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Abstract: We present a system focused on the Visual Inspection of Pin Through Hole (PTH) electronic components.
The project was developed in a partnership with a multinational Printed Circuit Board Printed Circuit Board
(PCB) manufacturing company which requested a solution capable of operating adequately on unseen com-
ponents, not included in the initial image database used for model training. Traditionally, visual inspection
was mostly performed with pre-determined feature engineering which is inadequate for a flexible solution.
Hence, we used a one-shot-learning approach based on Siamese Neural Network model trained on anchor-
negative-positive triplets. Using a specifically designed web crawler we collected a new and comprehensive
database composed of electronic components which is used in extensive experiments for hyperparameters tun-
ing on training and validations stages, achieving satisfactory performance. A web application is also presented,
which is responsible for the management of operators, recipes, part number, etc. A hardware responsible for
attaching the PCBs and a 4K camera is also developed and deployed on industrial environment. The overall
system is deployed in a PCB manufacturing plant and its functionality is demonstrated in a relevant scenario,
reaching a level 6 in Technology Readiness Level (TRL).

1 INTRODUCTION

Detecting defects is very important in industrial man-
ufacturing. Even though many inspections are per-
formed manually, Machine Vision (MV) technologies
can be applied to determine whether or not manufac-
tured elements satisfy conformity requirements en-
forced by government’s policy makers or the com-
pany itself. High customer demand, high produc-
tion rate and an ever-growing and fierce competition
are motivating factors for the development of high-
confidence, low-error MV systems.

This is particularly true for PCB manufacturing
industries. It is currently experiencing an increase
in demand but due to recent international health and
political events, a shortage in production. Indeed,
even though there were signs of lack of chip produc-
tion prior to the world pandemic, the industry utiliza-
tion hasn’t fallen bellow to 90% since the summer
of 2020, reflecting a growing appetite for connected
home appliances and increasingly sophisticated au-
tomated driving features and digital connectivity in
cars (Harris, 2022).
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With the advancement of microelectronics, the
size of electronic components is being reduced over
the years, which increases the challenge of traditional
image processing and computer vision approaches fo-
cused on operating on well-defined/low-variance sys-
tems. Because of this, supervised learning algorithms
have being used to meet the demands for higher accu-
racy. When supervised learning algorithms are used
to solve any kind of problem, they must be trained
on well-annotated Databases (DBs) once the quality
of the database will define the quality of the trained
model. Thus, other challenge is the lack of avail-
able DBs containing images of electronic components
specifically of type PTH. Unfortunately, the ones
that do have a non-permissive license for commercial
uses (Pramerdorfer and Kampel, 2015). Also, the ma-
jority of datasets are built to solve specific problems
(such as Surface Mounted Device (SMD) or verifying
discontinuities on conduction tracks) and they cannot
be combined nor repurposed for different scenarios.
In our context, we developed a web crawler to collect
images of electronic components from the Internet,
to increase the number of examples and improve the
model’s generalization capacity by avoiding overfit-
ting.
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In addition, unlike using pre-built features based
on textures, colors, etc., Neural Networks (NNs) are
able to learn how to predict classes of objects or at-
tributes. When a given model must be applied to
more classes, the NN must be re-trained on a bigger
database with such novel data. To tackle this limita-
tion and avoid the collection of new data, we use a
Siamese Neural Network (SNN) (BROMLEY et al.,
1993) which, during inference, takes two inputs, a
sample and a reference. Both images run through a
convolutional backbone which provides a vector rep-
resentation for each image. Then, both representation
vectors are compared with a similarity function that
will determine how similar the sample image is to the
reference one. SNNs can learn the most relevant vi-
sual features to properly quantify the similarity be-
tween the inputs if adequately trained. We cite some
related works in the following.

