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Abstract: Inductive programming frequently relies on some form of search in order to identify candidate solutions. 
However, the size of the search space limits the use of inductive programming to the production of 
relatively small programs. If we could somehow correctly predict the subset of instructions required for a 
given problem then inductive programming would be more tractable. We will show that this can be 
achieved in a high percentage of cases. This paper presents a novel model of programming language 
instruction co-occurrence that was built to support search space partitioning in the Zoea distributed 
inductive programming system. This consists of a collection of intersecting instruction subsets derived from 
a large sample of open source code. Using the approach different parts of the search space can be explored 
in parallel. The number of subsets required does not grow linearly with the quantity of code used to produce 
them and a manageable number of subsets is sufficient to cover a high percentage of unseen code. This 
approach also significantly reduces the overall size of the search space - often by many orders of magnitude. 
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1 INTRODUCTION 

The use of AI to assist in the production of computer 
software is an active area of research (e.g. Xu et. al., 
2022; Nguyen & Nadi, 2022). Many current systems 
are based on deep learning and recent work includes 
the use of large language models such as GPT-3 
(Brown et. al., 2020). These involve training on 
large quantities of code although this can also raise 
ethical concerns (Lemley & Casey, 2021). 

Work also continues on approaches not 
traditionally associated with training (Cropper et al., 
2020; Petke et. al., 2018). Inductive programing (IP) 
aims to generate code directly from a specification 
such as test cases (Flener & Schmid, 2008). Various 
IP techniques exist but fundamentally many of these 
utilise search (Kitzelmann, 2010). 

Aside from trivial cases it is not possible to 
determine the outcome of a computation directly 
from source code without executing it. Some kind of 
generate-and-test approach is therefore unavoidable. 

The size of the search space has limited  
IP  systems  to  the  production  of  relatively  small  

programs (Galwani et. al., 2015). A major source of 
combinatorial growth in IP is the number of 
instructions, comprising core language and standard 
library functions, and operators. This number varies 
by programming language but is frequently around 
200 or more. It has been suggested that if we could 
predict the subset of instructions required for a given 
program then IP would be more tractable (McDaid 
& McDaid, 2019).  

One way to produce slightly larger programs in a 
given time period is to distribute the work across 
many computers. This requires the search space to 
be partitioned. Partitioning on the instruction set is 
attractive as most programs use a relatively small 
subset of instructions. But how do we define the 
subsets? 

This paper presents the results of a study that 
was carried out to define instruction subsets for the 
Zoea IP system (McDaid & McDaid, 2021). Zoea 
employs a distributed blackboard architecture 
comprising many knowledge sources that operate in 
parallel. Activations can already be partitioned by 
instruction subsets although currently these are 
coarse grained and manually specified. 
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At present, Zoea can efficiently utilise up to 
around 100 cores in solving a problem. Using larger 
numbers of cores requires finer-grained partitioning 
of the instruction set. This will also enable Zoea to 
better leverage cloud-based deployment. 

The strategy of deriving subsets from existing 
code was seen as a potential way to make subsets 
more representative of human originated software. It 
was also apparent that any such subsets would need 
to intersect with one another to some extent. 

The number of subsets required to provide 
sufficient coverage for a wide variety of programs 
was unknown in advance. Based on experience in 
tuning the current system hundreds to thousands of 
subsets would result in acceptable performance. 

The target size of the instruction subsets is an 
important consideration. Smaller subsets make it 
possible to find programs with fewer instructions in 
in less time. However, we also need to be able to 
produce programs with larger numbers of 
instructions. This suggests the use of multiple sets of 
instruction subsets of different sizes. The subset 
sizes studied were 10 to 100 in increments of 10.  

The following sections describe our approach to 
the production and evaluation of instruction subsets. 
We then go on to discuss some significant findings 
that became apparent after this work was completed. 

2 PRELIMINARIES 

Let C be a source code program in a high level 
imperative programming language L. C is composed 
of one or more program units U - corresponding to 
procedures, functions or methods. L provides a set of 
instructions IL comprising built in operators, core 
and standard library functions. Each U contains a set 
of instructions IU where IU ⊆ IL ∧ IU ≠ Ø. 

