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Moving object detection and classification are fundamental tasks in computer vision. However, current so-
lutions detect all objects, and then another algorithm is used to determine which objects are in motion. Fur-
thermore, diverse solutions employ complex networks that require a lot of computational resources, unlike
lightweight solutions that could lead to widespread use. We introduce TRG-Net, a unified model that can be
executed on computationally limited devices to detect and classify just moving objects. This proposal is based
on the Faster R-CNN architecture, MobileNetV3 as a feature extractor, and a Gaussian mixture model for a
fast search of regions of interest based on motion. TRG-Net reduces the inference time by unifying moving
object detection and image classification tasks, and by limiting the regions of interest to the number of mov-
ing objects. Experiments over surveillance videos and the Kitti dataset for 2D object detection show that our
approach improves the inference time of Faster R-CNN (0.221 to 0.138s) using fewer parameters (18.91 M to
18.30 M) while maintaining average precision (AP=0.423). Therefore, TRG-Net achieves a balance between

precision and speed, and could be applied in various real-world scenarios.

1 INTRODUCTION

The detection and classification of moving objects are
fundamental tasks in many day-to-day systems, from
smart surveillance to autonomous driving and activity
recognition. They all have in common the processing
of images and videos in order to decode their con-
tent and obtain useful information in real time. To-
day, videos constitute an extensive source of informa-
tion that is rarely analyzed. Despite the progressive
and continuous growth of computer vision solutions
based on deep learning models, the task of detecting
and classifying moving objects in video is still a chal-
lenging and attractive area with a lot of active research
and development in the industry.

The rise of CNNs has been advantageous for the
development of complex and precise systems. Cur-
rently, many state-of-the-art models and frameworks
are capable of accurately detecting objects in real
time. Focusing mainly on the detection of humans
(Gruosso et al., 2021), vehicles (Chen and Hu, 2021),
and even pets (Yuan, 2021). However, there are a
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limited number of studies on moving object detec-
tion, either by applying supervised learning through
CNNs or other unsupervised methods with less com-
putational demand.

Moving object detection (MOD) is the detection
of moving objects with respect to the surrounding area
or region of a sequence of video frames. For example,
distinguish moving pedestrians from static buildings
in a video recorded by a surveillance camera. Static
objects are called ‘background’, and moving objects
are called ‘foreground’. This task constitutes the ba-
sic step for various subsequent specific tasks, such as
the classification or tracking of moving objects. Gen-
erally, advanced video analysis consists of three main
phases: (1) the identification of the moving target, (2)
the tracking of the identified object in a given series
of video frames, and (3) the analysis of the object’s
movement to determine its behavior. Therefore, the
detection of moving objects is a fundamental task for
most complex video analysis processes (Kulchandani
and Dangarwala, 2015).

On the other hand, image classification refers to
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the task of analyzing an image and identifying the
class to which it belongs. In essence, a class is a label
i.e. ‘truck’, ‘person’, ‘cat’, etc. This task is a common
next step to moving object detection; once moving ob-
jects are detected, it is reasonable to discover what has
moved. Although motion detection and classification
are two different issues, treating them separately gen-
erates solutions either very specific or very generic.
This research attempts to build a unified approach,
as current solutions do not consider the movement of
objects as a critical criterion for object detection and
classification.

An important aspect to consider when develop-
ing a computer vision solution is the size and exe-
cution time of the proposal. This heavily depends
on the final device using the model. In our experi-
ence, the most popular models do not rely on high
computational power, as they are commonly executed
by computationally limited devices. Such devices are
single-board computers with few resources, formaliz-
ing the definition, a computationally limited devices
is a computer with no more than 4GB of memory and
a processor with no more than 4 cores and 1.5GHz
of speed (Glegota et al., 2021). Although there are
complex systems and architectures that delegate the
work of detection and classification to servers in the
cloud, such as (Alsmirat et al., 2017), these are de-
pendent on the Internet connection and the passing of
information through unsecured networks. This is in-
convenient when dealing with sensitive systems that
require privacy, security, and full availability in ad-
verse situations (Zhang, 2021). Furthermore, they re-
quire expensive architectures to ensure data protec-
tion, scalability, and privacy; operations that can only
be carried out by large companies (Haouari et al.,
2018). There are new proposals that try to solve this
problem by applying fog computing; however, the
need for processing on local nodes to execute critical
tasks remains a predominant property (Haouari et al.,
2018). Consequently, we will focus on devices with
limited computational power, which implies elabo-
rating a lightweight and low latency model. There-
fore, promoting the flexibility of the solution and its
widespread use in different contexts.

