creates a generic solution adapt-
able to different languages and frameworks, assuming
the software’s functionality is correct and seeking to
determine the access permissions that exist for con-
sumption by another application.

Detection of potential security holes (”security
policy differencing”) (Srivastava et al., 2011) was ad-
dressed by comparing multiple implementations of
the same API. The approach uses control flow in or-
der to determine the conditions that must be met when
sensitive statements are executed in an API, which are
predefined. Inconsistent access conditions result in
identifying a potential bug in one of the API imple-
mentations. Our work does not identify differences
between implementations, but infers permissions that
can be a result of some deeply nested code or external
service call that has additional required permissions.

Finally, ROLECAST statically analyzes code for
”missing” security checks during sensitive operations
in web apps, such as database writes (Son et al.,
2011). Their work is relevant because it is similar in
that we are identifying implied or possibly ”missing”
security roles on endpoints. However, we also un-
cover ”inconsistencies” by detecting differences be-
tween the set of permissions required to perform an
action (an endpoint call) and the inferred set of CRUD
permissions from our tool.

3 APPROACH ANALYSIS AND
DESIGN

Microservice systems consist of multiple codebases,
such as MS-1, MS-2, etc., and each microservice typi-
cally contains multiple endpoints. Identifying CRUD
accesses and allotting them to endpoints requires mul-
tiple steps. These steps are abstracted in Fig. 1.

The process starts with extracting the endpoints
from the whole system, such as EP-1, EP-M, etc. Af-
ter that, it identifies the CRUD operations used per
each endpoint; it analyzes the endpoint source code,
converts it to a call-graph, and explores the differ-
ent accesses to data entities. The third step consid-
ers inter-service calls. It aggregates the holistic end-
points dependency graph — generated in a separate
process— with the identified CRUD operations per
microservice. It accumulates the individual CRUD
accesses from an endpoint with the CRUD operations
used in its dependencies endpoints (other microser-
vices).

Highlighting the usage of each step is shown in

Fig. 2. It illustrates a simplified use-case for reser-
vations in a hotel, such that the RentalService has an
endpoint besides an UPDATE operation used to start a
room rent process; this endpoint calls two other end-
points on RoomService and ClientService, each has
different CRUD operations as well.

Applying the process starts by extracting these
endpoints from the following three microservices:
POST /rent/room, POST /rooms/reserve, and
GET /client/blacklist. Then, it identifies enti-
ties CRUD operations run by individual endpoints as
shown as UPDATE ROOM, CREATE reservation, and
READ client. Afterward, it utilizes the service de-
pendency graph to analyze which system endpoints
interact with each other and aggregates the CRUD op-
erations accordingly. Finally, Fig. 3 concludes the
expected outcome that the request access right to
RentalService should satisfy the access of the three
CRUD operations to function properly, however, both
RoomService and ClientService do not require addi-
tional CRUD operations access to proceed.

3.1 Implementation Details

Analyzing microservices-based systems presents a
steep challenge since these contain many distributed
parts that evolve independently. Also, the microser-
vices architecture encourages the heterogeneity be-
tween the included services (Cerny et al., 2020).

The proposed approach is implemented based on
ReSSA (Relative Static Structure Analyzer) method-
ology (Schiewe et al., 2022). ReSSA extracts mi-
croservice high-level conceptual components using
static code analysis; it achieves this by operating on
a language-agnostic version of an abstract syntax tree
dubbed a Language-Agnostic Abstract Syntax Tree
(LAAST). This enables the analysis of heterogeneous
microservices-based systems, such that it keeps ex-
tracting the matched components from the analyzed
source code. ReSSA operates using a list of hierar-
chical parsers that run against all nodes in LAAST.
Upon a parser matching the information stored within
the tree, it runs all sub-parsers against the descendent
nodes of the node that was matched.

Our implementation targets the Spring-Boot
framework-based systems to identify CRUD accesses
through the endpoint calls. However, ReSSA is gener-
alizable to other platforms which utilized component-
based development, as demonstrated for C++ mi-
croservice benchmark in (Schiewe et al., 2022). Fur-
thermore, most libraries offer consistent API for ac-
cessing and interacting with data entities; this empha-
sizes the potential of ReSSA to be utilized in our ap-
proach; it could identify these CRUD accesses hetero-

Towards Security-Aware Microservices: On Extracting Endpoint Data Access Operations to Determine Access Rights

17

MS-1

MS-2

MS-N

...

