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High-speed and accurate human recognition is necessary to realize safe autonomous mobile robots. Recently,
human recognition methods based on deep learning have been studied extensively. However, these methods
consume large amounts of power. Therefore, this study focuses on the Gaussian mixture model of multiresolu-
tion co-occurrence histograms of oriented gradients (GMM-MRCoHOG), which is a feature extraction method
for human recognition that entails lower computational costs compared to deep learning-based methods, and
aims to implement its hardware for high-speed, high-accuracy, and low-power human recognition. A digital
hardware implementation method of GMM-MRCoHOG has been proposed. However, the method requires
numerous look-up tables (LUTs) to store state spaces of GMM-MRCoHOG, thereby impeding the realization
of human recognition systems. This study proposes a LUT reduction method to overcome this drawback by
standardizing basis function arrangements of Gaussian mixture distributions in GMM-MRCoHOG. Experi-
mental results show that the proposed method is as accurate as the previous method, and the memory required
for state spaces consuming LUTs can be reduced to 1/504th of that required in the previous method.

1 INTRODUCTION

The demand for home service robots (Iocchi et al.,
2015) (Yamamoto et al., 2019) (Ono et al.,
2022) (Yoshimoto and Tamukoh, 2021) and self-
driving cars (Gupta et al., 2018) (Fei et al., 2021) (Bo-
jarski et al., 2016) has been increasing owing to
the accelerating aging of society and the declin-
ing birthrate. High-speed and high-accuracy human
recognition processing is required for realizing safe
autonomous mobile robots that can coexist with hu-
mans. Currently, most human recognition implemen-
tation systems are based on deep learning (Hinton
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et al., 2006) (Lecun et al., 1998) (Krizhevsky et al.,
2012) (Redmon et al., 2016) (Redmon and Farhadi,
2018) (Bochkovskiy et al., 2020) using graphics pro-
cessing units (GPUs), which can achieve state-of-the-
art accuracy with real-time processing. However, they
have the disadvantages of high power consumption
and considerable heat generation, making it difficult
to implement these systems in robots. A dedicated
hardware implementation is one of the solutions for
these problems. Furthermore, a low computational
cost algorithm, unlike deep learning-based methods
that incur high computational costs, is desirable be-
cause of limited hardware resources in mobile robot
systems.

Several studies have adopted hardware implemen-
tation for high-speed and low-power robot systems.
For example, Ishida et al. proposed hardware in-
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Figure 1: Luminance gradient co-occurrence histograms for
state spaces in MRCoHOG.

telligent processing accelerator based on a field pro-
grammable gate arrays (FPGA) (Ishida et al., 2020).
Tanaka et al. proposed a brain-inspired artificial in-
telligence model based on FPGAs for home service
robots (Tanaka et al., 2020). Both studies proposed
hardware-oriented algorithms that reduced computa-
tional costs.

For human recognition, Takemoto et al. (Take-
moto et al., 2022) utilized a hardware implementation
of the Gaussian mixture model-multiresolution co-
occurrence histograms of oriented gradients (GMM-
MRCoHOG) algorithm (Higashi et al.,, 2018)
(Nagamine et al., 2021), which performs human
recognition with lower computational costs compared
to deep learning-based methods. GMM-MRCoHOG
is a derivative algorithm of MRCoHOG (Iwata and
Enokida, 2014) that extracts useful features for hu-
man recognition by accumulating luminance gradient
co-occurrence into a histogram in each block of an
image, called a state space, as shown in Figure 1.
GMM-MRCoHOG optimizes the state space by ap-
proximating the histogram with a Gaussian mixture
distribution, as shown in Figure 2. It uses less mem-
ory and is more accurate than MRCoHOG.