Researchers have separated visual inspection into
two stages; detection and fine-grained matching (ver-
ification). For instance, Reza et al. focused on ap-
plying hard loss to detect components and identify-
ing subtle changes such as slightly different logos
printed onto Integrated Circuits (ICs) housing (Reza
et al., 2020). The goal was to identify counterfeit
components and prevent PCB malfunction, security
vulnerabilities, among others. They used loss boost-
ing to alleviate the problem of undetected small com-
ponents when using traditional Convolutional Neural
Networks (CNN)-based detectors. Since they con-
sider each PCB a sample, they split all objects (elec-
tronic components) into “easy” and “hard”, according
to their associated difficulty to locate. Researchers
annotated 483 PCB images resulting in approximate
5000 labeled IC samples – we could not access the
dataset because of a broken link. After evaluating dif-
ferent backbones and hyperparameters settings, they
achieved up to 92.31% verification accuracy on a
held-out test set.

Luan et al. (Luan et al., 2021) used
SNNs (BROMLEY et al., 1993) for defect de-
tection. They mention a proprietary database
containing approximately 400 samples for each of
five classes; normal and four synthetic and specific
defect types. Performances of different loss functions
are presented to assess the impact on unbalanced
datasets with much fewer defect samples. No mention
is given as to the cross-validation scheme used and
different performances seem to be more influenced
by two different classification methods (CNN with
two neurons as final classifiers versus Support Vector
Machine (SVM)-based classifier) than by different
choices of loss functions.

Nagy (Nagy and Czúni, 2021), et al., used SNN
as a strategic option for the identification of anoma-
lies on a wide variety of object types on databases
containing images of traffic signs an metal disk-shape
castings with and without defects. Unfortunately, our
dataset does not have samples with actual defects.

Kalber et al. (Kälber et al., 2021) used U-Net for
segmentation of electronic components on PCB im-
ages published by Tang et al. (Tang et al., 2019). Our
approach is different since we do not perform local-
ization of components which are manually annotated
by the operator when the recipe is constructed. Be-
sides that, our focus in this work is to verify compo-
nents that were not present in the dataset.

Saeedi and Giusti proposed an anomaly detection
system for industrial vision inspection (Saeedi and
Giusti, 2022). To alleviate problems associated with
deffect loss due to downsizing, they propose the use
of patches as input to an Autoencoder (AE).

Our contributions are summarized in the follow-
ing:

1. We collect a comprehensive database composed
of images of PTH electronic components in a
cooperation with a PCB manufacturing company
and by developing a web crawler which collects
more data from the Internet. We manually an-
notate them to select components of interest. A
specific data augmentation approach is also pre-
sented.

2. A visual inspection model using SNN that pro-
vides flexibility to different types of electronic
components validated using a comprehensive set
of validation experiments and hyperparameters
tuning.

3. A hardware to stabilize the PCB and control envi-
ronment illumination and a flexible, customizable
web app are developed and presented.

2 METHODOLOGY

We define five methodological steps to guide our ap-
proach: 1. Dataset acquisiton and cleaning. 2. Image
annotation. 3. Application development. 4. Database
Augmentation. 5. SNN training and validation.

The first step consists in acquiring images from
the Internet using a web crawler, developed by us.
Once the images were already downloaded and the
dataset is well organized, we started the second step,
which consists in annotating the image database that
we collected using the YOLO format, which is simple
to read and parse from the computer perspective. We
annotate the images using an object detection strategy
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Anchor Negative Positive

(a) Training dataset sample triplets.

Anchor Negative Positive

(b) Validation dataset sample triplets.

Figure 1: Sample triplets comprised in the PTH image dataset for (a) training and (b) validation. For each case, left, middle
and right columns correspond to anchor, negative (added noise) and positive images. Notice the small gray patches present
on negative samples (middle columns). Each image actual size is 128×128.

because we will need to crop the components after-
wards to build our dataset since each image (of a sin-
gle PCB) has several electronic components and our
work aims at classifying whether the component is
correct or not. Hence, the third step was to develop an
application capable of cropping the PCB components
from the image so each component is used individu-
ally to train the model. The fourth and fifth steps were
to augment the dataset and train a Siamese neural net-
work (SNN), respectively.