The main contributions of this work are summa-
rized as follows: (1) A novel approach that jointly ad-
dresses the well-known tasks of moving object detec-
tion and image classification. These tasks are usually
performed separately, thus our proposal introduces a
flexible model that unifies these tasks into one end-to-
end architecture. (2) In the literature there are famous
generic object detection models (Redmon et al., 2016;
Liuet al., 2016). However, these models recognize all
objects, even if they are moving or not; thus, another
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algorithm is necessary to determine which objects are
in motion. In our approach, we propose a network
that uses fewer computational resources to efficiently
recognize and classify only moving objects. (3) Our
model is inspired by Faster R-CNN (Ren et al., 2015)
architecture, which allows us to employ a region pro-
posal method based on Gaussian Mixtures (Zivkovic,
2004) instead of a Region Proposal Network (RPN).
This grants an execution speed-up, and also the iden-
tification of movement.

2 RELATED WORK

We are addressing the detection and classification of
moving objects using video data. This involves locat-
ing only moving objects, labeling them with a bound-
ing box, and assigning them their respective class. To
our knowledge, this task has not been previously tack-
led in a unified way. While video object detection is
a similar problem, it does not necessarily imply atten-
tion to motion detection. Therefore, we have to re-
view four concepts: (1) moving object detection, (2)
image classification, (3) generic object detection, and
(4) approaches based on movement detection.

2.1 Moving Object Detection

Moving object detection (MOD), also known as
change detection, is the detection of non-stationary
objects with respect to the surrounding area or region
from a sequence of video frames (Kulchandani and
Dangarwala, 2015). Note that the output of MOD
methods is not a list of classes and bounding boxes; it
is a binary mask of the image that highlights changing
pixels. Current MOD methods can be broadly classi-
fied into (1) traditional methods and (2) deep learn-
ing methods. Although there are proposals that com-
bine both approaches, they are often applied in spe-
cific contexts to solve real-world problems.
Traditional unsupervised methods do not require
labeled data. They usually have two components: (1)
a background model that initializes the background
scene and updates it over time, and (2) a classi-
fier that classifies each pixel as foreground or back-
ground (Hou et al., 2021). The classifier is gener-
ally a mathematical algorithm based on the output
of the background model. On the other hand, there
are many background modeling schemes. Early ap-
proaches used temporal and adaptive filters, including
moving average filters (Yi and Liangzhong, 2010),
temporal median filters (Hung et al., 2014), and the
Kalman filter (Patel and Thakore, 2013). The next ap-
proaches used statistical and probabilistic representa-
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tions to model the background, such as Gaussian mix-
tures models (Song et al., 2020) and semantic mod-
els (Braham et al., 2017). These probabilistic meth-
ods have shown better results than the sole use of fil-
ters. Novel approaches attempt to combine the use of
temporal filters with probabilistic methods, formulat-
ing robust solutions for common real-world problems
such as vehicle speed estimation (Tayeb et al., 2021).
Since MOD does not represent the whole problem, it
is not necessary to delve into complex frameworks,
but it is advisable to pay attention to the benefits of
probabilistic methods.

In general, the traditional methods are computa-
tionally fast and intuitive, showing high accuracy in
static scenarios with little interference (Kulchandani
and Dangarwala, 2015). However, they do not allow
accurate detection in complex scenarios, as videos
with shadows, dynamic backgrounds, and lighting
changes are difficult to deal with. Consequently, deep
learning methods have been a trend in addressing the
aforementioned challenges.

The most representative models of deep learning
are CNNs, which perform well on machine learning
problems, especially in computer vision applications.
However, they have also been applied to other fields,
such as natural language processing (Albawi et al.,
2017) with surprising results. Therefore, a manifest
approach is to use a CNN instead of the traditional
pixel classifiers. In (Braham and Van Droogenbroeck,
2016) the input is a single grayscale image, and the
output is the probability of each pixel belonging to
the foreground. If a probability exceeds a decision
threshold, the pixel is considered foreground, other-
wise background, forming a binary mask of the im-
age. This straightforward approach inspired the de-
velopment of more complex architectures, such as
the use of hybrid spiking neural networks (Machado
etal., 2021). Although this approach has many advan-
tages, these models inherit the main problems of any
solution based on deep learning: (1) obtaining quality
data and (2) ensuring accuracy when unseen data are
tested. Different and novel methods have been pro-
posed to address these problems, such as the applica-
tion of unsupervised learning (Yang et al., 2019), and
self-supervised learning (Yang et al., 2022). How-
ever, the common denominator remains the increas-
ing computational and data demand for testing and
training.

2.2 Image Classification

Image classification has been fueled by the rise of
CNNs since the introduction of Alex-Net (Krizhevsky
et al., 2012) in 2012. CNNs are the most represen-

tative models of deep learning, as they can exploit
the basic properties that underlie natural signals: (1)
translation invariance, (2) local connectivity, and (3)
composition hierarchies (Liu et al., 2020). This is
highly relevant since a CNN-based solution addresses
object classification through feature extraction.

There are many well-known architectures (Si-
monyan and Zisserman, 2014; He et al., 2016;
Howard et al., 2017), yet elaborated architectures and
improvements are constantly being developed (Xie
et al., 2017; Tan and Le, 2019). Although CNNs
were born as image classifiers, their use has become
widespread as encoders and feature extractors. Work-
ing as backbone models of complex applications and
frameworks (Zaidi et al., 2022).