Takemoto ef al. proposed a hardware-oriented al-
gorithm for embedded systems that reduces the hard-
ware resources required by simplifying complex op-
erations in the original GMM-MRCoHOG algorithm.
However, this method still requires many look-up ta-
bles (LUTs) to store state spaces. The state space
shape differs for each block as each state space is con-
structed with a Gaussian mixture distribution; there-
fore, many LUTs may be required based on the to-
tal number of blocks. LUT reduction is necessary to
achieve scalable human recognition systems because
the number of LUTs required increases as the image
size increases.
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Figure 2: Gaussian mixture distributions for state spaces in
GMM-MRCoHOG.

Therefore, we propose an LUT reduction method
wherein basis function arrangements of Gaussian
mixture distributions of the GMM-MRCoHOG state
spaces are standardized. The number of LUTs can
be reduced by aggregating the features of all blocks
into a single space and constructing a single Gaussian
mixture distribution for all state spaces.

2 RELATED WORKS

2.1 MRCoHOG

MRCoHOG, a derivative algorithm of HOG (Dalal
and Triggs, 2005), downsamples images in two steps,
as shown in Figure 1, and extracts features by repre-
senting the luminance gradient co-occurrence among
images of three resolutions as a two-dimensional his-
togram. For example, if the dataset image size is
32 x 64 pixels, the number of blocks at each resolu-
tionis 8§ x4=32,4x2=8,and2x 1=2.

For reducing computational cost, pairs of co-
occurrence gradients, called offsets, are limited to 36
pairs of a pixel of interest and its four neighboring
pixels among three resolutions, as shown in Figure 3.
However, methods that use histograms as features,
such as HOG, require designers to discretize the lu-
minance gradients; the discretization error of gradient
information and feature generalization ability depend
on the class width. Manually determining the optimal
class width is difficult.
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Figure 3: Luminance gradient co-occurrence accumulation
of the MRCoHOG algorithm.

2.2 GMM-MRCoHOG

To solve the problem of optimal class width
determination in MRCoHOG, GMM-MRCoHOG
autonomously constructs luminance gradient co-
occurrence histograms as state spaces by approximat-
ing them using Gaussian mixture distributions and
then extracts input image features based on the dis-
tributions.

Figures 4 (a) and (b) show a state space deci-
sion process using positive and negative data in the
training phase of GMM-MRCoHOG. Luminance gra-
dients of a training image are discretized in 36 di-
rections, and the gradient co-occurrence is plotted in
state spaces for the positive and negative data. Then,
the positive and negative data distributions are ap-
proximated via Gaussian mixture distributions. Next,
the Jensen-Shannon (JS) divergence, a measure of the
difference between two probabilities of occurrence, is
used to generate a new Gaussian mixture distribution
that separates the positive and negative data distribu-
tions in a single space (Michishita et al., 2018). An
absolute value of the JS divergence increases as the
shapes of the two Gaussian mixture distributions dif-
fer. Some data distributions that strongly characterize
both positive and negative data are obtained by ex-
tracting areas with high absolute values from the two
Gaussian mixture distributions. For this, the inver-
sion method, a random number generation method,
is used to generate samples based on the JS diver-
gence of the positive and negative Gaussian mixture
distributions, resulting in several samples tending to
be in areas with a strong bias toward either positive
or negative data. Then, the EM algorithm (Dempster
et al., 1977) is used to approximate the distribution to
a Gaussian mixture distribution.

The generated Gaussian mixture distribution is
used for feature extraction. Figure 5 illustrates the
process of feature extraction from an input image dur-
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Figure 4: State space decision process in GMM-
MRCoHOG.
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Figure 5: Feature extraction process in GMM-MRCoHOG.

ing the inference phase of GMM-MRCoHOG. The
feature value of an input luminance gradient pair is
represented as responsibility of basis functions of the
Gaussian mixture distribution. In GMM-MRCoHOG,
the number of feature dimensions is determined by
the number of basis functions of the Gaussian mixture
distribution and does not depend on the class width.
The number of basis functions is also called the num-
ber of Gaussian mixture distribution mixtures.

