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Abstract: One of the contemporary grand challenges in cybersecurity research is designing and evaluating effective
attack strategies on network infrastructures performed by autonomous agents. These attackers are developed
and trained in simulated environments. While the simulation environments are maturing, their support for
analyzing the simulation data remains limited, mainly to inspect individual simulation runs. Extending the
analytical workflow to compare multiple runs and integrating visualizations could improve the design of both
attack and defense strategies. Through our work, we want to spark interest in the largely overlooked domain
of visual analytics for cybersecurity simulation workflows. In this paper, we a) analyze the current state of
the art of using visualizations in cybersecurity simulations; b) conceptualize the three-tier analytical workflow
and identify user tasks with suggested visualizations for each tier; c) demonstrate the use of visualizations that
augment existing CYST simulator on several real-world tasks and discuss the limitations and lessons learned.

1 INTRODUCTION

Research on attack strategies is receiving increasing
attention in the cybersecurity community due to the
growing scale and severity of real-world attacks. One
of the leading research directions is autonomous soft-
ware agents implementing the latest advances in ma-
chine learning and other artificial intelligence meth-
ods. These agents are expected to dominate cyberse-
curity warfare this decade. Their design and develop-
ment require large volumes of training data and simu-
lation environments.

The simulation environments enable testing and
evaluating attackers’ behavior in a secure virtual en-
vironment where simulations can be easily adjusted,
repeated, and executed concurrently. These environ-
ments have already matured in their core features,
such as configurability, scalability, and logging. How-
ever, they usually lack analytical tools or provide only
limited support focused solely on a single simulation
run inspection. Despite visualizations used in oper-
ational cybersecurity, network traffic anomaly detec-
tion, or malware and forensic analyses, their poten-
tial in autonomous agent research still needs to be ex-
plored.

We report on our work toward improving an-
alytical capabilities of cybersecurity simulation re-
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searchers’ through visualizations. In this paper, we
address three research questions:
RQ1: What are the commonly used visualizations in
cybersecurity attack simulators?
RQ2: Which are the main analytical tasks when work-
ing with the simulation data?
RQ3: How can visualizations support analysts’ work?

Our contributions are, therefore, three-fold: a) an
overview of the visualization usage in analyzing the
simulation data; b) a conceptualization of cyberse-
curity simulation analytical workflow; c) sample use
cases demonstrating two prototype visualizations to
solve real-world analytical tasks.

2 RELATED WORK

In this section, we address the RQ1. Based on the lit-
erature review, we showcase examples of simulators
used in cybersecurity research and discuss the visu-
alizations used in such a context. In the review, we
focused on virtual computer network simulators that
have already been demonstrated as a cybersecurity re-
search vehicle.

2.1 Network Simulators

Network Security Simulator – NESSi2 (Grunewald
et al., 2011) is an open-source agent-based simula-
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tion environment focused on integrating and evalu-
ating Intrusion Detection Systems (IDS). Its model
allows the creation of custom network topology and
defining scenarios in which the topology will be used.
The simulator provides a graphical user interface, a
simulation engine, and a database with results where
the simulation data are stored. The user interface al-
lows for configuring the components of the simula-
tions and visualizing the simulation results.

Objective Modular Network Testbed in C++ –
OMNeT++ (Varga, 2010) is an open-source, exten-
sible modular framework primarily designed for net-
work simulation. It provides a runtime environment
and a domain-specific language for network descrip-
tion. Unlike most available simulators, it allows
defining of arbitrary types of networks and commu-
nication protocols. While intended for network traffic
simulations, it also offers support for executing and
evaluating network attack scenarios (Michalı́ková,
2018; Kružı́k, 2018).

Real-time Immersive Network Simulation Envi-
ronment for Network Security Exercises (Liljenstam
et al., 2005) was designed to improve networks’
readiness for possible attacks and security exercises
through realistic simulation of network behavioral at-
tacks. The networks can contain hundreds of subnets
and users compared to the other simulators.

CyberBattleSim (Microsoft Defender Research
Team, 2021) is an experimental platform for explor-
ing the interaction of automated agents in a simulated
network environment. The platform offers a high-
level abstraction of networking and cybersecurity
concepts and uses the OpenAI Gym library (Brock-
man et al., 2016) to train autonomous agents using
reinforcement learning. The simulation environment
uses a fixed network topology and allows the defini-
tion of stochastic defenders to implement defensive
measures.

The CYST (Drašar et al., 2020) simulator, which
addresses the shortcomings of the previous simula-
tors, is a discrete event-based message-passing simu-
lator enabling extensive customization of agents’ ac-
tions and impacts. It validated NATO’s reference ar-
chitecture implementation for autonomous cyberse-
curity agents (Theron et al., 2020). We use it as a
base environment for evaluating our visualization ap-
proaches.