Given a collection of programs SP1 we can 
enumerate the corresponding family of program unit 
instruction subsets SIU where SIU ∈ P(IL) ∧ SIU 
≠ Ø. (Here P refers to the power set.) 

IU is said to cover U if IU is the instruction 
subset for U or IU is the instruction subset for a 
different U and a superset of the IU for U. Each IU 
trivially covers the corresponding U. We can also 
say that SIU covers SP1. Coverage for a set of 
programs is quantified as the number of covered 
program units divided by the total number of 
program units expressed as a percentage. 

Any IU that is a subset of another IU can be 
removed from SIU without affecting the overall 
coverage of SIU wrt SP1. Two or more IUs can be 

combined to form a new derived instruction subset 
ID. ID provides the same aggregate coverage as its 
component IUs wrt SP1. 

SID is a family of instruction subsets comprising 
all IUs (that have not been removed or merged) 
union all IDs. SID provides the same coverage as the 
original SIU wrt SP1. We can enforce an upper limit 
M1 on |IU| and an upper limit M2 on |ID| during the 
creation of SID. Any U where |IU| > M1 is silently 
ignored. M2 constrains which subsets of SIU (IUs) 
can be combined to form IDs. Any number of IDs 
can be created providing their respective component 
IUs are also removed and |ID| <= M2. Once created 
SID can then be evaluated in terms of the coverage it 
provides wrt a different set of programs SP2. 

3 APPROACH 

3.1 Objectives 

The primary goal of this work was to define a set of 
instruction subsets to support efficient clustering in 
the Zoea IP system. 

Evaluation of subsets was also necessary to 
ensure that they were capable of generating a wide 
range of programs. The approach selected involved 
cross-validating subsets generated using part of the 
code sample with the entire code sample. 

3.2 Method 

This work began as a piece of analysis and without a 
specific research question. The methodology 
followed can best be characterised as descriptive 
with some similarities to exploratory data analysis. 

A large quantity of code was required for 
instruction subset creation to ensure sufficient 
variety. Ideally it should be the product of many 
different developers from a variety of contexts. The 
code also needs to be legally and ethically available. 

GitHub (Microsoft, 2022) was identified as a 
suitable source of software and it has been used in 
the past for similar analyses of code (Ray et. al., 
2014). We used the largest 1,000 repositories on 
GitHub (as of 13 May 2022) and limited our analysis 
to Python (Martelli et al., 2017) programs only. 
Python was selected on the basis that it is a fairly 
popular language and the available instructions are 
representative of similar languages.  

In each case the complete repository was 
downloaded as a zip file, extracted and non-Python 
files were discarded. Each Python program was split 
into program units (classes, methods, functions and 
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mains) and tokenised using simple custom code 
based on regular expressions. Two of the 
repositories were excluded due to parsing errors. 
From the identified tokens the occurrences of each 
of a specific set of instructions were counted. 
Instructions that have no meaning in Zoea, such as 
those relating to variable assignment, were either 
mapped to an equivalent instruction if possible or 
else excluded. (E.g. '+=' is mapped to '+' while '=' is 
excluded.) No code or other information was used in 
any other way. This step output a list of instruction 
names in alphabetical order for each program unit. 

The analysis included 71,972 Python files 
containing 15,749,416 lines of code or 580,476,516 
characters. From this 886,421 program units were 
identified. For each program unit the subset of 
instructions it contains was recorded. Many of the 
instruction subsets so identified were duplicates and 
when these were removed 345,120 unique 
instruction subsets remained. 

During processing the instruction subsets were 
filtered to remove any that are proper subsets of 
another instruction subset. This left 33,823 
instruction subsets. These varied in size between 1 
and 74 instructions (median: 3, standard deviation: 
3.67). Many of the unique instruction subsets were 
very similar to one another, differing by only one or 
two instructions. 

 
Figure 1: Overview of subset creation process. 