Endpoints
Identification

EP-1

..
.

EP-M

MS-1

EP-1

..
.

EP-L

MS-N

..
.

CRUD Identification

CRUD Identification

..
. ..
.

CRUD Operations

CRUD Operations

CRUD Dependency
Aggregation

Service Dependency Graph
EP-1

..
.

EP-M

EP-1

..
.

EP-L

Aggregated
CRUD

Aggregated
CRUD

..
. ..
.

Aggregated
CRUD

Aggregated
CRUD

2

1 3

Figure 1: Microservices CRUD accesses detection process.

POST /rooms/reserve

CREATE reservation

RoomService

GET /client/blacklist

READ client

ClientService

POST /rent/room

UPDATE ROOM

RentalService

Figure 2: Microservices use-case example.

POST /rooms/reserve

CREATE reservation

RoomService

GET /client/blacklist

READ client

ClientService

POST /rent/room

UPDATE ROOM

CREATE reservation

READ client

RentalService

+

+

Figure 3: An example after Processing.

geneously.
The following subsections walk through the steps

mentioned above in Fig. 1 to highlight the implemen-
tation perspective of our approach1.

3.1.1 Endpoint Identification

The proposed approach utilizes the capabilities of
ReSSA to construct a service dependency graph. It
produces a format interface with our approach as
shown in Listing 1. It is structured per each microser-
vice to list service endpoints and user flows. It shows
the endpoints and the calls performed from each end-
point to others.

ReSSA uses a pattern-matching technique to
detect the endpoints in the source code. As shown in
Table 1, the pattern used in Spring-Boot framework
that identifies endpoints as any method anno-
tated @.*Mapping (covering both @PostMapping
and @RequestMapping–Spring-Boot’s endpoint-
defining annotations) within a class annotated
@RestController.

Listing 1: Selected Schema for Determining Endpoint
Calls.

{
” s e r v i c e s ” : [

{
” c a l l s ” : [

{
” e n d p o i n t ” : ” / c a l l e d / e n d p o i n t / s l u g ” ,
” from ” : [”VERB / c a l l i n g / e n d p o i n t / s l u g ”] ,

/ / A l l e n d p o i n t s pe r fo rm t h i s c a l l .
” method ” : ”VERB” , / / i . e . GET, POST , PUT

, e t c .

1Implementation available at http://github.com/
cloudhubs/authz-flow-analysis, accessed on 2/13/2023.

” s e r v i c e ” : ” c a l l e d − s e r v i c e −name”
} ,
. . .

] ,
” e n d p o i n t s ” : [

{
” code mapping ” : ” . . . ” , / / I d e n t i f i e r f o r

in −code e n d p o i n t d e f i n i t i o n o f t h e
e n d p o i n t .

” method ” : ”VERB” ,
”name” : ” / s l u g ”

} ,
. . .

] ,
”name” : ” s e r v i c e −name”

}
]

}

3.1.2 CRUD Identification

This phase includes three parts of information to link
together as follows: the performed CRUD operations,
the target entities of these operations, and their called
endpoints.

ReSSA (Schiewe et al., 2022) has demonstrated
that it is adept at creating a design that can be eas-
ily expanded to accommodate more frameworks, we
extended its components to add CRUD operations to
match against as shown in Listing 2. However, every
framework has a unique API for accessing database
entities, so extracting these individual CRUD op-
erations entails some form of analysis of the API
the underlying library uses. The patterns used for
Spring Data framework are summarized in Table 1.
It identifies four patterns of CRUD methods as fol-
lows: find.* that matches against many variations

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

18

of find, where all of which logically group together
for our purposes, remove, delete, and save. In
addition, these operations are required to be called
through an @Autowired .*Repository. Mapping
these APIs with the CRUD operations, such that find
corresponds to the READ operation, while remove and
delete correspond to the DELETE operation. save is
tricky; it corresponds to both CREATE and UPDATE, de-
pending on whether the entity it saves already exists,
as illustrated in Listing 3.