2.2 Visualizations in Network
Simulators

While there is broad research in cybersecurity visual-
izations (Damaševičius et al., 2019), the use of visu-
alizations in cybersecurity simulators is mostly unex-

plored. A literature survey and examination of exist-
ing simulators revealed three visualization types pre-
dominantly used: network graphs, attack graphs, and
sequence diagrams. Other common chart types (e.g.,
line or bar charts) are occasionally used to summarize
statistical information.

Network graphs are used to model the network
topology in which the simulation runs. Nodes rep-
resent individual machines in the network, and edges
are the connections between them. Network graphs
can also model communication (Minarik and Dy-
macek, 2008) or logical topology, i.e., the arrange-
ment of elements into separate segments and virtual
networks that are defined by an addressing mecha-
nism. Edges and nodes can be provided with ad-
ditional attributes to represent their state (e.g., node
attacked/abused, link utilization, or unavailability).
Moreover, nodes might represent different devices,
such as routers, servers, or workstations. The advan-
tage of network graphs in cybersecurity simulators is
their illustrative nature. They make it easy to visual-
ize the progress of an attack and, if the information is
animated and combined with an attack timeline, illus-
trate its different phases. A significant disadvantage
of network graphs is that their readability decreases
as the number of edges increases since the resulting
network often resembles hairballs for large topologies
with hundreds of edges.

Attack graph visualizations represent the most
common visualization types used to depict attack
vectors (Yi et al., 2013). They allow identifying
weak spots that an attacker can exploit. Attack
graphs are frequently modeled either as modified net-
work graphs (Homer et al., 2008) or using the UML
sequence diagrams (Blaha and Rumbaugh, 2005).
While the former is a network-centric representation,
the latter is an attacker-centric representation that al-
lows for modeling time dependencies and simulta-
neous processes, which is beneficial mainly for dis-
tributed attacks.

3 ANALYTICAL WORKFLOW

This section addresses the RQ2 using the CYST sim-
ulator as a model environment. We first present the
data produced by the simulator, followed by an in-
troduction to the three-tiered analytical workflow and
user goals. We also suggest suitable visualizations for
each tier. Although other simulation tools may dif-
fer in implementation details, the task categorization
is guided by the method described in (Brehmer and
Munzner, 2013).
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Figure 1: Proposed formalization of the analytical workflow for cybersecurity simulations based on methodology by (Brehmer
and Munzner, 2013), defined by data, tasks, and possible visual representations. The ask color indicates why it is performed
(yellow) and how (green).

3.1 Simulation Data

The CYST simulator implements the Action-Intent
Framework (Moskal and Yang, 2020) attack model,
which contains actions that attackers (i.e., agents)
choose to explore the network, gain new permissions,
exploit sessions, or exfiltrate and delete data. The
combination of these actions results in a so-called at-
tack scenario. Actions are communicated to targets in
the form of requests sent as messages in the simulated
network. Each message may contain additional meta-
data processed by other components. For example,
a message containing an action to perform a service
scan may stochastically receive an event flag identify-
ing it as a scan, thus simulating detection by an Intru-
sion Detection System (IDS). Other components may
then respond appropriately based on this event flag.
In our implementation, event flags for attack actions
are generated with predefined probabilities, simulat-
ing some risk of detection. A message containing an
event flag is considered an attack action. The gen-
eration of event flags for defensive actions is always
deterministic.

The simulator run creates a communication report,
i.e., the list of sent REQUESTs containing the attack ac-
tions, and RESPONSEs with the related results. There
are up to 13 attributes encoded in each message:

• type – message type (REQUEST or RESPONSE);
• id – identifier (ID);
• {src|dst} ip – source/destination address;
• {src|dst} id – source/destination ID;
• hop {src|dst} ip – intermediate node address;
• hop {src|dst} id – intermediate node ID;

• {src|dst} service – attacked service;
• ttl – time-to-live parameter;
• action – performed attack action;
• result – response to the attack; e.g., when the

attack was successful: SERVICE|SUCCESS.

3.2 Analytical Workflow and Tasks

The overarching goal of cybersecurity researchers
working with the simulator is to design, develop,
and test (semi-)autonomous cybersecurity systems.
Based on the informal discussions with domain ex-
perts participating in the CYST simulator develop-
ment and with the second author as its lead architect,
we formalized the analytical workflow (Figure 1) us-
ing the guidelines presented in (Brehmer and Mun-
zner, 2013). We identified three tiers of the analytical
workflow with respective tasks and proposed visual-
izations suitable for each tier.