2.3 Generic Object Detection

A generalization of image classification is object de-
tection, the task of determining where objects are
located and which category each object belongs to.
Generic object detection models consist of three
stages: (1) informative region selection, (2) feature
extraction, and (3) classification (Zhao et al., 2019).
CNN-based object detection architectures can be di-
vided into two main groups: (1) two-stage detectors,
and (2) one-stage detectors. The two-stage detectors
generate region proposals first and then classify each
proposal into their respective categories. While a one-
stage detector considers object detection as a regres-
sion problem, achieving final results (categories and
locations) directly (Liu et al., 2020).

In both cases, a CNN-based backbone is used to
perform feature extraction. Although one-stage de-
tectors have proven to be fast, they struggle with ac-
curacy and flexibility when adapting their architec-
ture to new tasks. Unlike two-stage detectors; that
are slower, but accurate and flexible since they al-
low custom methods to determine regions of inter-
est according to the addressed problem. The most
widely used two-stage architecture is Faster R-CNN
(Ren et al., 2015). Regarding the one-stage detectors,
YOLO (Redmon et al., 2016) and SSD (Liu et al.,
2016) stand out. Due to the nature of the proposal,
it is reasonable to adapt a two-stage architecture to
define regions based on the movement of objects.

2.4 Approaches Based on Movement
Detection

In (Hou et al., 2021), it is proposed a lightweight
three-dimensional CNN for moving object detection.
This model is characterized by accepting multiple in-
puts and multiple outputs, and by using separable 3D
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Figure 1: TRG-Net architecture. During inference, the input image passes through a backbone to obtain its feature vector.
Then, the same input trains the G-RPM model that returns a list of region proposals. The previous two outputs pass through a
pooling layer and fully connected layers that returns the classes and locations of the moving objects.

convolutions to explore spatiotemporal information in
video data. This model addresses weight and latency
issues using the concept of separable layers proposed
by Mobile-Net (Howard et al., 2017), making the net-
work an optimized detector for devices with limited
memory and computational power. However, it does
not include localization and classification as part of
the pipeline. Furthermore, since it is a completely su-
pervised solution, the authors highlight the limitations
when dealing with unseen data. Here we can stand
out that traditional motion detection techniques do not
deal with the problem of data variety and over-fitting.

In (Jagannathan et al., 2021), it is proposed the
construction of a traffic monitoring system that de-
tects and classifies moving vehicles. This proposal
applies a Gaussian mixture model to enhance the in-
put images by detecting moving objects. These mov-
ing objects are cropped and sent to an ensemble of
image classifiers, which outputs the final classifica-
tion by majority voting. This approach can be very
inefficient since various classifiers are executed for
each detected object. Furthermore, it is similar to
the first R-CNN architecture (Girshick et al., 2014),
where the regions of interest are calculated previously
and then passed one by one through an image classi-
fier. Even though the problem is aligned with ours,
the authors created a complex framework, but not a
unified model, that performs both tasks. Moreover,
it does not consider the lightness of the solution, re-
sulting in an infeasible proposal for computationally
limited devices.

In (Fan etal., 2021), it is proposed an optical-flow-
based framework for video object detection. The au-
thors identify occlusion as the main problem, arguing
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that it leads to appearance deterioration. However, the
application of optical flow indirectly favors the de-
tection of moving objects, since it enhances the fore-
ground pixels. This framework follows this pipeline:
(1) the video frames are grouped sharing the same
optical flow feature map, (2) an enhanced image is
formed by merging the shared feature map with the
current video frame, and finally (3) an image is passed
through an object detection model to get the object la-
bels and bounding boxes. The results show that effec-
tive masking of background information can make the
object detection model more focused on foreground
objects. In contrast to this method, our proposal uses
a change detection model to determine the regions
of interest within the object detection model. This
avoids the preprocessing time of the optical flow, re-
ducing the complexity of our solution.

3 PROPOSED MODEL

To address the detection and classification of mov-
ing objects, we propose The Real Gaussian Network
(TRG-Net). A solution based on the Faster R-CNN
architecture (Ren et al., 2015), a lightweight back-
bone for feature extraction, and the use of a Gaussian
Mixture Model (GMM) as the basis for searching re-
gions of interest that contain moving objects. TRG-
Net is a new model based on existing solutions that
solve the specific problem of detecting and classify-
ing moving objects in videos. Efficiency of the model
is prioritized, thus, the design is oriented to the exe-
cution of the proposal in computationally limited de-
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Figure 2: Gaussian-based Region Proposal Model.

vices.