3.3 Clustering Algorithm 

Figure 1 gives a conceptual overview of the subset 
creation process. Producing derived instruction 
subsets (IDs) from program unit instruction subsets 
(IUs) is a clustering problem. A number of different 
clustering algorithms were developed and evaluated. 
The end result incorporates the two most successful 
of these together with some pre- and post-

processing. Pseudo-code for the software is shown 
in Algorithm 1. 

Every derived instruction subset is created with 
respect to a specified maximum subset size. This 
size limit also impacts the number of derived subsets 
as described in more detail later in this section. 
 

delete any duplicate IUs 
amplify IUs (see section 3.4) 
delete IUs that are subsets of IU’ 
foreach IU do 
  find Instr, Subsets where  
    Instr is not a subset of IU and 
    length(IU ∪ Instr) is maximum 
  Let IU = IU ∪ { Instr } 
  delete all IUs in Subsets 
end foreach 
create NumIDs empty IDs 
foreach IU do 
  if exists( empty ID ) then 
    Let ID = IU 
  else 
    find IDs with max( | ID ∩ IU | ) 
    choose ID with min( | ID | ) 
    Let ID = ID ∪ IU 
  end if 
end foreach 
merge IDs where size <= MaxIdSize 
return set of IDs 

Algorithm 1: Clustering algorithm. 

Input subsets are processed in decreasing order 
of size. In order to improve performance all 
instruction subsets are internally sorted at all times.  

Pre-processing involves de-duplication, 
amplification and subset removal. Amplification is 
described in the next section. Many input subsets are 
duplicates of which set one is retained. Any input 
subset that is wholly contained within another input 
subset is also removed. 

The first clustering stage attempts to subsume the 
largest number of near subsets by adding a single 
additional instruction to each IU in turn. In choosing 
which instruction to add the algorithm determines 
how many other IUs will become subsets of the 
current IU if that instruction is added. The 
instruction that results in the removal of the greatest 
number of other IUs is selected. 

The second clustering stage tries to merge each 
IU with the ID with which it has the greatest 
intersection. This involves pre-creating a specified 
number of empty IDs and then either populating the 
empty IDs or else merging the IU into the ID with 
both the largest intersection and the most remaining 
capacity. If all IDs are at their maximum capacity 
then additional empty IDs are created.  
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Post-processing involves merging any remaining 
small IUs and non-full IDs together. This is driven 
entirely by subset size and ignores similarity.  

As noted already, the algorithm allows for the 
specification of both a maximum subset size and a 
target number of subsets. However, the number of 
subsets requested is not honoured if this proves 
impossible, in which case a minimal number of 
additional subsets are created. For each subset size 
the approximate number of subsets required is 
determined in advance by code that iterates over 
possible values in ascending order. The number of 
subsets required is detected when the number of 
subsets created equals the number of subsets 
requested. Given this requires considerable time the 
process has only been done in increments so the 
figures obtained are approximate, within the size of 
the increment. 

The derived subset size that is enforced is 
allowed to be somewhat larger than the maximum 
by a small configurable amount – typically 10%. 
Without this headroom program unit subsets of the 
same size could not be merged. 

3.4 Amplification 

Initially, the process of merging subsets was seen as 
a way to reduce the number of derived subsets and 
standardize their sizes. However, it was observed 
that coverage against unseen code improved 
significantly after merging. This is partly because 
larger subsets provide better coverage than do small 
ones. Also, merging introduces additional intra-
subset instruction co-occurrence variety that would 
not otherwise be present. It is interesting to note that 
adding an equivalent number of random instructions 
rather than merging does not give any detectable 
benefit. 

In order to take advantage of this phenomenon an 
amplification step was introduced whereby smaller 
input subsets are merged with one another before 
clustering to create additional artificial program 
subsets. This was not explored systematically but the 
benefits do not seem to continue to accrue beyond a 
50% increase in the number of subsets. Further work 
in this area may be fruitful. 

