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Abstract: Blood Glucose (BG) prediction is an essential process for diabetes self-management. Many papers 
investigated the use of various machine learning techniques to design and implement BGL predictors. 
However, due to the complexity of glucose dynamics, single techniques do not always capture inter- and intra-
patient changes. On the other hand, ensemble learning and bagging ensembles in particular have been 
established to show better performance in many medical disciplines including diabetology. The aim of the 
present paper is to build BG predictors based on bagging in order to compare their performance to the accuracy 
of their underlying single techniques and to verify if a particular ensemble outperforms the others. An 
approach has been proposed to build bagged predictors based on five techniques: LSTM, GRU, CNN, SVR 
and DT. The models’ performance has been evaluated and compared at a prediction horizon of 30 minutes 
according to RMSE and CEGA. The results show that the performance of the constructed bagging ensembles 
is very comparable to their underlying single techniques except for regression trees. This can be attributed to 
the good accuracy of deep learning models but also to the non-stationarity of BG time series that need to be 
addressed before constructing the bootstrap samples. 

1 INTRODUCTION 

Diabetes Mellitus (DM) is a chronic disease caused 
by a disorder in the glucose metabolism leading to 
abnormal BG levels (World Health Organization, 
2019) that can be higher (Hyperglycemia) or lower 
(Hypoglycemia) than normal range: 70 mg/dl to 140 
mg/dl (3.9 mmol/L to 7.8 mmol/L). DM can be 
classified intro three main types: 1) Type 1 Diabetes 
Mellitus (T1DM) where pancreas does not produce 
enough insulin, 2) Type 2 Diabetes Mellitus (T2DM) 
where glucose is not used effectively and not moved 
out into cells and 3) Gestational Diabetes Mellitus 
(GDM) that can occur during pregnancy when 
placenta produces high levels of hormones impairing 
the action of insulin (World Health Organization, 
2019). 

When BG is not properly monitored and not 
maintained in the normal range, diabetic patients can 
face higher risks of complications including damage 
to blood vessels, cardiovascular diseases, blindness, 
kidney damage, coma, or even death (World Health 
Organization, 2019). Diabetic patients need to 
measure their BG level regularly in order to keep its 

values in normal ranges. This is performed either 
manually by self-monitoring blood glucose using 
sticks several times a day or automatically with 
Continuous Glucose Monitoring (CGM) sensors 
(Khadilkar et al., 2013).  

Forecasting future BG values is a crucial clinical 
task for diabetic patients to avoid hypo- and hyper-
glycemic episodes and to take appropriate actions in 
advance of time (Abraham et al., 2019). Machine 
learning techniques have been widely used in 
literature to design robust BG predictors based on a 
variety of techniques including Artificial Neural 
Networks (ANN), Support Vector Regressions 
(SVR), Decision Trees (DT) and Genetic 
Programming (GP) (Woldaregay et al., 2019). Given 
the complexity of the glucose dynamics, the adoption 
of one single technique to predict BG is not always 
able to capture inter- and intra-patients changes and 
can quickly show accuracy drop in case of context 
and environment changes (Wadghiri et al., 2022; 
Woldaregay et al., 2019). Ensemble learning, on the 
other hand, showed a promising improvement in BG 
predictors’ performance (Wadghiri et al., 2022). They 
are based on training multiple single techniques and 
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fusing them using combination schemes like 
averaging or applying specific meta-algorithms. 
Ensemble models were used in several medical fields 
like oncology (Hosni et al., 2019), endocrinology 
(Hong et al., 2020) and cardiology (Cuocolo et al., 
2019) where the constructed ensembles outperform in 
general the performance of the underlying single 
techniques. Many papers in literature used ensembles 
in diabetology especially for diabetes disease 
detection (EL Idrissi et al., 2019), but few studies 
considered the use of these techniques in BG 
prediction. 

The aim of the present paper is to investigate the 
application of bagging, a specific type of ensemble 
methods, in the prediction of BG in diabetic patients. 
A comparative study has been conducted in order to 
construct bagging-based ensembles using five 
different base learners: Long Short-Term Memory 
(LSTM), Gated Recurrent Unit (GRU), 
Convolutional Neural Network (CNN), Support 
Vector Regression (SVR) and Decision Trees (DT). 
The performance of the bagged ensembles will be 
evaluated and compared on 89 patients at a Prediction 
Horizon (PH) of 30 minutes.  