3.2.1 Top Tier

At the highest tier, it is necessary to identify simulator
runs with similar properties and find possible outliers
that could be further compared in more detail. The
fundamental problem at this tier is thus the choice of
classification criteria. In the CYST simulator, we de-
fine them as a set of Cartesian products of message
attributes and their values obtained from the simula-
tion runs. The system should therefore support ana-
lysts in creating their classification criteria, allowing
exploratory analysis and clustering. In terms of vi-
sualizations, dimensionality reduction techniques and
clustering algorithms are appropriate here. Following
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the cluster analysis results, the analyst can focus on
inspecting individual runs (see bottom tier) or com-
pare two or more runs from the same or different clus-
ters (see middle tier). Thus, the system should provide
methods for individual and group selection of individ-
ual runs.

Related Analytical Tasks:
• Present and explore general patterns in simulation

runs and their groupings based on user-defined
criteria.

• Identify simulation runs where the attack agents
were (un)successful or where the attack agents
behave differently/similarly based on user-defined
criteria (e.g., outliers).

• Filter and select one or more simulation runs for
detailed inspection (see bottom tier) or compari-
son (see middle tier).

3.2.2 Middle Tier

When comparing two or more runs, the analyst’s goal
is to find similarities and differences between the sim-
ulation runs, based on which they can infer necessary
adjustments to agent configurations. In addition to
general summaries of simulation run times or mes-
sage counts, this comparison aims to find suitable vi-
sual representations for all (un)successful (e.g., flow
diagrams). At the same time, the interface should al-
low filtering and searching for messages according to
their attributes.

Related Analytical Tasks:
• Discover and compare simulation runs in terms of

their parameters (e.g., number of messages, run-
time, count of (un)successful attack attempts)

• Locate critical points in simulation runs that influ-
ence the ability of agents to reach their goals.

• Compare the attack agent configurations for simi-
larities and differences.

• Filter and select one simulation run for its detailed
inspection (see bottom tier).

3.2.3 Bottom Tier

The lowest level follows the current practice as de-
scribed in Section 2. The focus is on one simulation
run and the detailed analysis of the agents’ decisions
leading to either successful or unsuccessful attacks.
Except for statistical information such as the count
of sent messages, (un)successful attacks, or their du-
ration, the analyst request the ability to visualize at-
tack graphs with the attack vectors and dynamically

reconstruct the attack by replaying messages on the
network topology.

Related Analytical Tasks:
• Discover and explore communication patterns

(e.g., message sequence, order of breached com-
puters).

• Identify the sources of unsuccessful attacks (e.g.,
the wrong order of requests and loops in the
agent’s attack path).

• Navigate through (replay) a single simulation run.
• Derive adjustments to the attacker’s model.

4 IMPLEMENTED
VISUALIZATIONS

We implemented a workflow for criteria creation and
cluster analysis to demonstrate the potential of using
clustering visualizations in analyzing data. We de-
veloped two prototype tools for processing the CYST
simulation run records. The Clustering Analyzer pro-
vides the initial criteria classification (top tier), and
the Scenario Player allows to replay of a single sim-
ulation run data (bottom tier). Both tools are web ap-
plications implemented using D3.js (Bostock et al.,
2011) and DruidJS (Cutura et al., 2020) libraries.

4.1 Top Tier: Clustering Analyzer

The tool parses multiple logs of the simulation runs
and stores them in the database. The analysts can
define their criteria and perform initial clustering to
identify subsets of runs worth inspecting. The anal-
ysis process has four steps. First, the analyst loads
the records of simulation runs. Next, they define fil-
tering criteria from the message attributes. Filters
are Cartesian products of message parameters that the
tool uses to generate an input data table for further
processing (see Figure 2). The table rows represent
the dimensions, and columns correspond to individ-
ual simulation runs. The cells contain the number
of messages satisfying the filtering condition (e.g.,
a count of successful exploits on a selected IP ad-
dress). Generating a table of at least two independent
variables is necessary for initiating a cluster analysis.
If there are more than two dimensions, the chosen
dimensionality reduction algorithm first computes a
low-dimensional representation of the input table. In
the final step, the analyst selects one of three dimen-
sionality reduction methods: PCA (Dunteman, 2008),
UMAP (McInnes et al., 2018), or t-SNE (van der
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Figure 2: Cartesian filtering (top) and clustering criteria input table (bottom). Generated input table shows only two dimen-
sions (VAR1, VAR2 defined by the filters above.