Identifying the target entities of these CRUD op-
erations is the second information to extract. Inferring
the entity’s name is based on the returned type from
methods, such as find, get, etc. For example, Foo f
= repository.get(id) implies the entity name as
Foo. In the case of the absence of the return type, the
*.Repository naming convention-based heuristic is
employed, for example, FooRepository implies that
Foo is an entity name.

Listing 2: Selected Schema for Entity CRUD Operations.

{
” e n d p o i n t m e t h o d ” : {

” e n t i t y ” : {
”CREATE” : boo lean ,
”READ” : boolean ,
”UPDATE” : boo lean ,
”DELETE” : b o o l e a n

} , . . .
} , . . .

}

Listing 3: Common difference between CREATE and
UPDATE usage in TrainTicket Benchmark (from con-
tacts.service.ContactsServiceImpl).

/ / Method p e r f o r m i n g a CREATE
@Override
p u b l i c Response c r e a t e C o n t a c t s (C o n t a c t s c o n t a c t s ,

H t t p H e a d e r s h e a d e r s) {
C o n t a c t s con tac t sTmp = c o n t a c t s R e p o s i t o r y .

f i n d B y I d (c o n t a c t s . g e t I d ()) ;
i f (con tac t sTmp != n u l l) {

/ / . . .
re turn new Response <>(0, ” Al ready E x i s t s ” ,

con tac t sTmp) ;
} e l s e {

c o n t a c t s R e p o s i t o r y . s ave (c o n t a c t s) ;
re turn new Response <>(1, ” C r e a t e S u c c e s s ” ,

n u l l) ;
}

}

/ / Method p e r f o r m i n g an UPDATE
@Override
p u b l i c Response modify (C o n t a c t s c o n t a c t s ,

H t t p H e a d e r s h e a d e r s) {
Response o l d C o n t a c t R e s p o n s e = f i n d C o n t a c t s B y I d

(/ * * /) ;

/ / . . .
C o n t a c t s o l d C o n t a c t s = (C o n t a c t s)

o l d C o n t a c t R e s p o n s e . g e t D a t a () ;
i f (o l d C o n t a c t s == n u l l) {

/ / . . .
re turn new Response <>(0, ” C o n t a c t s n o t

found ” , n u l l) ;
} e l s e {

o l d C o n t a c t s . setName (c o n t a c t s . getName ()) ;
o l d C o n t a c t s . se tDocumentType (c o n t a c t s .

getDocumentType ()) ;
o l d C o n t a c t s . setDocumentNumber (c o n t a c t s .

getDocumentNumber ()) ;
o l d C o n t a c t s . setPhoneNumber (c o n t a c t s .

getPhoneNumber ()) ;
c o n t a c t s R e p o s i t o r y . s ave (o l d C o n t a c t s) ;
/ / . . .
re turn new Response <>(1, ” Modify s u c c e s s ” ,

o l d C o n t a c t s) ;
}

}

The third part of the information is achieved by
linking the extracted CRUD operations with their cor-
responding endpoint. The approach matching be-
tween the code mapping field from Listing 1 with the
endpoint method field from Listing 2 to indicate the
[contains] relationship between them. We generate a
simple call-graph based on method names, it identi-
fies what interface methods call what helper methods
to run business logic. This allows us to trace any pos-
sible attempted CRUD operation back to its originat-
ing endpoint, generating the desired output mapping.
A summary of the general structure that we are match-
ing can be found in fig. 4, it describes the flow start-
ing from the @RestController that contains the end-
points’ implementations, then matched the @Service
related call to its implementation, then identifies the
localCall that performs the CRUD operations calls.

3.1.3 CRUD Dependency Aggregation

Once we have the output for both the endpoint calls
and the CRUD operations per endpoint, we can be-
gin the final step to infer CRUD operations for end-
points in the whole system. It analyzes the flow of
calls through the system and their entity CRUD op-
erations. The approach introduces an algorithm as
shown in Listing 4. It iterates as follows for every
endpoint in every microservice controller: visit all of
the recorded calls to other endpoints that occur within
the endpoint. Merging the operations between the
callee is simply adding the operations from the called
endpoint to the callee endpoint, and never removing
entity CRUD operations. We continue this iterative
process over each endpoint until a full pass over all
of the endpoints results in no endpoint’s entity CRUD
operation changes, or until it has been repeated over

