
Counting People in Crowds Using Multiple Column Neural Networks

Christian Massao Konishi and Helio Pedrini
Institute of Computing, University of Campinas, Campinas, Brazil

Keywords: Crowd Counting, Generative Adversarial Networks, Deep Learning, Activation Maps.

Abstract: Crowd counting through images is a research field of great interest for its various applications, such as surveil-
lance camera images monitoring, urban planning. In this work, a model (MCNN-U) based on Generative
Adversarial Networks (GANs) with Wasserstein cost and Multiple Column Neural Networks (MCNNs) is
proposed to obtain better estimates of the number of people. The model was evaluated using two crowd count-
ing databases, UCF-CC-50 and ShanghaiTech. In the first database, the reduction in the mean absolute error
was greater than 30%, whereas the gains in efficiency were smaller in the second database. An adaptation of
the LayerCAM method was also proposed for the crowd counter network visualization.

1 INTRODUCTION

Obtaining an adequate estimate of the number of peo-
ple present in an image has several practical appli-
cations. Counting a few tens of individuals is sim-
ple enough to be done manually, however, in large
crowds, such as public manifestations, musical events
and sporting events, using a crowd counting model
may not rarely be the only viable option, allowing
for better urban planning, event planning, and surveil-
lance of crowds.

An intuitive way to model an object counter is to
train a detector and, using it, determine the amount
present in the image (Li et al., 2008). However, these
models cannot adequately handle large densities of
people (Gao et al., 2020), because they rely on rec-
ognizing some body part, such as head or shoulders,
that may be partially occluded in a crowd. Other mod-
els (Zhang et al., 2016; Lempitsky and Zisserman,
2010) do not seek to detect and localize the position of
each person, they aim to calculate the quantity of ob-
jects in an image by estimating the density in a given
region of the image.

One difficulty in these models is dealing with vari-
ations in image conditions, such as lighting, density,
and size of the people. The use of a convolutional
neural network with filters of different scales, such
as a Multi Column Neural Network (MCNN) (Zhang
et al., 2016) is an alternative for these scenarios,
since it can handle variations in the size of people
in a single image and variations caused by differ-
ent image dimensions. On the other hand, a limita-

tion of the MCNN is that its output is a density map
of smaller height and width than the original image,
which causes information loss, inherent to the model
itself.

In this work, modifications to the MCNN were
proposed, both in terms of architecture and training,
aiming to obtain density maps that are more faithful
to the reference maps (ground truth). For this, in ad-
dition to the neural network that estimates the den-
sity of people in the image, a second network was
added, whose role is to evaluate the output of the first
one when compared to real densities. This approach
is an application of Generative Adversarial Networks
(GANs), more precisely, the Wasserstein-GAN (Ar-
jovsky et al., 2017), in the context of counting people
in crowds by density maps. The proposed model for
the estimator is based on an MCNN, but introduces a
series of modifications to improve the quality of the
output (Section 4), recovering the original image di-
mension and adding more possible connections be-
tween the various levels of the network.

2 RELATED CONCEPTS

The crowd counting problem consists in estimating
the number of people present in an image or a video.
Although other approaches exist (object detection, re-
gression), the most modern models have been based
on Fully Convolutional Networks (FCN) (Gao et al.,
2020), a class of Convolutional Neural Networks
(CNN) that does not feature densely connected layers.

Konishi, C. and Pedrini, H.
Counting People in Crowds Using Multiple Column Neural Networks.
DOI: 10.5220/0011704000003417
In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP, pages
363-370
ISBN: 978-989-758-634-7; ISSN: 2184-4321
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

363



2.1 Density Maps

A Full Convolutional Network is able to estimate the
number of people in an image of a crowd by produc-
ing a density map whose sum of all elements results in
the appropriate count (Figure 6). To train a network
capable of generating such maps, it is necessary to
produce ground truth values for the training images.

Given an image I, of dimensions M × N,
with k people, the position of each indi-
vidual is approximated to a single point,
such that the positions of the people are
P = {(x1,y2),(x2,y2),(x3,y3), . . . ,(xk,yk)}. Based
on this, a map H is defined with the positions of the
people.

H(x,y) =

{
1, if (x,y) ∈ P
0, otherwise

(1)

The density map is obtained by convolution oper-
ations, applying a Gaussian filter on H. The size of
the filter, as well as the value of σ, must be defined
and may vary along the image or not.