The rest of the paper is structured as follows: 
Section 2 presents the state of the art on using 
ensemble methods and bagging in BG prediction. 
Section 3 introduces the core concepts of bagging-
based ensembles. The used material and methods are 
presented in section 4. Section 5 relates and discusses 
the main results. Conclusion and future work are 
presented in section 6. 

2 LITERATURE SURVEY 

Many reviews have been published in the literature 
where studies dealing with the use of ML techniques 
in diabetes self-management and BG prediction in 
particular have been analyzed. (Woldaregay et al., 
2019) conducted a literature review of BG prediction 
using ML strategies in type 1 diabetes where 55 
papers published between 2000 and February 2018 
have been assessed and reviewed. They found out that 
blood glucose complexity is considered as a main 
challenge to achieve accurate BG predictors for every 
context and scenario. (Oviedo et al., 2017) presented 
a methodological review of models for predicting 
blood glucose by analyzing 140 papers published 
between 2010 and April 2016. A trend of model 
individualization has been observed where the 
reviewed models adopt an experimentation that 
adapts to a particular physiology and lifestyle of the 
patient. 

On the other hand, (Wadghiri et al., 2022) 
conducted a systematic literature review on the use of 
ensemble techniques in the prediction of BG in 
diabetic patients by assessing 32 papers published 
between 2000 and December 2020. The main 
findings were as following: 

1. A growing interest is being devoted to the use 
of ensemble learning in BG prediction, in particulate 
since 2018 as 75% of the reviewed papers have been 
published after this date. 

2. Homogeneous ensembles were investigated 
more than heterogeneous ensembles as they are easier 
to understand and interpret and simpler to implement. 

3. Many meta-algorithms have been used to 
construct ensemble-based BG predictors. Bagging is 
the most explored meta-algorithm mainly through 
Random Forests (RF). 

4. DT, ANNs, AR and SVR are the most 
combined base learners to build the ensemble 
regressors. Bagging was mainly used to combine DT-
based learners. 

5. Several combination schemes were explored 
but weighted and simple average were the most 
investigated. 

6. Statistical metrics were more used than 
clinical indicators to assess the performance of 
ensemble predictors. RMSE and CEGA were the 
most used statistical and clinical metrics respectively. 

7. No general conclusion on the best performing 
ensemble can be established as the ensembles were 
evaluated on different datasets and with distinctive 
metrics. 

3 BACKGROUND 

3.1 Ensemble Learning  

Ensemble learning is a machine learning approach 
that combines multiple base learners into one 
aggregated model using combination schemes. For 
that end, multiple learners are trained on the same 
problem and their results are combined to output a 
final result. The main objective of ensemble methods 
is to find a better variance/bias trade-off and improve 
the prediction accuracy. For that end, the base models 
should be accurate having a better estimation than 
baseline method and diverse making different errors 
in the same data point. 

Ensemble methods have recently become a 
popular machine learning approach since multiple 
studies found out that ensembles, in general, have a 
better performance accuracy than stand-alone trained 
single learners. Hansen and Salamon published an 
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article in 1990 (Hansen & Salamon, 1990) where they 
concluded that using an ANN-based classification 
ensemble highly outperforms the training of a single 
copy of the underlying ANN. More recently, models 
based on ensemble methods showed encouraging 
results in many international competitions and 
challenges for automated detection of liver cancer in 
whole-slide images - PAIP 2019 (Kim et al., 2021) -, 
for automated detection and grading of diabetic 
retinopathy - IDRiD (Porwal et al., 2020) - or for 
Ebola epidemic forecasting - RAPIDD (Viboud et al., 
2018) -. 

Ensemble methods can be classified into two 
categories. Homogeneous ensembles where one 
single learner is used either 1) with different 
configurations or datasets 2) or with a meta-algorithm 
combiner; and Heterogeneous ensembles where at 
least two different techniques are fused to construct 
the ensemble (Zhou, 2012). 

According to how the base learners are trained, 
two paradigms of ensemble methods can be 
identified: parallel ensemble techniques where base 
learners are computed in parallel. They are 
completely independent and the results of each 
learner is not influenced by the prediction of the rest 
of base learners. On the other hand, sequential 
ensemble techniques consist of base learners that are 
sequentially generated. The result of each single 
technique influences the computing of the next base 
learner (Zhou, 2012). 

3.2 Bagging Meta-Algorithm 

Bagging (Breiman, 1996) (abbreviation of Bootstrap 
Aggregating), is a parallel ensemble method that 
consists of training the same base learner on multiple  
bootstrap replicates of the training set. The outcomes  

 
Figure 1: Bagging meta-algorithm steps. 

of all the variations are then aggregated through 
simple averaging for regression or using votes for 
classification (Figure 1). 