Towards Security-Aware Microservices: On Extracting Endpoint Data Access Operations to Determine Access Rights

19

@RestController
Controller

@Autowired
FooServiceservice

contains-field

@*Mapping method()

contains-method

service.apiMethod()

contains-call

@Service
FooServiceImpl

@Autowired
*Repository repo

contains-field

@Override apiMethod

contains-method

this.localCall()

Contains call

superinterface-to

localCall

contains-method

repo.find*() or
repo.save(…) or
repo.delete(…)

contains-call

maps-to

Figure 4: Architecture of in-code structure containing CRUD accesses.

all the endpoints in the graph. This allows us to con-
tinue adding CRUD operations as changes are being
rippled throughout the endpoints in the services.

Listing 4: Pseudocode: identify the set of CRUD operations
using inter-service call flow.

p r o c e d u r e m e r g e c r u d a c c e s s (e1 , e2) :
i f ! e1 . c r u d a c c e s s :

e1 . c r u d a c c e s s = e2 . c r u d a c c e s s
re turn

/ / Add each CRUD o p e r a t i o n f o r e v e r y e n t i t y
f o r each e n t i t y i n e2 . c r u d a c c e s s :

f o r each c r u d o p i n e n t i t y . c r u d o p e r a t i o n s :
e1 . c r u d a c c e s s [e n t i t y] += c r u d o p

/ / I n i t i a l i z e t h e s e r v i c e e n d p o i n t ’ s base CRUD
a c c e s s

/ / o p e r a t i o n s
f o r each s e r v i c e e n d p o i n t e :

e . c r u d a c c e s s = e n d p o i n t c r u d a c c e s s e s [e .
code mapping]

l e t c r u d a c c e s s c h a n g e d = f a l s e
f o r | e n d p o i n t s | :

f o r each s e r v i c e e n d p o i n t e :
/ / Add a l l CRUD a c c e s s r u l e s from e v e r y c a l l e d
/ / s e r v i c e
f o r each s e r v i c e c a l l c made by e :

l e t o l d c r u d a c c e s s = e . c r u d a c c e s s
m e r g e c r u d a c c e s s (e , c . e n d p o i n t)
c r u d a c c e s s c h a n g e d =

(e . c r u d a c c e s s != o l d c r u d a c c e s s)
| | c r u d a c c e s s c h a n g e d

i f ! c r u d a c c e s s c h a n g e d : break

return e n d p o i n t s w i th merged CRUD o p e r a t i o n s

4 CASE STUDY

To test our proposed approach, we implemented a
proof-of-concept for our three-step process. We
then tested this proof-of-concept on the TrainTicket
testbed (Zhou et al., 2018)2. This testbed has a total
of 41 microservices that were implemented using the
Java Spring-Boot framework.

We ran the case study against TrainTicket’s code-
base and validated this against a ground truth that we
determined. This ground truth was partially recon-
structed by manually identifying where CRUD ac-
cesses were and what services called each other. A
simple script was created to tie user flows together
and copy/paste CRUD operations as needed. It pro-
duces a total of 1364 CRUD operations identified.
The proposed technique identified 1322 of them au-
tomatically, yielding 96.9% accuracy overall.

4.1 Discussion and Limitations

Let us discuss more those 42 CRUD operations
that were missing in our identification result. Four
CRUD operations were misinferred because they mis-
matched the heuristic naming convention technique
that we used to identify the entity names. Once in-
heritance hierarchy information is matchable within
ReSSA, this error will be resolved because it will be a
more reliable way to identify the targeted entity name.

The remaining 38 misinferred CRUD operations
are resulted from the classification of CREATE and
UPDATE operations. In our initial implementation, we

2TrainTicket testbed: https://github.com/
FudanSELab/train-ticket, used commit hash
a4ed2433b0b6ab6e0d60115fc19efecb2548c6cd, accessed
on 2/13/2023.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

20

Table 1: The Matching Patterns for Spring-Boot Framework.