After annotating the images, we had a compre-
hensive database composed of electronic PTH com-
ponents of PCB. Although we have a good amount of
images, we still need images with actual defects (non-
conform components), since our model must be able
to identify whether they are defective or not. Because
we did not find those images, we developed some im-
age processing routines that randomly insert noise in
the images, to make them different from the correct
ones, enforcing the model to understand which are
generic visual features to search for. The augmen-
tation routine developed generates triplets, which are
composed by the anchor (IA), one positive example
(IP) and a negative example (IN). The anchor is a ref-
erent component, the positive example is an image
similar to the anchor (of the same component) and
the negative one is a different component, the same
component with defect or with added noise. The de-
velopment of the augmentation routine was done in a
similar way to the work of (Schroff et al., 2015).

2.1 Database

The database construction started with the develop-
ment of the web crawler, that would collect additional
images from the internet. Once the web crawler does
not have any kind of smart component in its operation,
some parts of the collected images can be discarded.
Hence, we performed some cleaning rounds over all
images before the annotation process. We annotated
the images using the YOLO format, since we consider
it easier to parse and store. We considered the elec-
tronic components shown in Table 1.

Table 1: List of electronic components in the dataset.

ID Label
1 Capacitor
2 Ceramic Capacitor
3 Converter
4 Diode
5 Heat sink
6 Crystal Oscillator
7 Relay
8 Resistor
9 SMD capacitor

10 SMD diode
11 SMD transistor
12 Transistor

In addition of the classes of components, we also
defined which error categories the model should be
able to identify. The error classes are listed in the
Table 2. These errors were generated using the data
augmentation routines that we developed, once it is
reasonably difficulty to find defective samples in the
internet.

To construct the triplets, first we determine the an-
chor by selecting a component belonging to a given
class from our list (cf., Fig. 1). After that, we deter-
mine the positive image, by slightly rotating or trans-
lating the anchor to make the model understand that it
is a different image of the same anchor component.
Using positive image is important because the net-
work must aim at reducing the distance between two
embeddings belonging to the same category too. Re-
garding the negative sample, disruptive rotations or
translations turn an anchor to negative because the
recipe does not admit it (e.g., a component could be
wrongly welded). We propose three different strate-
gies for constructing a negative sample:

Table 2: List of errors in the dataset construction.

ID Label
1 missing component
2 wrong component
3 shifted or rotated component
4 component lifted
5 component misplacement
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(a) PCB inspection cabinet. (b) Three cradles. (c) Cabinet with a cradle installed.

Figure 2: Elements constituting the hardware developed for this project. (a) Cabinet with 4k camera. (b) Examples of 3D
printed cradles. (c) PCB installed into a cradle.

1. Select an image from a class different from the
anchor.

2. Use a modified version of the same anchor image,
like the addition of random gray patches.

3. Use a hybrid scheme where both strategies 1 and
2 are combined.

The augmentation routines were planned to allow
the model to discern between correct and incorrect
or defective components, but also to make the model
more robust to naturally occurring small translations
and rotations for non-defective components. At the
end, we were able to generate approximately 4,000
triplets.

2.2 Hardware

A custom cabinet was designed and built to enable
PCB photos to be taken in a controlled environment,
avoiding outside interference and thus ensuring the
correct operation of the model. This kind of cabinet
is designed to be used in real industry environments,
which allows us to test our model in an ambient that
mimics a real scenario.

The cabinet (Figure 2a) is a box built with MDF
(Medium-Density Fiber-board), with an open front.
The box has six holes with nuts at the bottom, al-
lowing cradles for the PCBs to be screwed onto the
bottom. This approach allows the cradle to remain
fixed during PCB verification and makes it possible
to change for other cradles associated with different
PCB clients.

The cradle is custom-made and can be printed us-
ing a 3D printer, allowing the user to design an spe-
cific cradle for each PCB design. This strategy al-
lows us to place different PCBs of the same type in
the same position on the cabinet. We used the GT-
MAX3D CORE GT4 printer and white ABS filament
to print the cradles used during the experiments (Fig-
ure 2b).