The number of mixtures of Gaussian distributions
differs among blocks because the algorithm indepen-
dently optimizes a state space for each block. In MR-
CoHOG, memories to store 64 bins are allocated for
every block when using 8 x 8 histograms. Conversely,
some state spaces may have a small number of basis
functions when an optimal state space is configured
for each block, as in GMM-MRCoHOG. Thus, mem-
ory utilization for state spaces can be reduced. Fur-
thermore, Gaussian mixture distributions also allow
enable more precise representation of features than
histograms, and GMM-MRCoHOG is more accurate
than MRCoHOG.
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2.3 Hardware-Oriented
GMM-MRCoHOG

A hardware-oriented algorithm that simplifies com-
plex operations in the original algorithm is nec-
essary for the high-speed and low-power hard-
ware implementation of GMM-MRCoHOG. Take-
moto et al. proposed a hardware-oriented GMM-
MRCoHOG (Takemoto et al., 2022), which is a sim-
plified version of GMM-MRCoHOG, for FPGA im-
plementation. In the algorithm, the luminance gra-
dient computation in 36 directions includes complex
operations, such as divisions and nonlinear function
calculations, and is simplified using a coarse an-
gle computation method based on a fixed-point tan®
comparison table. Additionally, they designed a hu-
man recognition architecture using the simplified al-
gorithm and pipeline processing.

This section describes the coarse angle calcula-
tion method in detail. An original angle calculation
in GMM-MRCoHOG includes tan~' 6 to compute a
luminance gradient angle 6 from horizontal and verti-
cal luminance gradients f; and f,, respectively. Con-
versely, in the coarse angle calculation method, as-
suming that angle 6 appears in the first quadrant, dis-
cretized tan®(6 = 0, 10, ...,80) are calculated in ad-
vance, and a tan® comparison table is constructed
based on the relationship between the luminance gra-
dient f,/ f, and the discretized tan®, as in Eq. (1). The
second to fourth quadrants can be calculated similarly
using the symmetry of trigonometric functions.

if tan0° < ?<tan 10°

X
direction = 1(8: 0° ~ 10°)
elif tan10° < ?<tan20o

X

direction =2(8: 10° ~ 20°) (D

I3

X

elif tan80° <

direction = 9(8 : 80° ~ 90°)

Additionally, the division in Eq. (1) is eliminated
for simplifying the algorithm to reduce the hardware
resources required. The tan© comparison table shown
in Eq. (1) can be replaced with that shown in Eq. (2)
because f, > 0and f, > 0.

if fr xtan0° < f,<fi x tan10°

direction = 1(6: 0° ~ 10°)

elif fr xtan10° < f,<f x tan20°
direction =2(8: 10° ~ 20°) )

elif fi xtan80° < f,
direction = 9(0 : 80° ~ 90°)

Finally, the tan® comparison table is approxi-
mated using the fixed-point numbers, and the mul-
tiplication in Eq. (2) is replaced with a combination
of bit-shift and additional operations, which requires
fewer resources than floating-point multiplications.

However, this method still requires many LUTs
to store state spaces because the state space shapes
differ among blocks owing to the characteristics of
the Gaussian mixture distribution. Specifically, the
number of state spaces is 504 in the case of the same
parameter setting as that in Section 2.1; the numbers
of blocks in the images of three resolutions are 32,
8, and 2, and the number of offsets is 12. Take-
moto et al. synthesized the hardware-oriented GMM-
MRCoHOG using Vivado HLS 2018.2, and the cir-
cuit consumed 27,331 LUTSs, which is more than 50%
of LUTs available in an XC7Z020 FPGA on Xil-
inx ZedBoard (53,200 LUTs are available), limiting
the implementation of multiple systems in an FPGA.
Moreover, larger images are expected to be input ow-
ing to the recent camera performance improvements
despite the input image size used in the study being
32 x 64 pixels, resulting in an increased number of
blocks. Therefore, a LUT reduction method for the
hardware-oriented GMM-MRCoHOG is required for
system scalability.