Identified Components Matching Patterns

CRUD Operations

find.*
remove
delete
save

Repository Instance @Autowired .*Repository

Endpoint Methods Class: @RestController
Method: @.*Mapping

attempted to delineate them based on a common pat-
tern of usage: that saving an object retrieved from a
database is always an UPDATE, and that saving an ob-
ject not retrieved from a database is always a CREATE,
as illustrated before in Listing 3. Comparing the total
set of CREATE and UPDATE operations that are inferred
using this heuristic yields 74% accuracy against the
ground truth. This is not a particularly compelling re-
sult. However, there are a few more cases that are
related to this CREATE and UPDATE heuristic.

One case is shown in Listing 5. This call to
save is both a CREATE and an UPDATE. The heuristic
fails to recognize it since it could depend on control
flow (whether repository.findByIndex(0) is null
or not). This could be solved using a similar method
handling multiple endpoint targets for inter-service
calls in the service call-graph generating ReSSA. On
the other hand, recording it could be proposed in-
stead of attempting to classify it in a binary fashion.
However, this would not solve all misidentified entity
CRUD operations.

Listing 5: TrainTicket UPDATE not matching our heuristic
(from consignprice.service.ConsignPriceServiceImpl).

@Override
p u b l i c Response c r e a t e A n d M o d i f y P r i c e (C o n s i g n P r i c e

c o n f i g ,
H t t p H e a d e r s h e a d e r s) {

/ / . . . o m i t t e d f o r space . . .
/ / up d a t e p r i c e
C o n s i g n P r i c e o r i g i n a l C o n f i g ;
i f (r e p o s i t o r y . f i n d B y I n d e x (0) != n u l l) {

o r i g i n a l C o n f i g = r e p o s i t o r y . f i n d B y I n d e x (0)
;

} e l s e {
o r i g i n a l C o n f i g = new C o n s i g n P r i c e () ;

}
o r i g i n a l C o n f i g . s e t I d (c o n f i g . g e t I d ()) ;
/ / . . . a s s i g n over a t t r i b u t e s from parame te r

c o n f i g . . .
r e p o s i t o r y . s ave (o r i g i n a l C o n f i g) ;
re turn new Response <>(1, s u c c e s s ,

o r i g i n a l C o n f i g) ;
}

Another case the heuristic did not account for is
shown in Listing 6. The update is performed by val-

idating that the database contains the desired infor-
mation, followed by creating a new data object con-
taining the validated information and saving this new
object to perform the update. While it is an odd way
of performing an UPDATE (and arguably risky, given
the chances of accidentally overwriting attribute val-
ues with null if the data schema changed and you
didn’t start setting the new attributes as well), it is still
a valid way of performing an UPDATE that we must
consider in the future.
Listing 6: TrainTicket UPDATE not matching our heuristic
(from config.service.ConfigServiceImpl).

@Override
p u b l i c Response u p d a t e (Conf ig i n f o , H t t p H e a d e r s

h e a d e r s) {
i f (r e p o s i t o r y . findByName (i n f o . getName ()) ==

n u l l) {
S t r i n g r e s u l t = c o n f i g 0 + i n f o . getName () +

” doesn ’ t e x i s t . ” ;
re turn new Response <>(0, r e s u l t , n u l l) ;

} e l s e {
Conf ig c o n f i g = new Conf ig (i n f o . getName () ,

i n f o . g e t V a l u e () , i n f o . g e t D e s c r i p t i o n ()
) ;

r e p o s i t o r y . s ave (c o n f i g) ;
re turn new Response <>(1, ” Update s u c c e s s ” ,

c o n f i g) ;
}

}

It is clear that the heuristic used to differentiate be-
tween the use of Spring’s save as a CREATE or UPDATE
is flawed based on the noted cases and others. If this
heuristic were refined, our approach would capitalize
on it immediately to produce stronger results. More-
over, we consider merging CREATE and UPDATE oper-
ations in the same group of access, thus the algorithm
does not differentiate between them. This leaves all
the other CRUD operations inferred property, except
those four that are related to the misidentified entities.

In conclusion, our case study shows very promis-
ing results for identifying CRUD entity access, while
raising some framework-specific challenges with our
current toolset. It is also only limited to accessing
database entities and does not support other technolo-
gies like Redis or message queues such as Kafka yet.