At the top of the cabinet there is an opening where
a Logitech BRIO 4K resolution camera where placed.
An LED strip was installed on the ceiling to provide
a more homogeneous light. It is possible to see in the
Figure 2c the cabinet with a cradle installed during a
PCB inspection.

2.3 Web Application

After model training (cf, Section 2.4), it is inserted
into a web application that can perform the inspection
of the PCBs and manage all the metadata related to it.
The system manages recipes which contains informa-
tion related to the confidence threshold of each com-
ponent. Additionally, there is also the management
of components, which defines the positive examples
for each component class. This application illustrates
how it is possible to tackle industrial problems by
combining modern NN models with traditional appli-
cation development.

2.4 SNN

Regarding the model, we choose a SNN classifier,
because it is a metric-based model which allows the
addition or removal of classes without being neces-
sary to retrain the model. We performed the training

Figure 3: Our model architecture.

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

892



and validation several times using the grid-search al-
gorithm to find the best set of hyperparameters. The
training process was executed by successively insert-
ing positive and negative examples as inputs into the
model.

Since the SNN is a metric-based model, it has the
capacity of comparing two inputs and evaluate if they
are similar or not. So, if we provide two images as
input to the model, it will process both entries and
compare them by using a comparison function that is
defined in its architecture. The SNN training process
is done by using triplet loss, which is defined in the
Eq. (1).

L(IA, IP, IN) = max(∥ f (IA)− f (IN)∥2−
∥ f (IA)− f (IN)∥2 +α,0)

(1)

Where: f is the network embedding; IA, IP and IN are
the entries (images), and; α is the margin. By opti-
mizing parameters to reduce the triplet margin loss,
the training procedure tries to decrease the distance
between positive and anchor and increase the distance
between negative and anchor. This approach was in-
spired in the FaceNet (Schroff et al., 2015), since they
try to solve a similar problem. The model architecture
can be seen in the Figure 3.

The architecture consists basically of a backbone,
with parameters shared by all the model entries. The
backbone processes the input and summarizes the
most relevant information which are then flattened
into the feature vectors and are compared by the
loss function. We tested four different backbone
topologies, as an attempt of understand which one is
most suitable to extract relevant features from the in-
puts. Those were; InceptionResnet V2; MobileNet
V3 Large; MobileNet V3 Small and ResNet50.

2.5 Evaluation Metrics

The output of the trained SNN was defined in two
categories: nonconformity (N) and conformity (P).
The nonconformity category determines that at least
one of the PCB components is defective or missing.
The conformity category means that all components
are where they were expected to be in the PCB,
determining that such PCB was assembled correctly.
Besides that, the classification results were assessed
by analyzing the Precision×Recall curve, computed
by the equations 2 and 3, below.

Prec =
T P

T P+FP
(2)

and
Rec =

T P
T P+FN

, (3)

where, T P denotes True Positive, FP False Positive,
and FN False Negative. The Precision×Recall (PR)
curve was computed using different thresholds of the
similarity score δ between a pair of images. We
also use the Receiver Operating Characteristic Curve
(ROC) and Area Under the Curve (AUC) to evaluate
model performance.

2.6 Experiments

We divided the experiments into two stages aim-
ing at reducing the number of hyperparameters
and, consequently, the number of experiments
necessary to search for the best performance.
In the first stage, the selected hyperparameters
were: 1. Enable/Disable batch normalization;
2. Enable/Disable embeddings normalization,
and; 3. Which layers must be trained in the
backbone. Our reason to select these three was be-
cause they were closely related: the backbone used
dictates how many layers we can fine-tune, for exam-
ple. The hyperparameters used in the first phase can
be seen in the Table 3.

We began the experiments with two most frequent
categories: Resistor and Capacitor. After that, we per-
formed more experiments where we added the next
class with the highest number of samples to each new
experiment, while using those hyperparameters val-
ues from the best results in the first stage.