2.2 Activation Maps

Visualizing and understanding the behavior of a neu-
ral network is not a trivial task. When the problem
domain is images, it is possible to use the activation
map of some intermediate convolutional layer of the
network to observe the most important points for the
model decision, since these maps preserve the spatial
information.

In the image classification field, Grad-CAM (Sel-
varaju et al., 2017) is an algorithm capable of combin-
ing the activation maps and the gradients with respect
to a network output class, using Equation 2.

Mc = ReLU

(
∑
k

wc
k ·Ak

)
(2)

where wc
k is the average of the gradients with respect

to class c in channel k and Ak is the activation map of
a certain layer for channel k.

This approach, by weighting the activation maps
by aggregating the gradient per channel, tends to lose
the spatial information of the gradients. In deep lay-
ers in a classification network, activation maps usu-
ally have reduced height and width, which mitigates
this problem. But in shallower layers or in networks
that do not have such reduced activation maps, the
LayerCAM (Jiang et al., 2021) algorithm is more ap-
propriate (Equation 3).

Mc
i j = ReLU

(
∑
k

ReLU(gkc
i j ) ·Akc

i j

)
(3)

where gkc
i j is the gradient at position i j of channel k of

the activation map for class c. Note that this equa-
tion preserves the spatial information of the gradi-
ent and will be more appropriate for dealing with the
MCNN. For this, instead of calculating the gradient
for a class c, considering that the present problem is
crowd counting, it is more appropriate to use the gra-
dient of the summation of the output density map of
the neural network.

3 RELATED WORK

Recent crowd counting approaches are heavily based
on techniques to estimate the count of people in im-
ages through the density maps, Lempitsky and Zisser-
man (Lempitsky and Zisserman, 2010) were the first
to apply the method. When compared to previous ap-
proaches, the proposed density maps stand out, since
the other possibilities were (i) counting by object de-
tection, which does not work well in partial occlusion
and high density situations; (ii) counting by regres-
sion, which maps the images to a real number, the
output of the model being the amount of people itself,
this approach fails to utilize the spatial information,
since the output of the network and the ground truth
value are one-dimensional. In this sense, the density
map solves both problems and therefore became the
most employed technique.

The multiple column architecture for crowd
counting was proposed by Zhang et al. (Zhang et al.,
2016), in order to handle variations in the scale of
the people present in the image. The work originally
featured 3 columns, but this value can be modified.
Quispe et al. (Quispe et al., 2020), for example, stud-
ied the use of several multi-column neural networks
– varying the number of columns from 1 to 4 – and
different Gaussian filters of fixed and variable sizes,
proposing their own method to define the Gaussian fil-
ter used to generate the ground truth values for train-
ing.

4 METHODOLOGY

In this section, the methods employed in the ex-
periments performed in this work are presented,
containing information about the databases, algo-
rithms, and architectures employed in the tests.

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

364



4.1 UCF-CC-50

One of the crowd counting databases used in this work
is the UCF-CC-50 (Idrees et al., 2013). The database
consists of 50 images of crowds of varying densities,
with extremely dense regions (Figure 1) and annota-
tions for each person’s position.

Figure 1: Example of an image from the UCF-CC-50. It is
possible to observe how the image presents people density
variation, with regions of extreme concentration.

Due to the scarcity in the amount of images, the
5-fold cross-validation strategy was employed, divid-
ing the original set into 5 groups, taking 4 groups for
training and 1 for testing, repeating the procedure for
each possible training and testing split. The results
presented comprise the average of the efficiencies in
each of the 5 folds, as well as the standard deviation.

4.1.1 Data Augmentation

Data augmentation processes were employed to ex-
pand the amount of data available for training in each
fold. The strategies aimed to reproduce the results ob-
tained by Quispe et al. (Quispe et al., 2020) and were
retained for later testing, allowing direct comparison
of models. Three forms of data augmentation were
adopted: (i) using a sliding window of 256×256 pix-
els, which scrolls through the images with a step of
70 pixels, cropping the new figures; (ii) adding Gaus-
sian noise (zero mean and variance 0.1) in half of
the images generated in the previous step and impul-
sive noise (with 4% probability of affecting a pixel) in
the other half, doubling the amount of samples; (iii)
changes in the illumination conditions (Equation 4)
of the images available after (ii), again doubling the
amount of images. The original images themselves
were not used.

f ′ =

{
fi +10, if i é even
1.25 fi −50, otherwise

(4)

where f ′ is the output image and fi is the i-th image
available after step (ii).

