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Abstract: Stroke is a serious medical condition that can result in permanent brain damage and other pathological issues.
Conditions suffered by survivors ranged in severity from full recovery to significant movement disability. Even
though some may recover quickly, many stroke survivors require long-term support to help them achieve as
much independence as they can. Thanks to a proper rehabilitation, patients who have experienced a stroke can
work to regain skills that are suddenly lost when a section of their brain is injured. Due to the breakdown of
neuronal networks in the motor cortex, abnormal gait patterns are a typical disability after a stroke. Therefore,
gait analysis can be a powerful tool to support stroke patients during rehabilitation. In this work we propose
GIULYO, a Machine Learning based tool that offers support in the assessment of video gait trials in stroke
patients by providing an automatic analysis on the muscle activity of the assisted subject. GIULYO is a
device-agnostic tool because it accepts motion tracking data in terms of 3d trajectories regardless of the type
of instrumentation. GIULYO has been validated on the ARRA Stroke dataset and the results showed an overall
accuracy of 0.74 while on a subset a patients—with common clinical assessment of mobility impairments—
the accuracy increased to 0.92, therefore demonstrating the feasibility of involving a ML-based approach for
the rehabilitation support of post stroke patients.

1 INTRODUCTION

Stroke is a clinically defined condition of quickly
evolving symptoms or indicators of localized loss of
brain function (Warlow et al., 1997). Survivors ex-
perienced conditions that can range in severity from
complete recovery to severe movement impairment
(Warlow, 1998). As a result, stroke patients continue
to have serious locomotor deficits. Additionally, pa-
tients and rehabilitation professionals continue to face
daily challenges in achieving a good gait recovery fol-
lowing a stroke (Nadeau et al., 2013).

The idea behind this work is based on the con-
sideration that biomechanical components of steady-
state walking in healthy individuals have been demon-
strated to be produced by separated, coexcited mus-
cle groups (Allen and Neptune, 2012; Neptune et al.,
2009). These specific muscle groups can be detected
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thanks to the Surface Electromyography (S-EMG)
(Routson et al., 2014), by evaluating the number of
channels that registered EMG activity. This value is
referred as modules (Allen and Neptune, 2012; Nep-
tune et al., 2009).

Nevertheless, those who have had a stroke have
poor intermuscular coordination, which is defined by
the merging of modules that are ordinarily indepen-
dent in healthy people (Clark et al., 2010). Follow-
ing a stroke, having more independent modules has
been linked to better performance in a variety of clin-
ical and biomechanical walking assessments, includ-
ing faster walking, a better Dynamic Gait Index (DGI)
(Jonsdottir and Cattaneo, 2007), and better step length
and propulsion symmetry (Bowden et al., 2010; Clark
et al., 2010).

Many efforts were provided by the scientific com-
munity to support the rehabilitation strategy of post-
stroke patients by proposing video gait analysis tools
(Liu et al., 2021; Mirelman et al., 2010; Swank et al.,
2020). Liu et al. (2021) developed a method based on
the Microsoft Kinect camera that could detect the ro-
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tation and movement of the Center of Mass in many
planes. The CoM is regarded as a crucial indicator for
evaluating the impact of therapy and recovery. Swank
et al. (2020) used video gait analysis to demonstrate
the validity of Robotic Exoskeletons (EKSO) session
in rehabilitation therapies of post-stroke individuals.

However, we believe that there is still room to
contribute this research field. Indeed, in this paper,
we present GIULYO (video-based GaIt tool for the
aUtomatic anaLysis of rehabilitation qualitY in post
strOke survivors), a tool designed to provide an auto-
matic quantitative assessment to the gait trials of a re-
habilitation session. Indeed, GIULYO is an approach
capable of analyzing a video gait trial and automati-
cally classifying it according to the number of mod-
ules detected. Furthermore, GIULYO is a device-
agnostic tool, i.e., it does not depend on any specific
motion tracking instrumentation because its workflow
begins with the processing of 3d trajectories. Also,
GIULYO allows the clinical evaluation of a gait trial
without the need of installing S-EMG electrodes on
the interested limb. The proposed approach has been
validated on the ARRA post-stroke database (Rout-
son et al., 2014). GIULYO was submitted to an ex-
tensive ML experimentation and validated using the
most fitting validation scheme when involving data
from different subjects, i.e., the Leave 1 Subject Out
(L1SO) cross validation. Results showed that GIU-
LYO is capable of predicting the number of moduls of
a gait trial with an overall accuracy of 0.74. However,
on a specific subset—more than a third—of subjects
presenting the common characteristic of poor motor
skills, GIULYO achieves an overall accuracy of 0.92.