To enable better experiments, we used the
Lightning (Falcon and The PyTorch Lightning team,
2019) framework to implement and train the model
and timm (Wightman, 2019) to load the pretrained
MobileNet v3 model. The Lightning framework al-
lows us to easily train and test the model, as well as to

Table 3: Hyperparameters used in the first phase of the ex-
periments. Others were implemented (e.g., TTA), but not
used.

Hyperparameter Value
Augmentation strategy coarse-dropout-v1
Backbone MobileNet v3 (large, 100)
Batch normalization {True, False}
Batch size 64
Embedding dimension 512
Embeddings normalization {True, False}
Image size 128×128
Learning rate 0.01
Loss function Triplet Margin Loss
Number of epochs 100
Optimizer Adam
Trainable layers {0, 1, 10, 27, 43, 67, 91,

103, 107, 108, 109}
Triplet distance Euclidean
Triplet margin 0.2
Triplet strategy same
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Figure 4: The dataset sample distribution histogram.

use many variations of datasets if needed. The timm
library is a collection of PyTorch modules for com-
puter vision, which allows us to load any pretrained
model and use it in our experiments. For experiment
tracking we used guildai package (Smith, 2018),
which also enable us to perform hyperparameters tun-
ing and compare experiments.

Since our dataset images vary in shapes, we
needed to resize them before passing as input to
the model. We determined the default shape as
128×128×3 because almost 90% of the dataset has
width and height below 128. A batch size of 64
samples (triplets) allows us to introduce class vari-
ety without inserting too much noise. We imple-
mented and used the TripletMarginLoss with default
euclidean distance, but with a customized margin as
hyperparameter (Musgrave et al., 2020). At the end,
we also implemented the Test-Time Augmentation as
an option to the validation stage aiming at decreas-
ing validation metrics variance, because our negative
samples are artificially created with image processing
augmentation routine.

3 RESULTS AND DISCUSSION

3.1 Database Statistics

Each experiment was tracked and monitored via
guildai and TensorBoard (Abadi et al., 2016),
which allow us to compare the experiment’s metrics
by visualizing the training and validation losses, as
well as image similarity metrics. Figure 5 shows the

training and validation losses of the baseline model,
which was trained using the MobileNet v3 (large,
100) backbone. In addition, we stored the confusion
matrix, distance, and similarity histogram between
pairs in the triplet, PR and ROC curves, and model
weights to evaluate any major changes in the updates.

The database has 18,303 samples (images of elec-
tronic components of PCB) extracted from internet
sources. These images were collected from the Inter-
net using a web crawler developed for this purpose.
The database was divided into 12 classes, as speci-
fied in Table 1. The database distribution among the
classes can be seen in Figure 4. To better observe the
improvement of the model, we determined the valida-
tion set at the beginning of the model development.

3.2 Experiments

Results from the best experiments in phase one (base-
line) are shown in Table 4. We validated the model
based on its accuracy, precision, and recall. Some in-
stabilities are present in the validation, with accuracy
varying from 0.65 to 0.96. We also stored the area
under the Receiver Operating Characteristic (ROC)
curve during validation to inspect the model’s abil-
ity to detect conformities for a given probability of
false positive (see Figure 5a). Similarly, we also plot
a Precision×Recall (PR) curve to analyze their trade-
off, as shown in Figure 5b.

We also evaluated the results using a confusion
matrix, as shown in Figure 5c. The confusion ma-
trix shows us that our model correctly predicted 981
(36.50%) negative pairs and, 1321 (49.14%) positive
pairs. However, there were 23 (0.86%) false nega-
tives and 363 (13.50%) false positives. These results
are detailed in Figure 6, which shows the similarities
between the positive and negative pairs.

In Table 4 we summarize phase 1 by showing only
the best models which achieved an accuracy above
70%, which is a subset of 7 experiments from a total
of 44 that we performed. Except for the experiments
1, 3, and 6, the remaining trials show errors and met-
rics curves similar to the best experiment from phase
1.