4.2 ShanghaiTech

The ShanghaiTech database (Zhang et al., 2016) has
1198 images, split into two parts. The first, Part A
contains 482 images obtained through the Internet,
separated into training and testing, while Part B is

composed of images obtained from streets of Shang-
hai (Figure 2).

(a) Part A (b) Part B

Figure 2: Examples of images extracted from the two parts
of the ShanghaiTech database.

4.2.1 Data Augmentation

The procedures used to prepare the ShanghaiTech
images were different from those adopted for the
UCF-CC-50, in general, the process sought inspira-
tions from the original work of Zhang et al. (Zhang
et al., 2016), but adaptations were necessary to deal
with some constraints imposed by the proposed model
(Subsection 4.3). In short, the images must have
the dimensions of 256×256 pixels during the training
process, a condition that allows the mini-batch pro-
cessing and the use of the critical network.

The general idea of this data augmentation pro-
cess consists of making 5 cutouts of the original im-
age, one for each corner of the figure and a central
one, each cutout with the dimensions of 512×512. In
addition, for each one of the 5 new images, a horizon-
tal flip was made, totaling 10 copies. Then, each of
the images was resized to 256×256 pixels, reaching
then the desired dimension for training.

There is a rare but actually occurring case at the
database, when an image has a height or width less
than 512 pixels, in which case the cropping process
would fail. To handle this case, images with height or
width less than 614 pixels – about 120% of 512 pixels
– were resized to have at least this amount of pixels
in their dimensions, but keeping the same proportion
of height and width, avoiding distortions. Once this
treatment was done, the procedure as described above
was applied normally. Some examples of the results
can be visualized in Figure 3.

(a) Part A (b) Part B

Figure 3: Examples of images extracted from the two parts
of the ShanghaiTech database after the data augmentation
process.

For the test images, it is not necessary to have the
dimensions of 256×256 pixels, so it was just resized,

Counting People in Crowds Using Multiple Column Neural Networks

365



halving the amount of pixels in height and width, in a
similar way to training.

4.3 Neural Network Architectures

The model used has two deep neural networks –
just as in a standard GAN model –, these being the
critical network (Figure 4) and a multi-channel neu-
ral network, which will be referred to as MCNN-U
(Figure 5), which is analogous to the generative net-
work of a Wasserstein-GAN, but whose input is a
monochromatic image rather than noise, as well as
using transposed convolutions to preserve the dimen-
sion of the density map and skip connections to in-
crease the complexity of the model, differentiating it
from previous (Quispe et al., 2020) models.

The MCNN employed is composed of 4 columns
– referred to as U-columns – of different filter sizes
(Figure 5). Each column consists of convolution and
max pooling operations that reduce the size of the ac-
tivation map, followed by transposed convolution op-
erations that recover the original map size (upscale).
In addition, skip connections have been added con-
necting the convolutional layers and the upscale lay-
ers, allowing the architecture to combine activations
from different depths of the network. It is worth men-
tioning that the 1×1 convolutions used in the skip
connections were employed with the purpose of re-
ducing the amount of transmitted channels, which
would make the model heavier, moreover, without
this reduction there would be more data from shallow
layers than deep layers.

4.4 Density Maps

The task of the MCNN-U is to produce a density map
whose summation corresponds to the amount of peo-
ple in the image. To produce the ground truth values,
given an image of dimensions M×N, a null matrix of
the same size is created. At the position of each per-
son, the value 1 is placed in the matrix, and finally, a
convolution is performed with a Gaussian filter (Fig-
ure 6), with dimensions 15×15, σ = 15.

4.5 Cost Function

The cost function used for training the described
neural networks can be divided into two parts, one
that corresponds to the basic goal of decreasing the
distance between the output of the MCNN-U – the
MCNN-U network will be denoted G, hence the out-
put of G for an image I is denoted G(I) – and the
ground truth value (gt); and another part that con-
cerns the Wasserstein cost of the adversarial network

model. The critical network will be denoted as C.
The distance between the density distribution

maps is given by the root mean square error of the
matrix values:

LMSE =
1
m

m

∑
i=1

1
MN

M

∑
x=1

N

∑
y=1

[G(Ii)(x,y)−gt(x,y)]2

(5)
where M is the width and N is the height of the density
map, while m is the size of the batch.