The rest of the paper is structured as follows: Sec-
tion 2 provides details on related works focused on
gait analysis for post-stroke rehabilitation. Section 3
presents GIULYO, our novel approach for the assess-
ment of a gait trial in terms of muscle activity. Section
4 reports the design and the results of the empirical
study we conducted to evaluate GIULYO. Section 5
reports the results achieved by GIULYO and a qual-
itative analysis in terms of features importance and
performances at subject level. Finally, Section 7 con-
cludes the paper and provides suggestions for possible
future research directions.

2 RELATED WORKS

In this section a review of the state-of-the-art related
to the main contribution in the research field of gait
analysis in post-stroke individuals is proposed.

The study conducted by Nadeau et al. (2013) pro-
vided an overview of the gait analysis procedure as

well as the most significant gait parameters and de-
viations in stroke survivors, with a focus on the im-
pacts of gait speed and the significance of ground re-
sponse forces (GRFs). Reduced walking speed, an
unbalanced gait pattern, and a drop in peak moments
and powers on the hemiparetic side were all consid-
ered as characteristics of the hemiparetic gait follow-
ing stroke. The findings showed that While some
traits are shared by all patients, hemiparetic individu-
als may have markedly different gait patterns, even if
their walking speeds are equivalent. GRFs are useful
in evaluating the gait pattern abnormalities of stroke
patients as well as other neurologic groups, just as the
other gait characteristics.

The objective of the observational study con-
ducted by Ferrarin et al. (2015) was to evaluate the
influence of gait analysis on therapeutic decision-
making (both surgical and non-surgical) for adult pa-
tients with chronic walking difficulties due to stroke.
The idea was that clinical recommendations based
only on clinical examination and visual gait observa-
tion are considerably different from those based ad-
ditionally on gait analysis data. The present study’s
findings were consistent with the notion that gait anal-
ysis has a considerable impact on treatment planning
for chronic post-stroke patients with locomotor dys-
function, both surgically and non-surgically, and sup-
ports decision-making.

Through comparisons with traditional gait mea-
surements, the study proposed by Guzik and
Drużbicki (2020) examined the concurrent validity of
the Gait Deviation Index (GDI) as an outcome mea-
sure of gait deficits at a chronic stage of recovery fol-
lowing a stroke. A group of 65 people with stroke and
65 healthy people without gait abnormalities were en-
rolled. An analytic system for movement was used to
measure the kinematic gait characteristics. The re-
sults supported the contemporaneous validity of the
GDI in post-stroke patients, but only for the afflicted
limb and mGDI. The authors concluded that GDI for
the unaffected limb, however, may be helpful in locat-
ing any compensatory mechanisms appearing in post-
stroke gait patterns.

In the work presented by Li et al. (2019), the
symmetry, regularity, and stability of post-stroke
hemiparetic gaits were obtained as features us-
ing the dynamic temporal warping (DTW) tech-
nique, sample entropy approach, and empirical mode
decomposition-based stability index. A cluster of
15 stroke survivors and 15 healthy control persons
participated in the studies. The findings achieved
by the authors suggested that hypothesized charac-
teristics were considerably able to distinguish post-
stroke hemiparetic patients from healthy control par-
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ticipants.
Khera and Kumar (2020) proposed a review to

provide researchers with critical recommendations for
applying ML approaches for gait analysis and gait re-
habilitation. This review article demonstrated the ef-
fectiveness of ML approaches in identifying illnesses,
forecasting the period of rehabilitation, and control-
ling rehabilitation devices, making them appropriate
for clinical diagnosis.

Much effort was dedicated from the scientific
community to contribute the research field of gait
analysis for the support in the rehabilitation of post-
stroke patients. To the best of our knowledge, no ef-
fort was provided in the automatic classification of
muscle activity from video gait analysis, in terms of
S-EMG channels detected during the walking activi-
ties to support the decision-making strategy in the re-
habilitation of post-stroke individuals.