This approach adopts the unified two-stage ar-
chitecture for object detection proposed by region-
based models, allowing us to use a novel region pro-
posal model while maintaining the detection accu-
racy. Thus, a Gaussian-based Region Proposal Model
(G-RPM) can be attached to the Faster R-CNN archi-
tecture to detect potential moving objects in consec-
utive video frames. The GMM does not seek to per-
form an accurate segmentation, but with high recall
so as not to lose potential regions of interest. A de-
tailed explanation of this region proposal model can
be found in the following subsection 3.1.

The base version of TRG-Net employs the large
version of MobileNetV3 (Howard et al., 2019) as the
backbone. And, instead of the Region Proposal Net-
work (RPN), it uses a G-RPM based on the GMM
proposed by (Zivkovic, 2004). This architecture
and the inference pipeline can be seen in Figure 1.
The code is publicly available at: https://github.com/
rodp63/TRG-net.

3.1 G-RPM

We introduce the Gaussian-based Region Proposal
Model (G-RPM), a GMM-based model to find regions
of interest. The input is an image, and the output is
a list of bounding boxes containing potential moving
objects. The model performs three steps. First, the
GMM makes the classification of each pixel in the
image as background or foreground, creating a binary
mask over the input. Second, this mask is processed
by a contour extractor (Suzuki et al., 1985), which re-
turns a list of the object contours within the binary
image. Finally, the bounding boxes of every object
are calculated by finding the vertices with minimum
and maximum values in the X and Y dimensions. This
model can be seen in Figure 2.

Since there can be noise in the image due to light-

ing or weather conditions, many contours delimit an
area close to zero. These contours are discarded
thanks to the definition of a threshold a that deter-
mines the smallest area required to consider a fore-
ground region as a potential moving object. This pa-
rameter depends on average size of the foreground
objects in an input video, the base model of TRG-Net
uses a threshold a = 35px2. This value was calculated
experimentally considering the size of the objects in
the training data set, such as pedestrians or vehicles
captured by a fixed camera. However, the threshold a
can be dynamically modified during inference. Two
important aspects need to be considered when setting
this value: (1) a low value could identify noise as re-
gions of interest, increasing the number of proposals
and slowing down the inference time; on the other
hand, (2) a large value could cause information loss
by skipping small objects.

There is a second parameter in G-RPM, the learn-
ing rate [r of the GMM. This parameter is needed ev-
ery time a new image updates the model, but it is de-
fined once at construction time. However, there is an
option for the algorithm to use an automatically cho-
sen learning rate for every update. The value of Ir is
a floating number between 0 and 1, and indicates how
quickly the GMM is learned. 0 means that the GMM
is not updated at all and 1 means that the GMM is
completely re-initialized from the last frame. It is ad-
visable to try various /r values to determine which one
best suits the input video images. You can start with
the automatic value, and try from O to 1. As a general
rule, values close to 0 are recommended since it indi-
cates that the input has little noise and the proposals
will be more precise.

To improve the recall of the model, a simple
heuristic is applied in the Bounding Box Finder stage.
Once the bounding box is calculated, it is contracted
and expanded by a few units to include a larger num-
ber of proposals. These small deformations imply
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more opportunities to correctly classify moving ob-
jects. This is relevant since a traditional change de-
tector, such as GMM, is characterized by being fast,
but not very accurate. Especially when the input has
dynamic backgrounds or environmental phenomena.

3.2 Other Optimizations

To ensure that our proposal works with small ten-
sors, the input image goes through a transformation
pipeline that reduces its size if the input is too large.
However, if the image is too small, this re-scaling
helps to improve its resolution and thus the detection
results. The base TRG-Net configuration scales the
input tensors so that the image height is between 320
and 640 without losing the aspect ratio. The region
proposals are also rescaled proportionally to the new
size of the image. After obtaining the predictions, the
returned bounding boxes are transformed to match the
original size of the image for the visualization and
evaluation of the proposal results.

3.3 Training

TRG-Net uses two region proposal models, one for
training and another for inference. The network is
trained as the original Faster R-CNN, using an RPN
to determine the regions of interest (Ren et al., 2015).
However, during inference, TRG-Net uses a G-RPM,
which provides regions of interest based on motion.
Using two region proposal models helps to unify the
detection and classification tasks without losing the
strengths of each stage separately. The backbone, the
last pooling and fully connected layers are not af-
fected by the distinction between inference and train-
ing.

Using an RPN during training provides greater ro-
bustness and scope to the model, since using a G-
RPM would cause loss of information. This is be-
cause the number of training objects is reduced when
considering only moving objects. Furthermore, static
objects in the training data could be dynamic in the
test data, decreasing precision considerably.

The use of static images for training becomes
more relevant when choosing a training data-set. To
use a G-RPM, we would need the bounding boxes and
labels of all the moving objects within a video. This
data set would be too complex to obtain since motion
detection is conventionally related to binary masks,
and video object detection does not always look for
moving objects. In fact, currently, there exists no
public data set offering dense annotations for various
complex scenes in video object detection (Zhu et al.,
2020). In addition, using static images also broadens
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the applicability and flexibility of TRG-Net. Thanks
to the fine-tuning of the well-known Faster R-CNN,
our proposal could be applied to solve different real-
world problems in various contexts.