The bagging process can be divided into three 
successive steps as follows:  

Step 1 - Bootstrapping: The first step of bagging 
consists of generating S samples of size B (called 
bootstrap samples) from an initial dataset of size N by 
random sampling with replacement B observations 
for each sample. The generated bootstraps should be 
representative (i.e., the full dataset should be large 
enough to have representative samples) and 
independent (i.e., N should be large enough compared 
to B so that samples are not correlated).  

Step 2 - Fitting case Learners on each Bootstrap 
Sample: Bagging as a parallel ensemble method aims 
to leverage the independence between the base 
learners (Zhou, 2012). For that end, the base learner 
is trained in parallel on each bootstrap sample 
obtained in the first step and outputs its single 
prediction value. 

Step 3: Aggregating the Predictions of Fitted Models: 
The final step is to aggregate the T predicted values 
using an aggregator function. Multiple aggregators 
can be used to obtain the final prediction value of the 
ensemble model for both regression and classification 
problems. Simple and weighted averaging can be 
used for regression problems, whereas majority 
voting (mode of the outputs) or soft voting (weighting 
outputs probabilities) can be applied for 
classification. 

3.3 Application of Bagging to Time 
Series Data 

Although successfully used in many classification 
and regression problems in the last years, only few 
studies addressed the application of bagging in time 
series forecasting (Petropoulos et al., 2018) before the 
work of (Bergmeir et al., 2016) in 2016. The main 
challenges encountered with bagging when applied to 
time series such as BG data lies in the bootstrapping 
process where autocorrelation need to be addressed in 
order to produce bootstrap samples with the same 
characteristics as the measured data. The sequence of 
values is an important aspect of time series and by 
sampling randomly without constraints, we destroy 
the time-dependency structure. Hence, the traditional 
bootstrapping method where independent and 
identically distributed (IID) bootstraps are 
constructed is not adapted for time series. 
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Many approaches have been published to 
overcome this problem. In the present paper, we will 
focus on Block Bootstrap algorithms (Kreiss & 
Lahiri, 2012) in order to create bootstrap samples. 
These techniques consist of resampling chunks of 
continuous observations instead of single ones by 
creating M blocks of length L. For a given number of 
timesteps PH representing the prediction horizon and 
a lookback of value LB representing the number of 
previous timesteps used to make the future 
predictions, a common value of the window length is 
PH+LB.  

Different block bootstrap implementations have 
been proposed in the literature. Considering a finite 
time series data sequence x1, x2, …, xn, we will only 
focus on the two most popular techniques in this 
comparative study: 

1) Moving Block Bootstrap (MBB) and consists of 
creating M blocks of size L using a sliding window. 
The window moves one step at the time to create 
successively each block as described in Figure 2. Once 
created, sampling with replacement is applied on the 
blocks to create bootstrap samples of length B. 

2) Non-overlapping Block Bootstrap (NBB) is similar 
to MBB except that the sliding window moves by L 
steps at the time to create each block. As illustrated in  

Figure 3, the idea is to produce non-overlapping 
blocks where the timesteps of each block are 
completely independent. 

 
Figure 2: Moving Block Bootstrap (MBB) process  
(PH=6 and LB=6). 

 
 

Figure 3: Non-overlapping Block Bootstrap (NBB) process 
(PH=6 and LB=6). 

4 MATERIAL AND METHODS 

4.1 Data 

The dataset used in this comparative study provided 
by the Diabetes Research in Children Network 
(Diabetes Research in Children Network - Public 
Site, n.d.). It consists of 113 subjects. After removing 
all healthy subjects and patients who withdraw from 
the study before inpatient stay or with a recording 
span of less than 12 hours of sensor measurement, we 
retained 89 patients with type 1 diabetes. Among 
these selected patients, 45 are female and 44 are male 
with an average age of 9.57 ± 4.06 years old. Each 
patient wore a CGM sensor, the Medtronics Minimed, 
between one and three days (i.e., zero, one, or two 
optional days before a required one-day hospital 
admission), where the BG concentration was 
recorded every 5 minutes. 