3 USING ML TO PREDICT THE
QUALITY OF WALKING

In this section we present GIULYO, a novel approach
for the automatic assessment of gait quality designed
to support post-stroke patients during specific rehabil-
itation therapy.

3.1 The Workflow of GIULYO

A motion capture system is needed to measure sub-
ject kinematics data and an electromyograph to mea-
sure the muscle activity during the walking tasks.
These two instruments provide the two sources of in-
formation necessary for GIULYO’s analysis. Once
the 3D trajectories are acquired, a features calcula-
tor module is activated which is in charge to evalu-
ate three sets of aggregate features: (i) the first con-
tains stride measures and timing info for all subjects,
(ii) the second is about the measures derived from
the walking cycle, such as the single and double sup-
port and (iii) the third contains aggregated leg angle
and foot height data for Paretic (P) and Non-Paretic
(N) legs/feet, acquired within the laboratory reference
frame. These three sets of features—together with de-
mographic and clinical descriptors—compose the fi-
nal feature vector for the classification module. This
latter is the component aimed at providing the final
assessment of the walking activity.

Two studies were conducted within the experi-
mentation proposed in this paper. The first one aimed
at automatically assessing the raw number of inde-
pendent muscle co-excited in the set 2,3,4 while the
second is focused on a binary classification in Low

and High activation of the muscle. Details about this
choice of clustering are offered in Section 4.

3.2 Gait Features

As already described, the features can be conceptually
divided into 3 distinct sets:

• Set A (Stride Measures and Timing Info):
treadmill speed, Paretic Step Ratio (PSR) aver-
aged over all steps, Paretic Step Length/Stride
Length, PSR Standard deviation, Paretic Stride
length (distance between same foot), Paretic
stride length standard deviation, non-paretic stride
length, non-paretic stride length standard devia-
tion, etc.

• Set B (Measures Derived from the Walking Cy-
cle): paretic affected leg side, left single support
percentage over all cycle, right single support per-
centage over all cycle, left single support time,
right single support time, step length, step time,
stride length and stride time standard deviation for
left and right sides, single and double support time
standard deviation for left and right sides.

• Set C (Aggregated Leg Angle and Foot Height
Data): paretic leg angle from pelvis to foot,
paretic frontal angle from pelvis to foot, non-
paretic leg angle from pelvis to foot, non-paretic
frotal angle from pelvis to foot, paretic Distance
from pelvis to foot, non-Paretic Distance from
pelvis to foot, paretic (leg length/pelvis height),
non-paretic (leg length/pelvis height), paretic ver-
tical leg distance, non-Paretic vertical leg dis-
tance, etc.

Details about how these features were registered
and obtained are available in Section 4 and in the pa-
per proposed by Routson et al. (2014).

3.3 Demographic and Clinical Features

A set of demographic and clinical features were inte-
grated to the features vector in order to increase the
knowledge of the model embedded in GIULYO. De-
mographic descriptors were gender, age and the af-
fected side (left or right) while clinical features in-
cluded individual and overall scores based on the DGI
(Jonsdottir and Cattaneo, 2007), the 6 Minutes Walk
Test (6MWT) (Enright, 2003), the Berg Balance Scale
(BBS) (Berg, 1992), and the Fugl-Meyer (FM) Score
(FUGL et al., 1975).
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3.4 Putting All Together

GIULYO combines all the features we previously
described. After the training phase, GIULYO is
able—given a walking activity—to classify it in
terms of muscle activation to describe the quality
of the rehabilitation therapy and the progresses
made. The final features vector is composed by
the following features: anonymized subject ID,
Trial Number, Gender, Age, Affected-Side, Speed,
[DGI-1,...,DGI-8,DGI-TOT], 6MWT-Distance,
[BERG-1,...,BERG-14,BERG-TOT], [FM-1,...,FM-
17,FM-TOT,FM-Sinergy], Set-A, Set-B, Set-C,
number of Modules.

4 EMPIRICAL EVALUATION

The goal of this study is to evaluate the accuracy of
GIULYO in classifying walking trials in terms of
muscle activity in rehabilitation patients. The per-
spective is of a researcher who wants to understand
if combining several walking features is useful for the
automatic assessment of the muscle activity. Thus,
the study is steered by the following:

Research Question:
Can Machine Learning be used to predict the quality

of walking in post-stroke patients?