4 EXPERIMENT ANALYSIS

Smart surveillance and autonomous driving are ap-
propriate fields to apply the detection and classifica-
tion of moving objects. Therefore, training and ex-
periments were carried out using the kitti data set for
2D object detection (Geiger et al., 2012). This data-
set consists of various images of urban environments
geared toward autonomous driving. These images
include seven main classes: ‘cars’, ‘vans’, ‘trucks’,
‘trams’, ‘pedestrians’, ‘people’, and ‘cyclists’. But
also two additional classes: ‘misc’ and ‘dontCare’,
useful to avoid overfitting and the collection of false
positives.

The kitti data-set weighs 12 GB, and consists of
7481 training images and 7518 test images in PNG
format, comprising a total of 80256 labeled objects.
All the images are in RGB space. Although they do
not have the same dimension, they have all been re-
sized to 3 x 1242 x 375. See Figure 3 for reference.

The labels include information about the object in
the third dimension; however, for the handled 2D task
the important features are:

* type: String determining the class of the object.

e truncated: Float between 0 (not truncated) and
1 (truncated), where truncated means that the
boundaries of the object are not visible in the im-
age.

* occluded: Integer indicating the status of the oc-
clusion: 0 = fully visible, 1 = partially occluded,
2 = largely occluded, 3 = unknown.

* alpha: Float representing the angle of observation
of the object, it goes from — to T.

Figure 3: Sample image of the kitti data-set with its labels.
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Table 1: Comparison between TRG-Net and other object detection models. The more optimal values are highlighted with

bold, and the less optimal are colored with red.

Model Backbone AP # Parameters Inference Time

TRG-Net (ours) MobileNetV3 0.423 18.30 M 0.138 s

Faster R-CNN MobileNetV3 0.423 1891 M 0.221's
ResNet50 0.519 41.53 M 4702 s

SSD Lite MobileNetV3 0.283 6.96 M 0.098 s

RetinaNet ResNet50 0.492 33.8M 4.501 s

* bbox: Four floats (x_min,y_min,x_max,y_max)
determining the 2D bounding box of the object in
the image.

Additionally, we calculated the object area using the
bbox parameter. The tags iscrowd and image_id tags
were also added to use the COCO metrics (Consor-
tium, 2022), but they do not have real meaning for
our evaluation.

4.1 Experimental Results

We employ two metrics to evaluate our proposal: (1)
average precision (AP) and (2) inference time. AP
refers to the average precision over multiple values
of Intersection over Union (IoU) within a single im-
age; this is the most representative measurement in
object detection. And the inference time is the aver-
age forwarding step time over every image frame in
a video. The detection and classification precision of
moving objects cannot be strictly addressed due to the
novel nature of the problem and the lack of a suitable
benchmark, this issue will be discussed in detail in the
following subsection 4.2.

The COCO evaluation method (Lin et al., 2014)
is applied to calculate the AP. This interface com-
putes the AP and recall values of a model over a test
data set. On the other hand, the video frames were
evaluated one by one due to the real-time nature of
video surveillance cameras and autonomous driving
systems. Thus, the inference time is calculated as the
average response time of the model over consecutive
video frames. That is, the input tensor for each test
step contains a single image.

The experimental results obtained by TRG-Net
and other object detection models are shown in Ta-
ble 1. The models used to validate our proposal
are: (1) Faster R-CNN (Ren et al., 2015) with Mo-
bileNetV3 (Howard et al., 2019), (2) Faster R-CNN
with ResNet50 (He et al., 2016), (3) SSD Lite (Liu
et al., 2016) with MobileNetV3, and (4) RetinaNet
(Lin et al., 2017) with ResNet50. Our proposal is
compared with object detection models because, to

our knowledge, there are no similar proposals that de-
tect and classify only moving objects. Thus, we are
making the assumption that an object detector will
identify moving objects in a subsequent task once it
has identified all the objects within a frame.

The APs of the networks in table 1 were obtained
after 10 training epochs of fine-tuning using the kitti
data-set, we did not use data augmentation or any
other data pre-processing technique to improve the
AP values. The closer the AP value is to one, the
higher the precision. Taking into account the use of
MobileNetV3 as the backbone, the AP value of TRG-
Net is higher than the AP value of SSD Lite. This
is to be expected due to the two-stage nature of our
proposal. However, the highest AP is achieved when
using ResNet50, a deeper backbone. Note that the AP
value is directly proportional to the number of param-
eters and inversely proportional to the inference time.
Since precision and speed are required, a balance be-
tween both metrics should be sought.

Regarding the number of parameters of TRG-Net,
this is low considering the difference in AP with re-
spect to Faster R-CNN with ResNet50 and RetinaNet.
See the detailed count of parameters in Table 2.