4 RESULTS 

4.1 Input Data 

Figure 2 shows the size frequency distribution of the 
program unit instruction subsets. This provides both 

the numbers of subsets of different sizes and the 
cumulative percentage of program units for each 
subset size. From this it can be seen that around 90% 
of program units have instruction subsets containing 
10 or fewer unique instructions. Only 2% of 
program units contain 20 or more instructions. 

 
Figure 2: Program unit instruction subset size frequency 
distribution. 

Figure 3 gives the frequency distribution for 
instructions across all of the code used. Here 
instructions are ranked in order of descending 
frequency. This shows that a small number of 
instructions are used very frequently and that many 
instructions are seldom used. This is similar to a 
Zipfian distribution that is often associated with 
human and artificial languages (Louridas et al., 
2008). 

 
Figure 3: Ranked instruction frequency distribution. 

The ranked frequency distribution for co-
occurring instruction pairs is similar to that for 
instructions although it is more pronounced. Very 
few instruction pairs co-occur frequently while most 
occur infrequently or not at all. 

4.2 Coverage of Unseen Code 

By definition the derived subsets will always give 
100% coverage of the code that was used to create 
them. In other words, all of the instructions in each 
program unit instruction subset will be found 
together in at least one single derived instruction 
subset. However, this is not the purpose for which 
the derived subsets are created. 
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To be useful the derived subsets should also 
provide a high level of coverage for code that was 
not used for their creation. The level of coverage for 
unseen code was determined by nominating a 
percentage of the input code as a training set from 
which the derived subsets were then produced. The 
derived subsets could then either be tested against a 
different section of the input codebase or all of it. 

 
Figure 4: Unseen code coverage for different training set 
percentages and subset sizes. 

To understand the relative coverage that was 
achieved using training sets of different sizes, 
subsets were produced using 10% to 100% of the 
available code in 10% increments. In each case the 
derived subsets were then evaluated against the 
entire codebase. These results are shown in Figure 4. 
These tests were executed over 50 times and it was 
soon clear that subsets produced using a relatively 
small percentage of the code sample can provide 
high coverage. For subset size 10 just 1% of the 
code produces subsets that provide 77.31% 
coverage. 

Other tests - that are not reported here - were 
carried out to ensure the particular section of code 
from which the training set was taken had no 
adverse impact on the results. 

4.3 Number of Subsets 

As we have already noted the number of derived 
subsets required depends to a large extent on the 
maximum derived subset size. Figure 5 shows the 
numbers of derived subsets for various maximum 
sizes. Generally, the number of subsets reduces 
exponentially with increasing maximum subset size. 
That the number for maximum size 10 is less than 
20 is probably due to the fixed size of the derived 
subset headroom in combination with the skewed 
subset size distribution. 

The numbers of derived subsets are acceptable in 
order to support Zoea clustering. It is possible to 
reduce the number of subsets further by various 
means although this will also reduce the coverage 

for unseen code. For example, some of the subsets 
are redundant when considered solely in terms of 
coverage of the training set. In addition, many 
individual instructions can be removed from subsets 
on the same basis. 

 
Figure 5: Number of subsets required by subset size. 

Another important factor is how the number of 
required subsets grows as the size of the training set 
is increased. This growth is not linear but instead 
decreases with each increment. The decreasing rate 
of growth suggests that subset size eventually 
stabilizes rather than growing indefinitely. 

4.4 Search Space Reduction 

The original motivation for using instruction subsets 
is to distribute work across many worker nodes in a 
cluster. An unanticipated benefit is that the size of 
the search space is also significantly reduced. It is 
easy to see why this is the case. 

The search space for code approximates to a tree 
of a given depth with a branching factor largely 
determined by the number of instructions. Various 
approaches have been published for estimating the 
size of such a search tree (Kilby et. al., 2006). 
However, the reality is more complicated. Different 
instructions have different numbers of arguments 
and the data flows may span any number of levels 
forming a graph rather than a tree.  