The above RQ is then divided into two sub-RQ:

RQA: To what extent can GIULYO predict the
number of muscles activated during walking?

RQB: To what extent can GIULYO predict the level
of muscle activation during walking?

With RQA we aimed at verifying if ML can predict
the single number of muscle activated during a walk-
ing activity as an indicator of the quality of the gait
while with RQB our purpose was to evaluate the capa-
bility of the ML in discriminating a walking activity
in low and high muscle activation.

4.1 Context Selection

The context of this study is represented by ARRA
Post-Stroke Database (Routson et al., 2014). The data
were obtained from 27 post-stroke participants and 17
healthy control participants. However, only 38 sub-
jects presented the data with the complete set of de-
scriptors. Five conditions were tested while walking
on a treadmill at intervals of 30 seconds. Examples of
such conditions include (i) self-Selected (SS) walking
pace, which the participant determined to be their typ-
ical walking speed, High Step (HS) conditions, where

subjects were asked to take as high a step as they
could while walking at their SS pace. Kinematics,
kinetics (from split belt treadmill force plates), and
electromyography data were gathered for each condi-
tion. The following tools were employed to gather the
data:

• to evaluate subject kinematics, a 12-camera mo-
tion capture system (PhaseSpace, Inc., San Lean-
dro, CA) with two linear detectors in each camera
was used. In order to establish the parameters of
segment size, the system additionally makes use
of active markers that produce infrared light and
are positioned on anatomical landmarks of a pa-
tient.

• split-belt treadmill (FIT, Bertec, Inc.) with an
inclination for measuring ground reaction forces
and moments in three dimensions

• electromyograph MA400, 16 channel EMG sys-
tem (Motion Lab Systems, Baton Rouge, LA).

For each subject, more than one gait trial is avail-
able. This is because in the experimental protocol
proposed by Routson et al. (Routson et al., 2014),
multiple trials were provided for each condition in
order to select the best recording for data analysis.
So, the dataset is composed of different information
and measures related to walking, captured through the
marker-based optoelectronic instrument. In addition,
each subject—who underwent the experimental pro-
tocol of this study—had to install a set of electrodes
for EMG signal acquisition. This was done bilater-
ally from the tibialis anterior, soleus, medial gastroc-
nemius, vastus medialis, rectus femoris, medial ham-
strings, lateral hamstrings, and gluteus medius (Rout-
son et al., 2014).

So, each walking trial can be classified in terms
of co-excited muscles or modules, thanks to the infor-
mation from EMG channels. To recap, each walking
trial was assigned a class in the set [2,3,4] to indi-
cate the number of independent co-excited muscles.
Class 2, 3, and 4 indicate that two, three, and four
modules were respectively detected by the instrumen-
tation. These numerical classes can be considered as
an index of quality of gait, as supported by several
studies which found that a higher number of indepen-
dent poststroke modules is associated with better gait
performance (Bowden et al., 2010; Clark et al., 2010).

4.2 Features Selection and Classification

In the context of our study, we experimented two tech-
niques of features engineering: (i) first a correlation
analysis was applied to the features vector in order to
discard the features with a correlation index greater
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than 0.95 (ii) then, an automatic features selection al-
gorithm was triggered to evaluate the best descriptor
to be used as input to the classification model.

A large set of algorithms for the features selec-
tion and for the training of the classification model
of GIULYO was involved. Especially, we experi-
mented: Random Forest (RF) (Barandiaran, 1998),
MultiLayer Perceptron (MLP) (Pal and Mitra, 1992),
Logistic Regression (LR) (Cramer, 2002), K Nearest
Neighbour (KNN) (Dasarathy, 1991), Gaussian Naive
Bayes (GNB) (Zhang, 2004), Stochastic Gradient
Descent (SGD) (Ruder, 2016), Decision Tree (DT)
(Wu et al., 2008), Bagging Classifier (BC) (Breiman,
1996), Gradient Boosting Classifier (GBC) (Fried-
man, 2001), AdaBoost (AB) (Freund and Schapire,
1997), Passive Aggressive Classifier (PAC) (Cram-
mer et al., 2006), Extra Trees Classifier (ETC) (Geurts
et al., 2006), Support Vector Machine (SVM) (Cortes
and Vapnik, 1995).