On the other hand, the Wasserstein cost for the
generative network is given by:

LW =− 1
m

m

∑
i=1

C(G(Ii)) (6)

Combining the two costs gives the cost of the gen-
erative network:

LG = LMSE +αLW (7)

α being a hyperparameter to be decided.
The cost for the critical network is given by:

LC =
1
m

m

∑
i=1

C(gti)−
1
m

m

∑
i=1

C(G(Ii)) (8)

The method goal is to minimize the value of LG
and maximize that of LC.

4.6 Test Configuration

This subsection presents how the training and model
evaluation were conducted. Different versions of the
model with variations in hyperparameters were eval-
uated, but only the final version will be presented in
this summary.

The Wasserstein cost was applied through the
value of α = 3,500 (Equation 7). In addition, the den-
sity maps were multiplied by 16,000. For each one
of the UCF-CC-50 training sets, 1,000 epochs were
run, with a batch size of 32 images. For ShaghaiTech,
Parts A and B, the value of 1,500 epochs was em-
ployed, with a batch size of 64 images.

The Rectified Adam (Liu et al., 2020) optimizer
was adopted, with learning rate lr = 1 · 10−4, β1 =
0.9 and β2 = 0.999. The value of ncritic, that is, the
number of times the critical network receives data and
is optimized for each pass through of the generative
network, was set to 3.

The algorithms were all executed using virtual
machines from Google Colaboratory. The machines
typically provide one core of an Intel Xeon (variable
model), about 12 GB of RAM and a graphics process-
ing unit (GPU) that can vary between an Nvidia Tesla
K80, an Nvidia Tesla P100 or an Nvidia Tesla T4.

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

366



Input Image 
1x256x256

Conv
1,4,64

Input channels, 
Filter size, 

Output channels

Conv 
64,4,64

Conv
64,4,128

Conv 
128,4,256

Conv 
256,4,512

Conv 
512,4,512

Dimensions

Conv 
512,4,1 Evaluation

Figure 4: Critical network architecture. The activation function used is the leaky ReLU (α = 0.02) and the convolutions have
parameters 4, 2 and 1 for the size of the kernel, stride and padding, respectively, the batch normalization technique is also
employed. The output layer has no activation function and the convolution has parameters 4, 1 and 0.

U-Column

MCNN-U

Fusion
Block

U-Column 
K = 9 

C = 12

U-Column 
K = 7 

C = 16

U-Column 
K = 5 

C = 20

U-Column 
K = 3 

C = 24

Input Image 
1xMxN

Density Map 
1xMxN

Dimensions

Input Image 
1xMxN

Conv
C,K,2C

Conv
2C,K,C

Conv 
C,K,C/2

Conv 
C,K,C/4

Conv
1,(K+2),C

Pooling

Pooling

Input channels, 
Filter size, 

Output channels

Upscale

Conv 
2C,1,C/2

Conv
C/2,K,C/4

Upscale

Conv
C,1,C/4

Output
C/4xMxN

Concanated U-Column
outputs 
18xMxN

Conv 
18,1,18

Conv
18,3,9

Conv 
9,3,4

Conv 
4,3,1

Density Map 
1xMxN

Fusion Block

Figure 5: MCNN-U Description. The tensor dimension is represented in the format <channels>×<width>×<height>, while
the convolutions, in the format <input channels>, <kernel size>, <output channels>, using an appropriate padding to maintain
the dimensions of the activation map; each convolution is followed by a ReLU activation function, except for the output layer.
The max pooling operation is used to halve the height and width dimensions, while upscale recovers the original dimension
with transposed convolutions with a kernel size = 2, stride = 2 and zero padding. 1×1 convolutions were used in the skip
connections to decrease the amount of transmitted channels.

Figure 6: Visualization of the density distribution map as a
heat map, overlaid with its original image, for the UCF-CC-
50 database.

4.7 Performance Metrics

To measure the performance (effectiveness) of the
tested networks, the sum of the density map of the
output of the generative network is compared with the

map generated through the Gaussian filter. To quan-
tify the difference between the two counts, two mea-
sures were employed:

• Mean absolute error:

MAE =
1
N

N

∑
i=1

∣∣cnti − cnt ′i
∣∣ (9)

• Root mean square error:

RMSE =

√
1
N

N

∑
i=1

(cnti − cnt ′i)
2 (10)

where N is the number of images in the test set, cnti is
the correct count of people in image i, and cnt ′i is the

Counting People in Crowds Using Multiple Column Neural Networks

367



(a) Original image (b) Ground truth (c) MCNN-U (fold 2)

(d) Original image (e) Ground truth (f) MCNN-U fold 3)

Figure 7: Visualization of the density maps produced using the ground truth values and the MCNN-U for the UCF-CC-50
database.