A more accurate estimate of cumulative search 
space size instead considers the number of values 
generated as successive layers of instructions are 
added. Inputs exist at level zero. If all instructions 
are applied at each level then single argument 
instructions must take their input from the previous 
level whereas two argument instructions only 
require one value from the previous level and 
another from any level. In this approach the number 
of search space nodes at a given level is the current 
total number of values excluding inputs. 

Figure 6 shows the impact of different subset 
sizes on the size of the search space. This shows 
very large reductions in search space size – 
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particularly for subsets of size 10. This is largely due 
to the reduction in branching factor from around 200 
to 10. The results in Figure 6 take account of the 
number of subsets, although this makes little 
difference to the relative scale of the results. 

It is clear that distributing the work across a 
number of nodes in this manner does not just enable 
the work to be completed more quickly. It also 
reduces the amount of work that needs to be done. 

People seem to get by using a relatively small 
proportion of all possible instruction subsets. This 
means there are a great many subsets that are not 
used very often - if at all. Every instruction subset, 
that does not include all instructions, accounts for a 
different and somewhat overlapping part of the 
complete search space. Effectively it is the 
instruction subsets that are not used that account for 
the reduction in the size of the search space. 

 
Figure 6: Search space reduction for different instruction 
subset sizes. 

4.5 Subset Overlap 

Instruction subsets often overlap. This is intentional 
and reflects the fact that instructions used in 
different program units frequently intersect. It is also 
partly due to the clustering process. The median 
overlap for subset size 10 is around 20% and for size 
50 is around 40%. As a result there might be a 
concern that an excessive amount of effort may be 
wasted when using the subsets to partition work. 

 
Figure 7: Proportion of redundant activity for different 
subset overlap percentages. 

Estimation of duplicate effort uses the same 
approach outlined earlier for search space size. 
Duplicated work at a given level corresponds to the 
size of the search space subtree for overlapping 
instructions only, divided by the size of the tree for 
the subset size number of instructions. Results are 
shown in Figure 7. 

As the search tree grows, any values that have 
been produced using any non-duplicated instruction 
are distinct. Thus the proportion of values at each 
level that are produced exclusively from duplicated 
instructions quickly becomes insignificant.  

4.6 Meaning of Results 

The concept of coverage is a proxy for IP success or 
failure in finding a particular solution. High levels of 
coverage mean that for a given set of instruction 
subsets there is a correspondingly high probability 
that at least one worker in the cluster will encounter 
a particular IP solution. 

Using only a subset of instructions rather than all 
of them significantly reduces the time Zoea takes to 
produce a solution. This, together with the overall 
reduction in search space size and the ability to run 
hundreds or possibly thousands of workers in 
parallel will certainly yield a dramatic improvement 
in response times. The size of programs that can be 
generated in a given time are also certain to increase. 

4.7 Comparative Evaluation 

It would be interesting to compare our results with 
other approaches such as various forms of heuristic 
search and generic algorithms (Mart et al., 2018). 
Distance metrics and fitness functions can be used to 
guide best first search for some specific types of 
program. However, no known set of distance metrics 
or fitness functions covers all possible programs. In 
many kinds of software the distance between a target 
value and successive intermediate values has no 
discernable pattern. Bi-directional search is also 
impractical as the number of possible input values 
for a given output can often be infinite. As a result 
only comparisons with various kinds of uninformed 
search can be made. 

Consider a search space of size S with a 
maximum depth (and upper bound on program size) 
M. The simplest version of a specific program X is 
known to exist within that space at depth D. Sd is the 
cumulative size of the search space up to and 
including D. There also exist a number N of larger 
but functionally equivalent variants Vn of X between 
depths D+1 and M. The task is to find X or 
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alternatively any Vn using different kinds of search 
and estimate the size of the space. See Table 1. 

Depth first and breadth first search are well 
known. Iterative deepening depth first search 
(IDDFS) approximates the behaviour of breadth first 
but although it requires less memory this is at the 
cost of repeating some work.  

S is considerably larger than Sd so in this case 
depth first performs poorly. It can be seen that the 
use of instruction subsets results in a huge reduction 
in search space size. The corresponding running 
time can also be expected to be considerably less. 