3 PROPOSED METHODS

As a first step to implement GMM-MRCoHOG in
hardware, this study proposes a novel hardware-
oriented algorithm: a standardization method of basis
function arrangements of Gaussian mixture distribu-
tions for all state space representations to reduce the
number of LUTs required, which limits the previous
hardware-oriented GMM-MRCoHOG. This method
forms a single Gaussian mixture distribution by ag-
gregating features of all blocks such that the distribu-
tion represents the state spaces of all blocks.

Similar to the original GMM-MRCoHOG, the
proposed method autonomously constructs a state
space using the EM algorithm, as shown in Figure 6.
First, luminance gradient pairs of the positive and
negative data of training images are extracted for each
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block, and the corresponding positive and negative
samples are approximated using Gaussian mixture
distributions. Next, the JS divergence is used to gen-
erate a new Gaussian mixture distribution that sepa-
rates the positive and negative data distributions in a
single state space. To this end, the inversion method is
used to generate samples based on the JS divergence
of the positive and negative Gaussian mixture distri-
butions, resulting in numerous samples tending to be
present in areas with a strong bias toward either pos-
itive or negative data. Up to this point, each block is
processed as in the original method. Next, the sam-
ples generated in all blocks in the previous procedure
are aggregated into a single space to standardize the
state spaces of all blocks, and a new Gaussian mix-
ture distribution with the characteristics of all blocks
is constructed autonomously using the EM algorithm.
This single Gaussian mixture distribution is then used
to represent the state spaces of all blocks.

The proposed method drastically reduces the
memory requirement for state space representation.
For example, in the previous method, if the maximum
number of Gaussian mixture distribution mixtures is
set to 8, the memory required for the state space is
approximately 12 KB because the number of state
spaces is 504, four variables representing each Gaus-
sian distribution are required, and the bit width of
each variable is 6 bits (8 x 504 x 4 x 6 bits ~ 12 KB).
In contrast, the proposed method uses a common state
space such that the memory utilization is 24 bytes
(8 x 4 x 6 bits ~ 24 B). Moreover, the modification
of the proposed method does not affect the latency
of the inference process because except for memory
reading, it is the same as that of the previous method.

4 EXPERIMENT

We implemented the proposed standardization
method of the basis function arrangements of
Gaussian mixture distributions for all state spaces
and conducted human recognition tasks. The
experimental environment is presented in Table 1.
We evaluated the human recognition performance
of the GMM-MRCoHOG using the proposed method.
In this experiment, we compared the performance of
the proposed method with that of the method pro-

Table 1: Experimental environment.

Intel Core 17-8700K
CPU 3.70 GHz
Memory 64 GB
Operating system Windows 10
MATLAB version R2021a
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posed by Takemoto et al. The course angle compu-
tation described in Section 2.3 was applied to both
methods. The maximum number of Gaussian mix-
ture distribution mixtures was set to 8 or 16 for both
the previous and proposed methods. The training data
were obtained from the Daimler Pedestrian Classifi-
cation Benchmark and INRIA Person datasets, and
the testing data were obtained from the INRIA Per-
son dataset. These datasets consist of human and non-
human images of 32 x 64 pixels. Examples of images
from the datasets are shown in Figures 7 and 8. A sup-
port vector machine (Cortes and Vapnik, 1995) with a
linear kernel was used as the discriminator.

5 RESULTS

Figure 9 compares the performances of the previ-
ous and proposed methods, which are represented by
receiver operator acting characteristic (ROC) curve.
The vertical axis of the ROC curve indicates the true
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performances.

Table 2: Human recognition task accuracies of the previous
and proposed methods.