Table 1: Efficiencies obtained by the MCNN-U model.

Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average Standard Deviation
MAE 424.5566 204.7662 197.8882 229.6904 225.2515 256.4306 84.9117
RMSE 709.0030 294.2144 323.6123 321.3106 345.6961 398.7673 155.9756

count made from the neural network output. Note that
these values only evaluate the count result and not the
content of the density distribution maps themselves.

For the UCF-CC-50 case in particular, the two
metrics are calculated for each of the 5 folds, and the
final result is given by their average. The standard
deviation was also calculated, as it represents how
homogeneous the model’s effectiveness was for each
fold.

5 EXPERIMENTAL RESULTS

The ground truth density maps and those produced
by the MCNN-U for the same image can be viewed
by placing them side by side for comparison purposes
(Figure 7). In the upper figures, the network result
seems to match what was expected, but in the back-
ground, some regions of high density of people were
not identified – which can also be confirmed in Fig-
ure 8. In the lower images, a more critical case is
presented, with a large number of false positives in
the tree leaf region.

Table 2: Comparison of the effectiveness achieved by the
MCNN-U in the UCF-CC-50 database in relation to other
models in the literature.

Model Mean Mean
MAE RMSE

MCNN (Zhang et al., 2016) 377.6 509.1
MSNN3 (Quispe et al., 2020) 374.0 554.6
CP-CNN (Sindagi and Patel, 2017) 295.8 320.9
MCNN-U 256.4 398.8
CAN (Liu et al., 2019) 212.2 243.7

(a) Column 0 (b) Column 1

(c) Column 2 (d) Column 3

Figure 8: Visualization of the activation maps for each of
the columns of the MCNN-U in the UCF-CC-50 database,
column 0 (a) being the one with the largest filter size, and
column 3 (d) being the smallest. A Gaussian filter was ap-
plied to the LayerCAM output to improve the map visual-
ization.

Using the LayerCAM described previously, it is
possible to independently observe the behavior of
each column of the MCNN-U (Figure 8). It is notice-
able that each column was more (or less) activated
in different regions of the image, due to the varia-
tion in density of people, column 0 was not activated,
while column 1 and especially column 3 focused on
the region of higher density, while column 2 identi-
fied the larger people, with emphasis on the region
of the heads. The results obtained after training the
MCNN-U on the UCF-CC-50 database, for the hyper-
parameters defined in Subsection 4.6 were compiled
in Table 1, separated by fold.

The effectiveness of the model was relatively con-
stant across all but the first fold. This pattern was

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

368



Table 3: Comparison of the effectiveness achieved by the MCNN-U in the ShanghaiTech database in relation to other models
in the literature.

Model
Part A Part B

Mean Mean Mean Mean
MAE RMSE MAE RMSE

MSNN4 (Quispe et al., 2020) 163.4 242.7 34.5 57.7
MCNN (Zhang et al., 2016) 110.2 173.2 26.4 41.3
MCNN-U 105.5 152.4 18.3 30.0
CP-CNN (Sindagi and Patel, 2017) 73.6 106.4 20.1 30.1
CAN (Liu et al., 2019) 62.3 100.0 7.8 12.2

repeated throughout previous model tests, this being
the most challenging partition of the database, possi-
bly due to the high density of the test images. In order
to be able to evaluate the effectiveness achieved by
MCNN-U, the performance metrics were compared
with other results from the literature (Table 2).

The efficiency obtained represents a leap when
compared to the original MCNN, demonstrating that
the modifications applied were indeed appropriate to
the model. In relation to the approaches of the lit-
erature, the results were competitive, but more com-
plex approaches that seek to evaluate the image con-
text obtained higher efficiencies, which may, on the
other hand, result in more complex training.

For the ShanghaiTech database, on the other hand,
Part A has images with people densities comparable
to the UCF-CC-50 database, while Part B, despite
having photos of busy streets, the people counts are
generally lower, with considerable portions of the im-
ages without people. It is especially interesting to ob-
serve the behavior of the MCNN-U for these cases of
less dense images (Figure 9).

(a) Column 0 (b) Column 1

(c) Column 2 (d) Column 3

Figure 9: Visualization of the activation maps for each
one of the MCNN-U columns in the ShanghaiTech Part B
database, column 0 (a) being the largest filter size, and col-
umn 3 (d) being the smallest. A Gaussian filter was applied
to the LayerCAM output to improve the visualization of the
map.