Towards Security-Aware Microservices: On Extracting Endpoint Data Access Operations to Determine Access Rights

21

5 THREATS TO VALIDITY

Using Wohlin’s taxonomy (Wohlin et al., 2000), we
examined four types of validity threats: construct va-
lidity, internal validity, external validity, and conclu-
sion validity. We also elaborate on our custom thresh-
olds used in the proposed method.

5.1 Construct Validity

Construct validity refers to the accuracy of measures
in reflecting real-world constructs. To assess this,
we used a third-party enterprise system benchmark
based on microservices and a well-established devel-
opment framework that adheres to up-to-date devel-
opment standards and components. This benchmark
is widely used by the microservice community to
demonstrate research outcomes, thus reflecting realis-
tic conditions for our approach. However, our results
should be considered in the context of other frame-
works that may yield alternative results. Moreover,
the selected benchmark may introduce a biased rep-
resentation of coding practice; we countered this by
performing manual analysis.

Our method evaluates components such as CRUD
operations, repositories, and endpoint methods that
are widely recognized across platforms. We also
considered REST calls to these endpoints, although
we omitted messaging systems from our assessment.
Therefore, our method is not suitable for general pro-
grams that do not consider those components (i.e.,
Java Standard Edition).

5.2 Internal Validity

Internal validity challenges the study methods and
data analysis. Our approach demonstrates a high level
of reliability in inferring entity CRUD operations by
following endpoint calls. However, it raises questions
that require further research, such as whether it is al-
ways possible to link CRUD accesses to the endpoint
that triggered them.

Another threat to validity is the lack of support
for tracing the control flow and inheritance structures
within a program and the simplifying assumptions we
had to make to solve them. Consider, for example,
the way TrainTicket links its controllers to its busi-
ness logic using an @Autowired service implementa-
tion. This auto-wired field is the generic interface for
the service, not the concrete service class itself. It is
a simple logical leap for a human to skip from the in-
terface to the implementation; however, at this time,
ReSSA does not support tracing and matching over
such control flow structures. While one can perform

simple matching over class and method names in a
system, this is snarled up by duplicated class names
or method overloads. This makes it difficult to trace
the execution from the controller to business logic or
among helper methods. Although adding support for
such a connection in ReSSA would be valuable, it was
not that critical in our approach to identifying CRUD
rights.

Our approach utilizes manual analysis as the
ground truth for evaluating the performance of the
proposed method. Specifically, two authors con-
ducted the manual analysis, and the results were later
validated by a third author to reduce any potential bias
in the outcomes.

5.3 External Validity

These threats concern the generalization of our re-
sults. Our case study focused on the Java platform in
this prototyping, given its significant presence in the
microservice domain. However, this raises questions
about the generalization of our results. Specifically,
can we generate fine-grained user flow mappings for
every technology and programming language? While
microservice systems support heterogeneity, our case
study shows that we can analyze a Java-based sys-
tem following its standards, but we cannot conclude
that the method is generalizable in the same setting.
Nevertheless, our method, ReSSA, demonstrated po-
tential results working for a C++ microservice bench-
mark in a customized pattern.

On the other hand, it is difficult for the method
to work for applications that do not adhere to stan-
dard components and best practices. In such cases,
modifications would be necessary to consider the
application-specific naming conventions used across
architectural layers.

5.4 Conclusion Validity

The threats concern whether the conclusions are
based on the available data and metrics. We measured
the accuracy between the manual analysis results and
the produced outcome in our work, but we did not
include the measurements of precision and recall be-
cause all operations that exist in the system were iden-
tified, which makes computing the precision and re-
call uninformative given 100% recall. Nevertheless,
to examine the significance of the results statistically,
more experiments are required over the data distribu-
tion.

Our study’s trustworthiness may have been im-
pacted by the restricted variation in the chosen system
benchmark, restricting our conclusions to our obser-

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

22

vations in the case study. Nevertheless, we have made
our approach available as open-source, which facili-
tates the replication of the study.