Table 1: Comparison of search techniques. 

 Depth 
first 

IDDFS Breadth 
first 

Instr. 
subsets

Always 
finds 

solution 

Yes Yes Yes Yes 

Best 
solution 

first 

No Yes Yes No 

Approx. 
search 

size 

S / 
(N+1) 

>Sd Sd Between 
Sd/10^5 

and 
Sd/10^40

5 DISCUSSION AND FUTURE 
WORK 

Much of this work was conducted as an exercise in 
static code analysis rather than as a scientific 
investigation. However, that does not detract from 
the validity or potential significance of the results.  

The frequency distributions of individual 
instructions and instruction pairs can be seen as tacit 
forms of software development knowledge. These 
distributions are highly skewed yet it is not clear 
why, or whether it has to be this way. Neither of 
these topics have attracted much attention to date. 

In conducting this work it became clear that 
there is a key trade-off between clustering and 
merging/amplification. While it is possible to 
produce many fewer subsets through more 
aggressive clustering this comes at the price of less 
generality. We do not claim to have identified the 
optimum position on this continuum and more work 
in this area would be useful. However, the current 
results are sufficient to support the on-going 
operational deployment of this approach in Zoea. 

By conceding that candidate solutions will only 
come from defined subsets of instructions we are 
accepting a compromise. We are willing to take any 

solution, potentially produced much faster, but there 
may be a small percentage of cases for which this 
approach might not succeed. More work will be 
required to quantify operational success in terms of 
generated solutions that meet the specification.  

Other approaches to producing instruction 
subsets and alternative clustering algorithms are 
possible. Some of these may produce smaller sets of 
subsets and/or deliver greater coverage. 

The authors believe that the results would also 
hold for other imperative programming languages. 
Most mainstream languages are very similar at the 
instruction level. Intuitively, the approach should 
also benefit different software development 
paradigms such as logic programming. Built-in 
predicates serve much the same role as instructions. 

The authors also believe that the code sample 
used should be representative of other code. The 
sample used was large and came from many 
different repositories. Additional verification with 
code from other hosting sites would of course be 
useful.  

Some instructions occur very frequently in the 
instruction subsets. One option would be to remove 
the most frequent instructions from the subsets and 
assume they always apply. This would have a 
dramatic effect on the size and number of the 
subsets. Since no clear boundary exists any 
threshold could be chosen. 

It is worth noting that instruction subsets are 
capable of generating many more programs than 
those from which they were derived. Also, lack of 
coverage does not mean that an equivalent program 
cannot be produced. There are many different ways 
to produce a functionally equivalent program – 
sometimes using different instructions. 

Some of the individual subsets provide much 
more program coverage than others. This 
information could be used to prioritise the 
assignment of cluster jobs to increase the probability 
that a solution is found early.  

This approach should be useful in any problem 
that involves searching a program configuration 
space. Integration should be a simple matter in any 
software that utilises a defined list of instructions. It 
is also worth considering whether a similar approach 
might be useful in domains beyond IP. 
Combinatorial problems are common as is the need 
to partition work within clusters. 

The current work considers subset construction 
as an offline activity. In operational deployment this 
could alternatively be a continuous process.  

The only information extracted from the input 
source code was an alphabetic list of instruction 
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names. In most cases these lists of instructions are 
not unique to the code they came from. Instead they 
are exceptionally common both as literal copies and 
also as subsets of one another. As such there can be 
no sense in which intellectual property rights or the 
terms of any license have been violated. 

6 CONCLUSIONS 

We have described a technique for partitioning the 
IP search space using instruction subsets. This 
enables us to distribute IP work across many 
computer cores by assigning each a distinct but 
overlapping subset of instructions. Testing suggests 
the subsets generalise quickly, particularly when 
they are merged. Cross-validation shows they should 
work well with unseen code. The approach 
significantly reduces the size of the search space. 
Any duplication of effort due to subset overlap 
quickly becomes insignificant as program size 
increases. We also believe that our approach is 
ethical and does not exploit open source developers. 
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