For this experiment, we used the python library
Scikit-learn (Pedregosa et al., 2011).

4.3 Experimental Procedure

A typical Leave-1-Person Out (L1PO) cross-
validation was involved to assess the accuracy of
GIULYO. To do this, we divided the data into n
folds, one for each patient, and used—one at a
time—these folds as test set. This indicates that
a patient’s data were embedded n-1 times in the
training dataset and 1 time in the test dataset. This
method enables the creation of a classifier that is
not tested and trained on the same patient’s data.
We did this in order to test the approach under the
most difficult conditions possible because individual
patients’ gait data might vary consistently.

To answer this RQA, a specific study with the raw
number of independent co-excited muscles was con-
ducted. This meant that the classification component
of GIULYO was in charge of discriminating a gait
features vector in the classes 2, 3 or 4.

The dataset is composed by 50, 219, 208 instances
for the class 2,3, and 4 respectively.

To face RQB, a binary ML experiment was con-
ducted. Two classes were created. The first one
Low aimed at representing the gait records in terms of
low or poor muscle co-excitement; indeed, this class
groups the records with 2 or 3 number of modules.
The second class, namely High aimed at assess the
gait records with 4 modules.

The dataset is composed by 269, and 208 in-
stances for the class Low and High respectively.

For both studies, due to the class imbalance (es-
pecially in RQA), the SMOTE technique was experi-

Table 1: Classification performances achieved by the top 3
ML configurations in Study 1.

SMOTE Corr. Feat. Sel. Class. Overall Acc.

No No PAC RF 0.67
No Yes RF RF 0.63
No Yes Extra RF 0.63

Table 2: Detailed classification performances achieved by
the best configuration of GIULYO in Study 1.

Class Classification Metrics
Precision Recall F1-score

2 0.53 0.18 0.27
3 0.64 0.73 0.68
4 0.71 0.72 0.71

Overall Accuracy 0.67

mented (Chawla et al., 2002).
The results from the two studies conducted to an-

swer the above RQs are presented according to the
following class-level metrics: Precision, Recall, F1-
score.

5 ANALYSIS OF THE RESULTS

The analysis of the results is described according to
the specific RQ in the next subsections.

5.1 RQA: To What Extent Can
GIULYO Predict the Number of
Muscles Activated During Walking?

The top 3 configurations of ML settings are depicted
in Table 1. The one with the best results is composed
by a PAC model for features selection and a Random
Forest for classification. Detailed results—achieved
by this latter—during the experiment to answer RQA
are shown in Table 2. It is evident that the best perfor-
mances —at class level—are achieved by GIULYO
for the subjects who had a S-EMG with 4 modules de-
tected. Indeed, in this case, all the metrics are above
0.7. For what concerns class 3, the performance show
a decrease except for the recall value, which is 0.73.
Class 2 is the one with the poorest classification per-
formances. However, the overall accuracy is 0.67.
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Table 3: Classification performances achieved by the top 3
ML configurations in Study 2.

SMOTE Corr. Feat. Sel. Class. Overall Acc.

Yes Yes DT RF 0.74
Yes No PAC RF 0.73
Yes Yes Extra RF 0.73

Table 4: Classification performances achieved by GIULYO
in Study 1.

Class Classification Metrics
Precision Recall F1-score

Low 0.79 0.73 0.76
High 0.68 0.75 0.71

Overall Accuracy 0.74

5.2 RQB: To What Extent Can
GIULYO Predict the Level of
Muscle Activation During Walking?

The top 3 configurations of ML settings are depicted
in Table 3. The one with the best results is composed
by an operation of SMOTE, a correlation analysis,
a Decision Tree model for features selection and a
Random Forest algorithm for classification. Detailed
results—achieved by this latter configuration—during
the experiment to answer RQB are shown in Table 4.
In this binary classification experiment, the high class
shows classification performances around 0.7 with a
peak of 0.75 for the Recall. On the other hand, the
low class shows definitely better performances, with
a F1-score of 0.76 and a Precision of 0.79. The overall
accuracy achieved by GIULYO is 0.74.

The results obtained show that a classifica-
tion model based on the Random Forest algorithm
achieves the best classification performance.