6 CONCLUSION

We presented a novel methodology for identifying
the full set of entity CRUD operations needed for
each endpoint in microservices-based systems. Such
CRUD operations are fundamental to ensuring any
proper endpoint access control. While the system
may initially have had correct access rights on all end-
points, its distributed evolution can easily cause them
to be outdated, requiring periodic verification of all
applied access rights to prevent vulnerability. Our
three-step solution generates a mapping of endpoint
methods to their needed CRUD operations. It then
identifies the call paths present within a system and
synthesizes the preceding outputs to generate a map-
ping of all endpoint calls to the full set of implied
entity CRUD operations that are needed to call this
endpoint. We have approached the problem in a gen-
eralizable manner using ReSSA methodology simpli-
fying the extension to accommodate new platforms
by analyzing a unified intermediate program repre-
sentation. We tested the proposed approach against
the TrainTicket testbed, a Java microservice system
built on the Spring-Boot framework, and verified
the results against a manually-reconstructed ground
truth. This yielded promising accuracy for identify-
ing CRUD operations for each endpoint.

In future work, we will statically analyze busi-
ness rules from the system source code and combine
these two solutions to generate an authorization ser-
vice enforcing authorization throughout the system
uniformly. Such a service would allow the cross-
cutting concern of authorization to be factored out
and handled in an automated fashion by stopping any
CRUD operation mismatches between an endpoint
and what it executes before becoming a security vul-
nerability.

ACKNOWLEDGEMENTS

This material is based upon work supported by
the National Science Foundation under Grant No.
1854049 and a grant from Red Hat Research,
https://research.redhat.com.

REFERENCES

Bogner, J., Fritzsch, J., Wagner, S., and Zimmermann,
A. (2021). Industry practices and challenges for the
evolvability assurance of microservices. Empirical
Software Engineering, 26(5):104.

Cerny, T., Svacina, J., Das, D., Bushong, V., Bures, M.,
Tisnovsky, P., Frajtak, K., Shin, D., and Huang, J.
(2020). On code analysis opportunities and challenges
for enterprise systems and microservices. IEEE Ac-
cess, pages 1–22.

Das, D., Walker, A., Bushong, V., Svacina, J., Černý, T.,
and Matyas, V. (2021). On automated rbac assessment
by constructing a centralized perspective for microser-
vice mesh. PeerJ Computer Science, 7:e376.

Le, H. T., Nguyen, C. D., Briand, L., and Hourte, B.
(2015). Automated inference of access control poli-
cies for web applications. In Proceedings of the 20th
ACM Symposium on Access Control Models and Tech-
nologies, SACMAT ’15, page 27–37, New York, NY,
USA. ACM.

Schiewe, M., Curtis, J., Bushong, V., and Cerny, T.
(2022). Advancing static code analysis with language-
agnostic component identification. IEEE Access,
10:30743–30761.

Son, S., McKinley, K. S., and Shmatikov, V. (2011). Role-
cast: Finding missing security checks when you do
not know what checks are. In Proceedings of the
2011 ACM International Conference on Object Ori-
ented Programming Systems Languages and Appli-
cations, OOPSLA ’11, pages 1069–1084, NY, USA.
ACM.

Son, S., McKinley, K. S., and Shmatikov, V. (2013). Fix
me up: Repairing access-control bugs in web applica-
tions. In 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, Califor-
nia, USA, February 24-27, 2013. The Internet Society.

Srivastava, V., Bond, M. D., McKinley, K. S., and
Shmatikov, V. (2011). A security policy oracle: De-
tecting security holes using multiple api implementa-
tions. SIGPLAN Not., 46(6):343–354.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell,
B., and Wesslén, A. (2000). Experimentation in Soft-
ware Engineering: An Introduction. The Kluwer In-
ternational Series In Software Engineering. Springer,
Germany.

Xiang, C., Wu, Y., Shen, B., Shen, M., Huang, H., Xu, T.,
Zhou, Y., Moore, C., Jin, X., and Sheng, T. (2019). To-
wards continuous access control validation and foren-
sics. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS ’19, page 113–129, New York, NY, USA. Asso-
ciation for Computing Machinery.

Zhou, X., Peng, X., Xie, T., Sun, J., Xu, C., Ji, C., and
Zhao, W. (2018). Benchmarking microservice sys-
tems for software engineering research. In Chaudron,
M., Crnkovic, I., Chechik, M., and Harman, M., edi-
tors, Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018, pages 323–324. ACM.

Towards Security-Aware Microservices: On Extracting Endpoint Data Access Operations to Determine Access Rights

23