It can be seen in this case that, unlike the acti-
vations for UCF-CC-50, here all columns were acti-
vated for some part of the image, while in Figure 8,

the column with the largest filter was not activated.
One concern that existed was that many false pos-
itives would occur in the empty regions of the im-
age, but looking at this result and others, this does not
seem to be the case. Still on Part B, training on this
database was considerably more unstable than Part A,
or any other fold of the UCF-CC-50, with the cost
function showing sudden spikes during training (Ta-
ble 3). Whether this was caused by a numerical insta-
bility of the RAdam optimizer or whether it is an in-
trinsic characteristic of the model combined with the
database, defining a space with many local minima, is
still an uncertain aspect, further tests with other con-
figurations of the optimizer are needed.

Unlike what was observed with the UCF-CC-50
tests, the increase in efficiency obtained with the
MCNN-U when compared to the MCNN model was
considerably lower, especially in Part A. A possible
reason for this difference lies in the data augmenta-
tion process. In fact, the model of Zhang et al. was
trained under different conditions, the data treatment
was not the same, as well as the training process. The
main difference would be in the fact that the MCNN
was trained one image at a time, without mini-batch,
and this allows the training images to have different
dimensions, for example. Other factors such as opti-
mizer settings may also affect, and the fact that Part
B training was more unstable, as mentioned earlier,
may point in the direction that the data augmenta-
tion process or the ShanghaiTech training guidelines
themselves need more adjustment for MCNN-U.

6 CONCLUSIONS

The effectiveness obtained by the MCNN-U was con-
siderably higher compared to the original MCNN in
the best case scenario. The proposed changes to the
model were tested incrementally and the experiments
with ShanghaiTech Part B indicated that there is room
for improvement in the model in terms of stability,
possibly with further testing on other optimizers or
by adding modifications to the network to achieve
smoother convergence.

Counting People in Crowds Using Multiple Column Neural Networks

369



REFERENCES

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasser-
stein Generative Adversarial Networks. In Precup, D.
and Teh, Y. W., editors, 34th International Confer-
ence on Machine Learning, volume 70, pages 214–
223. PMLR.

Gao, G., Gao, J., Liu, Q., Wang, Q., and Wang, Y. (2020).
CNN-based Density Estimation and Crowd Counting:
A Survey. arXiv preprint arXiv:2003.12783, pages 1–
25.

Idrees, H., Saleemi, I., Seibert, C., and Shah, M.
(2013). Multi-source Multi-scale Counting in Ex-
tremely Dense Crowd Images. In IEEE Conference
on Computer Vision and Pattern Recognition, pages
2547–2554.

Jiang, P.-T., Zhang, C.-B., Hou, Q., Cheng, M.-M., and Wei,
Y. (2021). LayerCAM: Exploring Hierarchical Class
Activation Maps for Localization. IEEE Transactions
on Image Processing, 30:5875–5888.

Lempitsky, V. and Zisserman, A. (2010). Learning to Count
Objects in Images. Advances in Neural Information
Processing Systems, 23:1324–1332.

Li, M., Zhang, Z., Huang, K., and Tan, T. (2008). Estimat-
ing the Number of People in Crowded Scenes by Mid
based Foreground Segmentation and Head-shoulder
Detection. In 19th International Conference on Pat-
tern Recognition, pages 1–4. IEEE.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J.,
and Han, J. (2020). On the Variance of the Adaptive
Learning Rate and Beyond. In Eighth International
Conference on Learning Representations, pages 1–14.

Liu, W., Salzmann, M., and Fua, P. (2019). Context-Aware
Crowd Counting. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 5099–5108.

Quispe, R., Ttito, D., Rivera, A., and Pedrini, H. (2020).
Multi-Stream Networks and Ground Truth Generation
for Crowd Counting. International Journal of Electri-
cal and Computer Engineering Systems, 11(1):33–41.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-CAM: Vi-
sual Explanations From Deep Networks via Gradient-
Based Localization. In IEEE International Confer-
ence on Computer Vision, pages 618–626.

Sindagi, V. A. and Patel, V. M. (2017). Generating High-
Quality Crowd Density Maps Using Contextual Pyra-
mid CNNs. In IEEE International Conference on
Computer Vision, pages 1879–1888.

Zhang, Y., Zhou, D., Chen, S., Gao, S., and Ma, Y. (2016).
Single-image Crowd Counting via Multi-column Con-
volutional Neural Network. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 589–
597.

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

370