Maaten and Hinton, 2008). The hierarchical cluster-
ing algorithm (Murtagh, 2011), applied to the result,
splits the data into clusters and plots them in a two-
dimensional scatter plot based on the selected dimen-
sionality reduction method. Given the exploratory
nature of the analysis, we implemented both linear
(PCA) and non-linear (UMAP and t-SNE) dimension-
ality reduction algorithms. The parameters of the lat-
ter two are configurable. On mouse over, the pop-up
shows the simulation run identifier. The plotted dots
represent clustered simulation runs.

4.2 Bottom Tier: Scenario Player

In the bottom tier, the analyst explores the behavior
of an attacker in a single simulation run. We have
created an interactive scenario player to make it easier
for them to identify points of interest. The tool loads
a dataset of a single simulation run and the network
infrastructure configuration. The topology is rendered
as a network graph with automated node positioning.
The analyst can reposition them if needed.

Initially, the nodes are color-coded to distinguish
between attacking and target network nodes. Initially,
all nodes are colored green. Only already-known at-
tackers are red. If nodes in the network are com-
promised throughout the attack scenario, their color
changes from green to amber. Such encoding en-
ables identifying the moment of an attack when the
compromise happened, the sequence of actions lead-
ing to it, and the possible impact on other nodes in
the network. The configuration options (Figure 3,
top-right) enable to toggle of four analytic visualiza-
tions: Node activity helps identify whether a node
is predominantly sending or receiving messages; At-
tack progress, adds node numbers indicating the or-
der of successful attacks; Successful attacks, enables
a tooltip on hover displaying successful attack actions

for a given node; and All successful attacks, displays
a summary of all successful attack actions for a given
scenario.

The analyst can also inspect messages by invok-
ing an on-mouseover tooltip with message attributes,
seeking a simulation run, or adjusting a replay speed
(i.e., the ratio of simulated time units to seconds). Re-
quests and responses are color-coded for easier dif-
ferentiation – green for requests and orange for re-
sponses.

5 USAGE SCENARIOS

To demonstrate the usefulness of the implemented
prototypes on the analytical workflow (RQ3), we
present several use cases created by the CYST sim-
ulator developers. The use cases utilize the tools to
achieve real examples of analytical goals.

5.1 Clustering Analyzer Use Cases

Each simulation was run 50 times with the same
attacker configuration and topologies described
in (Drašar et al., 2020). Given the limited scope, only
selected visualizations of the results are presented.

Case 1: Identify different attackers’ tactics.
The simulation was performed on the topology em-
ployee. The analyst explored different tactics for ser-
vice attacks. Six variables were defined as a cartesian
product of servers through which the attack passed
(web srv, db srv and dc srv) and the response val-
ues (SERVICE|SUCCESS and SERVICE|FAILURE). t-
SNE cluster analysis identified three clusters, each
representing one attack tactic utilizing a specific
server (see Figure 4).
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Figure 3: Scenario Player dynamically visualizes a single simulation run. Red nodes are attacking. Numbered nodes are
compromised, green yet uncompromised. The colored circle represents whether a node sends (amber) or receives (blue) more
messages. Its opacity represents the message count relative to other nodes. Logs related to a selected node show in a pop-up
(center-bottom), and all the successful actions are listed on the right.

Figure 4: Result of cluster analysis aimed at showing at-
tackers with different tactics (t-SNE).

Case 2: Identify attackers’ ability to ignore
unimportant targets. The simulation was performed
on the topology cto. The analyst defined five vari-
ables to indicate requests on servers unimportant for
a successful attack: emp pc, email srv, api srv,
vpn srv, and web srv. The resulting UMAP al-
gorithm showed (Figure 5) a more extensive cluster
(green dots). Upon inspection of the runs, the analyst
concluded that the attacker quickly recognized unim-
portant targets (i.e., terminated the communication
with them) and ignored them in consecutive steps.

Case 3: Explore attackers prone to select in-
appropriate actions. The simulation was run on the
topology cto. Five variables combined servers from
case 2 with the response value SERVICE|SUCCESS.
Ideally, this value should occur only once on each

Figure 5: Result of cluster analysis aimed at identification
of attackers able to ignore unimportant targets. (UMAP).

service. The PCA method (Figure 6) showed multi-
ple clusters worth exploring. A closer look revealed
clusters where simulation runs have higher variable
counts, i.e., the attacker’s algorithm chose inappropri-
ate actions of an exploratory nature rather than those
that would allow a successful attack to progress.

5.2 Scenario Player Use Cases

The benefit of the single scenario run replays lies in
observing the attack unfolding, thus enabling identifi-
cation and analysis of their time-related aspects. Fur-
ther, we briefly discuss two use cases the Scenario
Player revealed.