Finally, in Table 5 we show the results for phase
2, where we add one more class to each experiment.
We also rerun the experiment which gave us the best
result from phase 1 with purposes of comparison. The
instability showed in the training and validation stages
of the experiments of phase 1 is also present in the
experiments of phase 2. As shown in Figure 1, our
augmentation in the negative sample (middle column)
was intended to mimic defective components, while
the positive sample received a small augmentation.
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Table 4: Metrics for the top models.
experiment amount layer trainable batch norm normalize train/accuracy train/precision train/recall val/accuracy val/precision val/recall

1 67 no no 0.9995 0.9991 1.0 0.9561 0.9268 0.9918
2 91 yes yes 0.9281 0.8810 0.9995 0.8563 0.7858 0.9828
3 91 yes no 0.9894 0.9863 0.9928 0.7511 0.6708 0.9903
4 103 yes yes 0.9967 0.9939 0.9997 0.7395 0.6586 1.0
5 109 yes yes 0.9990 0.9981 1.0 0.7358 0.6563 0.9955
6 108 no no 1.0 1.0 1.0 0.7072 0.6314 1.0
7 108 yes yes 0.9995 0.9993 0.9997 0.7034 0.6289 1.0

What is worse, the results from the best experiment
in phase 1 (experiment 1 in Table 4) could not be re-
produced in a new run (2 in Table 5). These results
seem to indicate that the augmentation may not be
good enough, since the model does not converge as
we expect.

4 CONCLUSION

We presented results of a visual inspection system fo-
cused on electronic components for the purpose of
PCB production quality control. The project was de-
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Figure 5: Baseline results.

veloped in a partnership with a multinational PCB
manufacturing company which possesses a wide va-
riety of international clients.

We developed a complete system — a web app, a
machine learning model, and a hardware plataform —
which enabled the company to inspect defects in un-
seen components. This is a major advantage over cur-
rent rigid inspection process. An SNN architecture,
which is a flexible and scalable solution is adequate to
tackle the problem, was trained using with data gath-
ered from the company and from a web crawler, cus-
tomized for the purpose of collecting images of elec-
tronic components from the internet. The model was
evaluated using a set of experiments showing promis-
ing results.

The overall system is currently deployed in the
company’s manufacturing plant. Its feasibility and
adequacy of the method was demonstrated on a rel-
evant scenario, which can categorize the solution
within a level 6 of Technology Readiness Level
(TRL). Further experiments are being conducted in
a more challenging scenario (production — aimed at
TRL 7) and newer results will be eventually reported.

One of the main obstacles in the development of
the system was the lack of images of non-conform
components. To overcome this problem, we devel-
oped an simple augmentation strategy to simulate de-
fects that could be seen in production by modifying
random regions of the image and adding gray patches.
More work is needed in this vein, that is, how could
we best simulate defects that would generalize well
for all types of components? Each component has its
own rules for what can be categorized as an defect.
For example, a capacitor can’t be rotated by 180 de-
grees, but a resistor can.

Another fruitful approach is to use other distances
and losses for the SNN model. The current model
uses a triplet loss function with a default euclidean
distance, which is a common strategy in the metric
learning literature. Also, a common loss in the face
recognition literature, the ArcFace loss (Deng et al.,
2019), could be used.

At the end, we think that by curating better data,
developing a new augmentation strategies, and taking
advantage of the training scripts we implemented, our
work can be used in the industry to improve the qual-
ity control process of PCB production.
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Figure 6: Histograms of cosine similarities for negative (left) and positive (right) pairs.

Table 5: Metrics for the top models in phase 2.
experiment classes train/accuracy train/precision train/recall val/accuracy val/precision val/recall
1 Resistor, Capacitor, Capacitor Cerâmico 0.9855 0.9727 1.0 0.7199 0.6423 1.0
2 Resistor, Capacitor 0.9968 0.9942 0.9996 0.6860 0.6170 0.9903
3 Resistor, Capacitor, Capacitor Cerâmico, Diodo 0.9991 0.9989 0.9993 0.5554 0.5295 1.0
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