5.3 Qualitative Analysis

For sake of space limitation, the qualitative analysis
of the results achieved by GIULYO in this study is
focused only on the version of the approach with the
highest accuracy, i.e., GIULYO used to discriminate
a gait trial in Low or High class of modules triggered
(Study 2, RQB).

5.3.1 Features Importance

From the L1SO validation scheme, a set of most infor-
mative instances were selected for each test set, i.e.,
for each set composed of trial data related to a single
subject. The top three features that were highly taken

into consideration by the model embedded in GIU-
LYO are: (i) the standard deviation of the leg length
measures on the paretic side evaluated during the gait
trial, (ii) the cadence, the number of steps over the
minute, (iii) the maximum measure of the leg length
and the minimum measure of the sagittal angle ob-
tained during the gait trial.

It is not surprising that the leg length measure-
ment, on the paretic side, was highly taken into ac-
count by the feature selection models as this is a de-
termining factor in the analysis of the balance of post-
stroke patients (Gardas and Shah, 2020).

Other examples of selected features include addi-
tional measures on the paretic side together with some
descriptor on the normal side.

5.3.2 GIULYO’s Performances on a Subset of
Subjects

Qualitative analysis included the observation of the
results at subject level. Within this study, we found
that the performances of GIULYO are better for a
subset of 14 subjects (out of the 38 that compose
the whole dataset), i.e., with an accuracy consistently
greater than the 0.74 overall accuracy.

On this specific cluster of subject, 162 out of 176
gait trials were correctly identified as low (2 or 3 mod-
ules detected) or high (4 modules detected). The over-
all accuracy on this group of subjects is therefore ap-
proximately 0.92. To foster this analysis, we tried to
find the peculiarities that describe this group of sub-
jects. During this study, we found that they have a low
value of DGI-2 and an overall value of DGI smaller
than 18. DGI is a gait index proposed by Shumway-
Cook and Woollacott (Shumway-Cook and Woolla-
cott, 1995) that showed high reliability in persons
With chronic stroke and also evidence of concurrent
validity with other balance and mobility scales (Jons-
dottir and Cattaneo, 2007). The DGI includes many
tasks that are evaluated in terms of numeric indexes,
and their sum compose the overall DGI. The DGI-2 is
known as ”Change in gait speed” and it is a test where
the assisted patient has to start walking normally (for
5 minutes), and then walking quickly, for 5 minutes
with five slow steps at the end (Jonsdottir and Catta-
neo, 2007).

The DGI overall score of 19 or below indicates a
risk of falling in older adults and those with vestibular
impairment (Whitney et al., 2000, 1998).
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6 LIMITATIONS OF THE STUDY

The followings could represent threats to validity of
this study:

• The reduction to a binary state classification could
seem a choice far from practical use in rehabilita-
tion. However, we believe that this choice may
provide a rapid and more accurate screening of
muscle activity, with respect to the raw number
of modules. This should represent an initial indi-
cation for the medical staff.

• The dataset used in this study may be too small
for the purposes of a medical study. However, it
was one of the public datasets—found in the rel-
evant literature—with EMG, motion tracking and
clinical assessment data for a substantial number
of patients. It is our opinion that the results of this
study should be considered as preliminary.

• There is no comparison between GIULYO and a
scientific baseline. To the best of our knowledge,
there is not a study to compare with.

7 CONCLUSIONS

This paper proposed GIULYO, a tool designed for
the support of the rehabilitation strategy of post stroke
patients. The tool is device-agnostic, meaning that
no specific motion tracking instrumentation is needed
to make it work and it is designed to provide an as-
sessment of the gait in terms of a novel indication,
the number of muscle group co-excited. This infor-
mation could be raw (i.e., the exact number) or clus-
tered (i.e., low or high muscle activation). GIULYO
was validated on the ARRA post stroke dataset. Re-
sults showed an overall accuracy of 0.74 in the bi-
nary case, and of 0.92 on a specific subset of pa-
tients, therefore demonstrating higher performances
when subjects have poor locomotor skills, according
to the DGI. GIULYO aims at be embedded in mod-
ern Decision Support Systems (DSS) for the support
to the medical equipe thanks to a rapid screening of
the assisted patients.

Future works will be devoted to validate GIU-
LYO (i) on a larger set of patients and (ii) on data
acquired from another motion tracking instrument to
verify how the accuracy of the 3d trajectories may af-
fect the precision of the automatic classification.
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