Case 4: Identify the general pattern and inef-
ficiencies of the attack. As the nodes get progres-
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Figure 6: Result of cluster analysis aiming to identify at-
tackers prone to select inappropriate actions (PCA).

sively numbered to identify compromised hosts, the
analyst can identify preferred or ignored targets or
networks and observe the attack’s path in the con-
text of the whole infrastructure. Large amounts of re-
quest/response pairs exchanged between pairs of net-
work nodes indicate an unnecessarily extensive vol-
ume of network traffic, thus pointing to inefficient at-
tack strategies. Further exploration of target services,
used attacks, and other variables can help identify
weaknesses in attack strategies.

Case 5: Explore deadlocks. When the analyst
sees that there is not any newly compromised node
for an extended period, the attack is stalling. In such
cases, attackers usually aim at invalid targets or make
wrong attack strategy decisions. Scenario replay can
pinpoint the causes of this deadlock and help the ana-
lyst derive possible changes in attacker configurations
to avoid it.

6 DISCUSSION

Further, we discuss the limitations and validity threats
that we are aware followed by the presentation of
lessons learned from our ongoing work.

6.1 Validity Threats and Limitations of
Our Approach

We identified three main threats to the validity of our
approach: relevance to the research community, min-
imal opportunities to validate the outputs, and the low
maturity level of the prototypes.

The starting point for the proposed formalization
of the analytical workflow and the classification of ac-
tions in each tier is the CYST simulator model envi-
ronment (see Section 3). However, the resulting de-
scription of the analytical workflow, task categories,

and examples of visual representations generally ap-
ply to other simulators despite their specificities in log
and report formats.

The specific focus on the problem of analyzing
data from cybersecurity simulators has determined
a significant limitation regarding the validation of
our results. First and foremost, there need to be
more domain experts (i.e., cybersecurity simulation
researchers and analysts). The issue of defensive
and offensive strategies is still being investigated by
a relatively small group of cybersecurity researchers
worldwide. Thus, naturally, in our work, we also en-
countered the problem of finding other domain ex-
perts outside the team developing the CYST simu-
lator. Therefore, it will be helpful to subject the re-
sults of our work to a thorough discussion, especially
among domain experts.

Lastly, the presented prototypes were used to
demonstrate the initial usability of the proposed work-
flow. They suffer from disconnectedness and low ma-
turity. We also intentionally bypassed the prototyp-
ing of middle-tier visualizations that will require even
more careful analysis and workflow refinement.

6.2 Lessons Learned

Unexplored territory: Although the use of visualiza-
tions in cybersecurity practice is now commonplace
and is contributed to by the community around the
IEEE Symposium on Visualization for Cyber Secu-
rity (VizSec), the main directions of visualization us-
age are mainly for network traffic data or supporting
forensic analysis. Cybersecurity simulations are still
an unexplored area that provides many research op-
portunities.

Common visualizations over domain-specific
ones: Since analysts are usually not experts in
visualizations, it is advisable to prefer commonly
known visual representations, as they eliminate the
risk of misinterpretation. The only domain-specific
case is the attack graph, which is widely used in the
cybersecurity community.

Clustering analyzer generalization: The proposed
tool can also be used for data analysis in other do-
mains where it is appropriate to derive abstract criteria
based on the combination of the input data attributes.
Verbal feedback from the CYST simulator develop-
ers indicated that even the generated table with input
criteria was sufficient for the initial orientation in the
data. The tool can also allow comparing different di-
mension reduction methods, e.g., depending on the
input data. It also can be easily extensible to other
methods included in the DruidJS library (Cutura et al.,
2020).
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7 CONCLUSION

In this paper, we have tackled using visualizations
in an analytical workflow of cybersecurity simulator
data. To our knowledge, this paper is the first at-
tempt to conceptualize the work in this domain. We
described the state-of-the-art network simulators and
commonly used visualizations in the context of cy-
bersecurity simulation research of autonomous agents
(RQ1). ext, we mapped the analysts’ tasks and for-
malized the analyst workflow (RQ2) based on the
CYST simulator as a model environment. Finally, we
presented two prototype tools – Clustering Analyzer
and Scenario Player – and five use cases to demon-
strate their suitability to deal with several real-world
analytical goals (RQ3). We also discussed limitations
and provided lessons learned.

Further, we plan to merge the tools into a sin-
gle data analytics toolkit integrated seamlessly into a
CYST simulator workflow. It will also include inte-
grating novel visualizations and advancing the mid-
dle tier according to the defined three-tier analytical
workflow.
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