4.2 Evaluation Metrics 

The designed bagging ensembles are evaluated as 
personalized models where each ensemble is trained, 
tested and evaluated on each patient of the dataset. 
The overall performance for each evaluation metric is 
calculated as the average of all the values obtained for 
all the patients. 
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The prediction results were evaluated and 
compared according to two performance criteria 
consisting of one statistical metric and one clinical 
criterion respectively: 

1) Root Mean Squared Error (RMSE): Given  𝑦ො  as 
the predicted value, 𝑦 the measured value and N the 
size of samples, RMSE measures the error between 
the predicted BG and the original BG measured by 
the CGM sensor. It is calculated as: 

𝑅𝑀𝑆𝐸 ൌ ඩ1𝑁ሺ𝑦ො െ 𝑦ሻଶே
ୀଵ  

2) Clarke Error Grid Analysis (CEGA): A popular 
clinical indicator in BG prediction that evaluates the 
clinical acceptability of a predictor (Clarke et al., 
1987). It breaks down the measured and predicted 
glucose values into a scatter chart divided into five 
regions (A to E) as shown in Figure 4. Regions A and 
B are tolerable, Region C can lead to nonessential 
treatment, and Regions D and E are dangerous and 
can lead to wrong treatment. A clinically acceptable 
model must have the majority of its points inside A 
and B regions. The reported values in this study refer 
to the sum of values in A+B zones which correspond 
to the clinically acceptable predicted values. 

 

 
Figure 4: Clarke Error Grid Analysis. 

4.3 Methods 

As highlighted in the previous sections, the objective 
of this paper is to evaluate and compare the 
performance of bagging-based ensembles to the 
accuracy of their underlying base learners and to find 
out if any specific bagged ensemble shows a better 
performance than the rest of the models. As input, all 
the models have been supplied a lookback of six 
timesteps corresponding to 30 minutes of measured  
BG history. Afterwards, they were evaluated at PH = 

30 min which is equivalent to predicting the next six 
timesteps in future. 

4.3.1 Base Learners’ Design 

The first step of the experimental process is to build 
and train five BG predictors based on LSTM, GRU, 
CNN, SVR and DT respectively. These models will 
serve in further steps as base learners of the 
constructed ensembles. 

The LSTM model used in this paper is described 
in Figure 5 and consists of one input layer of six 
neurons representing the lookback’s timesteps, one 
LSTM layer of 32 cells, and one dense output layer 
with six neurons representing the six timesteps of the 
30-minutes’ prediction horizon. The adopted GRU 
model is very similar to the LSTM’s structure 
described above. As shown in Figure 6, it consists of 
one input layer of six neurons, one GRU layer of 32 
cells and one dense output layer of six neurons.  

Moreover, as described in Figure 7, the CNN 
model designed in this paper consists of one input 
later of six neurons, two convolutional layers with 
filters having dimension of 256 and a kernel size of 
two as window length, one maximum pooling layer 
of two pools, one flattening layer and finally one 
dense output layer of six neurons representing the 
prediction output. 

 
Figure 5: LSTM model architecture. 

 
Figure 6: GRU model architecture. 
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Finally, the SVR and DT base models were 
designed as simple multi-output regressors based on 
SVR and regression tree respectively. Linear kernel 
and C=1.0 were used as hyperparameters for the 
SVR-based model. 

 
Figure 7: CNN model architecture. 

4.3.2 Bagged Ensembles’ Design 

For each regressor described in the previous section, 
the next step is to construct and train 24 bagging-
based ensembles by varying the hyper-parameters 
presented in Table 1. The goal is to verify how the 
structure and the hyper-parameters of bagged models 
can impact the final performance results. 

Table 1: Bagging ensembles hyper-parameters space. 

Parameter Values space 
Number of estimators [5, 25, 50, 100] 
Block bootstrap 
algorithm [MBB, NBB] 

Size of the bootstrap 
samples 

[33%, 66%, 100%] of the 
input data 

5 RESULTS AND DISCUSSION 

The models have been evaluated at PH = 30 min using 
RMSE and CEGA as performance metrics. For each 
patient, 80% of the dataset was used for models’ 
training and the remaining 20% was used for testing. 
The best performing models are summarized in Table 
2 and Table 3 in terms of RMSE and CEGA 
respectively. 

For deep learning models, the best results are 
always achieved by single models for both RMSE and 
CEGA except for CNN where CEGA attained 
97.55% of values in A+B zones for a bagged 
ensemble of 5 learners, 100% of data as samples size 
and NBB as block-bootstrap algorithm when 
compared to the single learner that achieved a very 
comparable result of 97.21%. 

Table 2: Best configurations' performance in terms of 
RMSE. 

 LSTM GRU CNN SVR DT 

Single Learner 22.9 21.7 27.1 21.89 36.78 

E25-MBB-66% 24.79 24.07 29.37 21.8 29.66 

E100-MBB-
33% 25.23 24.72 29.68 21.84 28.70 

Table 3: Best configurations' performance in terms of 
CEGA. 