Table 2: Parameter count of TRG-Net modules.

Module | # Parameters
Backbone 436 M
RPN 0.61 M
Predictor 13.95
Total 1891 M

While the lightweight backbone does not add much
to the overall complexity, the last fully connected lay-
ers constitute most of the parameters and inference
time. This is a common phenomenon in convolutional
networks that perform object location and classifica-
tion. During inference, TRG-Net does not consider
the 0.61 million parameters of the RPN by replacing
the convolutions with a GMM, thus reducing the num-
ber of parameters to 18.30 million.

We emulated the resources of a computationally
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Figure 4: Histogram of the execution time by network module.

limited device to calculate the inference time. The de-
vice characteristics are the following: 4GB of mem-
ory and 0.5 CPUs of a 3.1 GHz Dual-Core Intel Core
i5. The time values shown in table 1 were obtained by
applying the models to a test video of 700 frames.

The time difference between Faster R-CNN with
MobileNetV3 and TRG-net is due to the use of a tra-
ditional method to discover regions of interest. Avoid-
ing the use of an RPN bypasses the calculations asso-
ciated with its 0.6 million parameters. Nevertheless,
the main timing gap is given by the reduced number of
proposals when using G-RPM. This implies fewer op-
erations since the network is computing smaller ten-
sors. Note that SSD has the lowest inference time, this
result is consistent with the number of parameters.
However, such a speed sacrifices AP and the flexi-
bility granted by a two-stage model. These times can
be seen in Figure 4, a histogram dividing the execu-
tion time per module for TRG-Net and Faster R-CNN
with MobileNetV3. The distribution of the values is
uniform, and the standard deviation is low, which is
good because it demonstrates stability during execu-
tion.

Faster R-CNN MobileNetV3

TRG-Net MobileNetv3

Faster R-CNN ResNet50

RetinaNet ResNet50

o
Ed

SSD Lite MobileNetv3
02

01 05 1 5

Inference time (s)

Figure 5: Distribution of the models according to their AP
and inference time.
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Figure 5 shows a global comparison consider-
ing the inference time and the AP simultaneously.
The arrow points in the direction of the best setting
that strikes a balance between speed and precision.
Among this cloud of points, TRG-Net, Faster R-CNN
with ResNet50, and the SSD Lite with MobileNetV3
stand out. SSD has the lowest inference time, in
counterweight, its AP is also the lowest. Since SSD
is a one-stage detector, it could not be adapted to
the TRG-Net architecture, losing the benefits of G-
RPM. On the other hand, using heavier backbones,
such as ResNet50, increases the AP. However, it also
increases the inference time, resulting in inadequate
models for real-time solutions.

4.2 Discussion

After the execution of TRG-Net over several real
street videos, we observed three things: (1) The preci-
sion and speed heavily depends on the G-RPM param-
eters, (2) videos with objects of heterogeneous sizes
lower the performance of the network, and (3) detec-
tion is poor for videos captured by non-fixed cameras.
By precision we do not refer to the evaluated AP, in
this context precision means how well TRG-Net de-
tects and classifies only moving objects. These obser-
vations show the proposal limitations, but also high-
light the strengths of TRG-Net. Our model performs
well when the correct G-RPM parameters are found,
is fast if the objects have homogeneous sizes, and de-
tection is good for videos captured by fixed cameras.

Figure 6 shows the output of the G-RPM with dif-
ferent values of learning rates /r, the minimum area
parameter a was equal to 35. Note that the number
of region proposals decreases when the /r value in-
creases. That is, the higher Ir, the fewer pixels will
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Figure 6: Visual comparison of G-RPM output with different learning rates over images with static and dynamic backgrounds.

be recognized as a change due to the speed of the
GMM update. Video number 1 recognizes more ob-
jects when using a learning rate equal to 0.01, while
video number 2 does it when using a learning rate
equal to 0.02. Therefore, multiple values of /r should
be tried to achieve the best results, but a value from
0.01 to 0.02 works fine in most cases.

Something similar occurs with the minimum-area
parameter. Video number 2 has small objects, so an
35 value for a is correct. However, video number 3
has objects of heterogeneous sizes, so a very large
value of a might miss small objects. A value close
to 0 would include small objects, but also many irrel-
evant regions, especially if the video is noisy. Here,
we can make a trade-off between precision and speed.
Small values of a means a greater number of pro-
posals, therefore, small objects will not be lost and
the precision increases. On the other hand, as there
are more proposals, the tensors will be larger and the
speed of the network will be affected. It is not recom-
mended to use values close to 0, it is better to find a
value that represents the minimum size of the objects
that you want to be detected.

Video number 4 was taken by a moving camera,
thus, it has a dynamic background. One of the lim-
itations of using a traditional MOD model, such as
GMM, is its low performance when the background
is not static. Since practically the entire scene is con-
stantly changing, the regions proposed by G-RPM are

very noisy, inaccurate, and incomplete. Therefore,
TRG-Net can only be applied to videos captured by
static cameras. Still, one point in favor of using GMM
is that it deals with lighting changes; thus, our solu-
tion performs well in most videos with fixed back-
grounds.