Maximum number .
. Previous | Proposed
of mixtures
8 0.9668 0.9633
16 0.9685 0.9690

positive rate, and the horizontal axis indicates the
false positive rate; the closer the curve is to the up-
per left, the higher the discrimination accuracy. The
black and red lines indicate the performances of the
previous and current methods, respectively. The solid
lines indicate the method with the maximum number
of mixtures set to 8, and the dashed lines indicate the
method with the maximum number of mixtures set to
16. Table 2 presents the human recognition task ac-
curacies of the previous and proposed methods. Fig-
ure 9 and Table 2 indicate that the proposed method
was slightly inferior to the previous method when the
maximum number of mixtures was 8 but had the same
accuracy as the conventional method when the maxi-
mum number of mixtures was 16.

6 DISCUSSION

6.1 State Space Comparison

Figures 10 and 11 show the Gaussian mixture distri-
butions of the first offset with the maximum number
of mixtures set to 8 and 16 for the previous method,
respectively. Figures 12 and 13 show the Gaussian
mixture distributions with the maximum number of
mixtures set to 8 and 16 for the proposed method, re-
spectively. The experimental results indicate that the
number of basis functions in the Gaussian mixture
distributions was the same as the maximum number

of mixtures in all cases. Note that several basis func-
tions are not displayed in these figures because they
are overlapped or too small.

A comparison of these figures shows common
characteristics in the arrangement of basis functions
of the Gaussian mixture distributions in the state
spaces. The basis functions tend to be concentrated
on the diagonals and at the edges of the state spaces,
even though the shapes of the state spaces are differ-
ent, as shown in Figures 10 and 11. Figures 12 and 13
also show that the basis functions are placed on the
diagonals and at the edges of the state spaces, as in
the previous method. This indicates that the proposed
method is as accurate as the previous method when
the maximum mixing number is set to 16 because the
Gaussian mixture distribution using the basis function
arrangement can adequately represent the features of
all blocks. However, the maximum number of mix-
tures of 8 is insufficient in terms of dimensionality to
represent the features of all blocks. Similar tenden-
cies were also observed for the other offsets.

6.2 LUT Utilization

In this experiment, the maximum number of mixtures
of Gaussian mixture distributions in the state space for
both the previous and proposed methods was set to 8
or 16. Experimental results showed that the number
of basis functions in the Gaussian mixture distribu-
tions was the same as the maximum number of mix-
tures in all cases, implying that the number of LUTs
used to store one state space was constant regard-
less of the method employed. Therefore, the number
of LUTs for storing the state space in the proposed
method was 504 times smaller than that in the previ-
ous method. Note that the human recognition archi-

Figure 10: Basis function arrangements of the Gaussian
mixture distributions in the previous method (maximum
number of mixtures: 8, offset: 1).
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Figure 11: Basis function arrangements of the Gaussian
mixture distributions in the previous method (maximum
number of mixtures: 16, offset: 1).
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Figure 12: Basis function arrangements of the Gaussian
mixture distributions in the proposed method (maximum
number of mixtures: 8).

tecture has not yet been designed using the proposed
algorithm, and the specific number of LUTSs required
for the entire system is unknown.

7 CONCLUSIONS

Human recognition with high speed, high accuracy,
and low-power consumption is necessary to realize
safe autonomous mobile robots that can coexist with
humans. This study focused on GMM-MRCoHOG,
which is capable of high-speed and high-accuracy hu-
man recognition, and aims to implement dedicated
hardware to reduce power consumption. We proposed
a standardization method of basis function arrange-
ments of Gaussian mixture distributions that con-
structed the state space and confirmed that the number
of LUTs required for the system was expected to be
reduced.
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Figure 13: Basis function arrangements of the Gaussian
mixture distributions in the proposed method (maximum
number of mixtures: 16).

In the future, we will further verify the pro-
posed hardware-oriented algorithm that can reduce
the memory utilization for the state space representa-
tion and implement a human recognition architecture
using the proposed hardware-oriented algorithm on
an FPGA. We will continue to improve the proposed
method by investigating the appropriate number of
basis functions in the state space and examining the
effect of changing the dataset. The human recognition
architecture constructed using the proposed method is
expected to require low memory and have high scal-
ability. We will investigate the effectiveness of the
system in the real world by mounting the FPGA on a
robot.
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