LSTM GRU CNN SVR DT 
Single 
learner 98.00 98.00 97.21 98.71 95.32 

E5-NBB-
100% 96.27 96.87 97.6 98.63 94.41 

E25-MBB-
33% 96.66 97.44 96.86 98.7 96.1 

E25-NBB-
100% 95.62 97.24 96.47 98.8 94.57 

For SVR-based models, a slight performance 
improvement has been observed with bagging. The 
best RMSE value of 21.835 mg/dl has been achieved 
for a bagged ensemble of 25 learners with 66% of data 
as samples size and MBB as block-bootstrap 
algorithm compared to the single learner that 
achieved an RMSE of 21.89 mg/dl. With regard to 
CEGA, a bagged ensemble of 25 SVR-based learners, 
100% as data size and NBB as block-bootstrap 
algorithm achieved the best performance of 98.84% 
of predicted points in A+B zones compared to the 
single SVR learner that attained a value of 98.71%. 
For DT-based bagging ensembles, a significant 
improvement has been observed compared to the 
single DT learner. With respect to RMSE, a value of 
28.72 mg/dl has been achieved by an ensemble of 100 
regression trees, 33% of data as samples size and 
MBB as block-bootstrap algorithm compared to the 
single learner that attained 36.78 mg/dl. Regarding 
CEGA, an ensemble of 25 regression trees, 33% of 
data as samples size and MBB as block-bootstrap 
algorithm reached a value of 96.14% of predictions in 
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A+B zones compared to the single regression tree that 
achieved 95.32%. 

Considering the above results, deep learning 
models as single techniques achieve better or similar 
performance values when compared to their bagged 
ensembles for both RMSE and CEGA metrics. A 
similar conclusion can also be inferred for SVR-
bagged ensembles even if certain ensembles slightly 
outperformed the single SVR technique for both 
RMSE and CEGA criteria. The observed 
performance improvement is not significant as the 
best evaluated bagging-based ensembles only 
improved the performance by 0.05 mg/dl and 0.13% 
in average in terms of RMSE and CEGA respectively. 
With regard to DT-based models, a more significant 
improvement (21.91%) of RMSE has been observed. 

In general, the results show that prediction 
performance using bagging ensembles, regardless of 
the hyper-parameters space, is very comparable to 
single model predictors and no significant 
improvement has been noticed except for DT. Many 
reasons defend this statement. First, bootstrapping in 
time series is very challenging as the non-stationarity 
and the autocorrelation must be taken into 
consideration when constructing the bootstraps. As 
pointed out by Petropoulos et al. (Petropoulos et al., 
2018), autocorrelation is addressed using block 
bootstrap algorithms such as MBB or NBB but non-
stationarity needs to be addressed as well before 
feeding data to the bagged ensemble. This can be 
achieved by applying a decomposition process to 
separate the time series into trend, seasonal and 
remainder components. Hence, the remainder can be 
considered as a stationary signal that can be used to 
construct the bootstrap samples instead of 
bootstrapping the original data. Another important 
aspect to consider with respect to deep learning 
models, is their good generalization ability that comes 
natively with neural networks and that makes them 
benefit less from ensemble methods as highlighted by 
Dietterich et al. (Arbib, 2002). Finally, the 
performance improvement observed with DT can be 
attributed to their low accuracy as single techniques 
in general that tend to be unstable due to their high 
variance. 

6 CONCLUSION 

Ensemble methods in general, and bagging in 
particular, are considered as serious candidates to 
build strong BG predictors since they tend to find a 
better variance/bias trade-off and therefore, improve 
the overall prediction performance. Through this 

comparative study, we built 120 bagged models for 
BG prediction based on five single models and by 
varying the number of estimators, the block-bootstrap 
algorithms and the size of bootstraps. The results 
show that the construction design adopted in this 
article tend to build bagged ensembles with a 
prediction performance very comparable to the values 
achieved by single models trained alone. Regarding 
deep learning models, it is generally observed that a 
less significant performance improvement is noticed 
after bagging in virtue of the native generalization 
ability of neural networks. However, the BG signal 
non-stationarity may present a limitation in building 
base learners with a good diversity. We intend in a 
future work to consider the effect of applying 
powerful transformations such as Box-Cox 
transformation in order to bring the series to a 
stationary state which can help in building more 
robust bagging predictors with higher diversity. The 
investigation of heterogeneous ensembles by 
combining learners with different techniques should 
also be considered as they benefit from built-in 
diversity. 
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