In addition to the three aforementioned points, we
cannot bypass the novelty of the addressed problem.
Literature has commonly dealt separately with video
object detection, motion detection, and image classi-
fication. To our knowledge, detecting only moving
objects has not been tackled yet, at least not explicitly
and prioritizing the speed and precision of execution.
This implies that there is no public data set benchmark
to objectively measure the overall effectiveness of the
solution, that is, the average AP of all the frames of
a video considering only moving objects. The Im-
ageNet VID data-set (Russakovsky et al., 2015) has
perhaps the closest benchmark to compare our pro-
posal, but this data-set contains annotations over static
images and dynamic backgrounds. Therefore, it is not
adequate to evaluate our proposal. In order to perform
an accurate measurement of our model, only mov-
ing objects in videos should be labeled with bound-
ing boxes and classes. Building such data-set is not a
trivial task, and implies a complete study of the nec-
essary resources and effort. Visually we can verify
that TRG-Net detects and classifies moving objects,
as can be seen in Figure 7. Therefore, we encourage
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Figure 7: TRG-Net output showing the bounding box and class of moving objects in a video.

the creation of an adequate data-set and benchmark to
be able to fully evaluate our proposal and future solu-
tions.

Finally, we highlight the flexibility of our solu-
tion, since it could be extended to different contexts
by modifying its components. Although TRG-Net is
intended to be lightweight and run on computation-
ally limited devices, we can increase classification
precision by using deeper backbones, more complex
GMMs, or by avoiding reducing the size of the in-
put images. In the same way, we can prioritize speed
by using much lighter backbones and adequate G-
RPM parameters. Regarding its applicability, since
the training is similar to the Faster R-CNN training,
we can make use of pre-trained weights over different
data sets, and just modify the use of G-RPM during
inference.

S CONCLUSIONS

We proposed TRG-Net, a lightweight GMM-based
model that runs in near real time on computationally
limited devices to address the fast detection and clas-
sification of moving objects. The evaluation showed
that the AP is high compared to one-stage detectors
using lightweight backbones. Regarding the model
speed, the inference time is less compared to the
Faster R-CNN using an RPN. Moreover, it can be re-
duced by applying lighter backbones and other values
to the G-RPM parameters. A more complex GMM
could be used to improve the G-RPM precision, as
well as new heuristics to increase the number of pro-
posals. Future work could evaluate the use of other
methods for detecting moving objects, such as opti-
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cal flow or even non-parametric models that avoid the
task of choosing a learning rate and a minimum area
for the G-RPM. Currently, there is no benchmark that
measures the precision of classification and detection
of moving objects at the same time. Thus, elaborating
a proper validation data set and benchmark is a com-
plex but necessary task. We are looking forward to
TRG-Net being applied to solve real-world problems,
such as smart surveillance systems, and set a prece-
dent for unified detection and classification of moving
objects.

REFERENCES

Albawi, S., Mohammed, T. A., and Al-Zawi, S. (2017).
Understanding of a convolutional neural network. In
2017 international conference on engineering and
technology (ICET), pages 1-6. Ieee.

Alsmirat, M. A., Obaidat, 1., Jararweh, Y., and Al-Saleh, M.
(2017). A security framework for cloud-based video
surveillance system. Multimedia Tools and Applica-
tions, 76(21):22787-22802.

Braham, M., Pierard, S., and Van Droogenbroeck, M.
(2017). Semantic background subtraction. In 2017
IEEE International Conference on Image Processing
(ICIP), pages 4552-4556. Ieee.

Braham, M. and Van Droogenbroeck, M. (2016). Deep
background subtraction with scene-specific convolu-
tional neural networks. In 2016 International Confer-
ence on Systems, Signals and Image Processing (IWS-
SIP), pages 1-4. IEEE.

Chen, Y. and Hu, W. (2021). A video-based method with
strong-robustness for vehicle detection and classifica-
tion based on static appearance features and motion
features. IEEE Access, 9:13083-13098.

Consortium, C. (2022). Detection evaluation.



A Lightweight Gaussian-Based Model for Fast Detection and Classification of Moving Objects

Fan, L., Zhang, T., and Du, W. (2021). Optical-flow-
based framework to boost video object detection per-
formance with object enhancement. Expert Systems
with Applications, 170:114544.

Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready
for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision
and pattern recognition, pages 3354-3361. IEEE.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 580-587.

Glegota, W., Karpus, A., and Przybytek, A. (2021). Mo-
bileNet family tailored for Raspberry Pi. Procedia
Computer Science, 192:2249-2258.

Gruosso, M., Capece, N., and Erra, U. (2021). Human
segmentation in surveillance video with deep learn-
ing. Multimedia Tools and Applications, 80(1):1175—
1199.

Haouari, F., Faraj, R., and AlJa’am, J. M. (2018). Fog
computing potentials, applications, and challenges. In
2018 International Conference on Computer and Ap-
plications (ICCA), pages 399—406. IEEE.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770-778.

Hou, B., Liu, Y., Ling, N., Liu, L., and Ren, Y. (2021). A
Fast Lightweight 3D Separable Convolutional Neural
Network With Multi-Input Multi-Output for Moving
Object Detection. IEEE Access, 9:148433-148448.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B.,
Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V.,
et al. (2019). Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 1314-1324.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam, H.
(2017). MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications.

Hung, M.-H., Pan, J.-S., and Hsieh, C.-H. (2014). A fast
algorithm of temporal median filter for background
subtraction. J. Inf. Hiding Multim. Signal Process.,
5(1):33-40.

Jagannathan, P., Rajkumar, S., Frnda, J., Divakarachari,
P. B., and Subramani, P. (2021). Moving Vehicle
Detection and Classification Using Gaussian Mix-
ture Model and Ensemble Deep Learning Technique.
Wireless Communications and Mobile Computing,
2021:1-15.

Krizhevsky, A., Sutskever, L., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25.

Kulchandani, J. S. and Dangarwala, K. J. (2015). Moving
object detection: Review of recent research trends. In
2015 International Conference on Pervasive Comput-
ing (ICPC), pages 1-5. IEEE.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollér, P.
(2017). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980-2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P,
Ramanan, D., Dollar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740-755.
Springer.

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu,
X., and Pietikdinen, M. (2020). Deep Learning for
Generic Object Detection: A Survey. International
Journal of Computer Vision, 128(2):261-318.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on com-
puter vision, pages 21-37. Springer.

Machado, P., Oikonomou, A., Ferreira, J. F., and Mcginnity,
T. M. (2021). HSMD: An Object Motion Detection
Algorithm Using a Hybrid Spiking Neural Network
Architecture. [EEE Access, 9:125258-125268.

Patel, H. A. and Thakore, D. G. (2013). Moving object
tracking using kalman filter. International Journal of
Computer Science and Mobile Computing, 2(4):326—
332.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779—
788.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International journal of com-
puter vision, 115(3):211-252.

Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Song, Z., Ali, S., and Bouguila, N. (2020). Background
subtraction using infinite asymmetric gaussian mix-
ture models with simultaneous feature selection. /IET
Image Processing, 14(11):2321-2332.

Suzuki, S. et al. (1985). Topological structural analy-
sis of digitized binary images by border following.
Computer vision, graphics, and image processing,
30(1):32-46.

Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model
scaling for convolutional neural networks. In Interna-
tional conference on machine learning, pages 6105—
6114. PMLR.

Tayeb, A. A., Aldhaheri, R. W., and Hanif, M. S.
(2021). Vehicle speed estimation using gaussian mix-
ture model and kalman filter. International Journal of
Computers, Communications and Control, 16(4).

Xie, S., Girshick, R., Dolldr, P., Tu, Z., and He, K. (2017).
Aggregated residual transformations for deep neural

183



VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492—
1500.

Yang, F., Karanam, S., Zheng, M., Chen, T., Ling, H.,
and Wu, Z. (2022). Multi-motion and Appear-
ance Self-Supervised Moving Object Detection. In
2022 IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), pages 2101-2110. IEEE.

Yang, Y., Loquercio, A., Scaramuzza, D., and Soatto,
S. (2019). Unsupervised Moving Object Detection
via Contextual Information Separation. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 879-888. IEEE.

Yi, Z. and Liangzhong, F. (2010). Moving object detection
based on running average background and temporal
difference. In 2010 IEEE International Conference
on Intelligent Systems and Knowledge Engineering,
pages 270-272. IEEE.

Yuan, Y. (2021). A pet detection system based on yolov4.
In 2021 2nd International Seminar on Artificial In-
telligence, Networking and Information Technology
(AINIT), pages 342-348. IEEE.

Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., As-
ghar, M., and Lee, B. (2022). A survey of modern
deep learning based object detection models. Digital
Signal Processing, page 103514.

Zhang, J. (2021). Navigating in the clouds: The triumphs
and drawbacks of the cloud act.

Zhao, Z.-Q., Zheng, P., Xu, S.-T., and Wu, X. (2019). Ob-
ject Detection With Deep Learning: A Review. /IEEE
Transactions on Neural Networks and Learning Sys-
tems, 30(11):3212-3232.

Zhu, H., Wei, H., Li, B., Yuan, X., and Kehtarnavaz, N.
(2020). A review of video object detection: Datasets,
metrics and methods. Applied Sciences, 10(21):7834.

Zivkovic, Z. (2004). Improved adaptive gaussian mixture
model for background subtraction. In Proceedings of
the 17th International Conference on Pattern Recog-
nition, 2004. ICPR 2004., volume 2, pages 28-31.
IEEE.

184



