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Abstract: While text embeddings have become the state-of-the-art in many natural language processing applications, the

presence of bias that such models often learn from training data can become a serious problem. As a reaction,

a large variety of measures for detecting bias has been proposed. However, an extensive comparison between

them does not exists so far. We aim to close this gap for the class of intrinsic bias measures in the context

of pretrained language models and propose an experimental setup which allows a fair comparison by using a

large set of templates for each bias measure. Our setup is based on the idea of simulating pretraining on a set

of differently biased corpora, thereby obtaining a ground truth for the present bias. This allows us to evaluate

in how far bias is detected by different measures and also enables to judge the robustness of bias scores.

1 INTRODUCTION

Biases in machine learning models, but especially in

pretrained language models (PLM) are complex in na-

ture and difficult to assess with respect to all possi-

ble bias origins and potential harms in applications

(Shah et al., 2019). While the ability to detect bias in

such PLMs is crucial for transparency and also consti-

tutes a first step for mitigating bias related problems,

there exists a variety of different methods for measur-

ing bias in such models (Caliskan et al., 2017; May

et al., 2019; Bolukbasi et al., 2016; Gonen and Gold-

berg, 2019; De-Arteaga et al., 2019). In particular,

they can be grouped by intrinsic and extrinsic evalu-

ation strategies, where the former ones directly work

with the intrinsic text embeddings while the latter aim

for evaluation with an additional down stream task.

In this work we focus on intrinsic bias measures

and biases that are learned during pretraining, because

such pretrained models are the basis in many applica-

tions and biases learned in the pretraining phase can

persist in later applications. The class of intrinsic bias

measures is, however, diverse, including different co-

sine based scores (Caliskan et al., 2017; May et al.,

2019; Bolukbasi et al., 2016) and Neighbor, Clus-

tering and Classification tests (Gonen and Goldberg,

2019) among others. A unified, systematic and fair

comparison between them remains challenging.

a https://orcid.org/0000-0002-7954-3133
b https://orcid.org/0000-0002-0739-612X
c https://orcid.org/0000-0002-7097-173X
d https://orcid.org/0000-0002-0935-5591

In the present work, we conduct an experiment

where we simulate pretraining on a variety of bi-

ased corpora and assess how these biases manifest in

the model. Not only do we consider binary gender

bias, as frequently done in related work, but also as-

sess multi-attribute biases at the example of religious

and ethnicity biases. We evaluate many intrinsic bias

measures from the literature in terms of their abil-

ity to capture biases in the model, compatibility to

each other and their robustness. Compatibility is of-

ten impacted by different testing scenarios (e.g. target

words, templates) of the different bias measures (Se-

shadri et al., 2022). We remove this variable by using

a unified test case for all measures, to specifically find

out how the scores themselves relate to each other.

Our contributions are: (i) We propose a novel test

framework for intrinsic bias measures w.r.t. pretrain-

ing of language models, which enables a fair com-

parison between different measures, regarding their

performance to measure bias and their stability. (ii)

Thereby, we create and publish a benchmark that is

significantly larger and has more variety than other

template-based approaches like BEC-Pro (Bartl et al.,

2020) or the SEAT test cases (May et al., 2019).

(iii) Our benchmark includes the possibility of using

multi-group attributes, which we demonstrate for eth-

nicity and religion. Thereby we gain insights into how

binary and multi-group biases manifest in the models

and are captured by intrinsic measures. (iv) We per-

form an experimental evaluation, demonstrating dif-

ferences in stability and overall performance.
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For reproducibility’s sake we publish our code, in-

cluding templates, target words and config files1.

2 RELATED WORK

In literature, there exist many intrinsic bias measures,

including WEAT (Caliskan et al., 2017), SEAT, (May

et al., 2019), Direct Bias (Bolukbasi et al., 2016),

RIPA, (Ethayarajh et al., 2019), Neighbor, Clustering

and Classification tests (Gonen and Goldberg, 2019)

as well as the log probability bias score (Kurita et al.,

2019). We recap those in the next section as their

evaluation is at the core of the present work. Further,

there also do exist extrinsic bias measures which aim

to evaluate bias in a downstream task such as occupa-

tion classification, where an example is Bias in Bios

(De-Arteaga et al., 2019).

A family of work investigates in how far observa-

tions with intrinsic measures transfer to downstream

tasks. For instance, it has been shown that WEAT

correlates with extrinsic bias metrics only in very re-

stricted settings (Goldfarb-Tarrant et al., 2020) or that

intrinsic bias measures in general have a limited cor-

related with extrinsic metrics (Kaneko et al., 2022).

Similarly debiasing before fine-tuning does not effec-

tively reduce biases in the downstream task (Kaneko

et al., 2022). As reasons they state that the lan-

guage models re-learn bias in the fine-tuning step due

to flawed training data. Another work (Steed et al.,

2022) investigates the bias transfer hypothesis (that

biases from PLM affect downstream tasks) using two

downstream data sets. The authors show that most

of the downstream bias can be explained by fine-

tuning. On the other hand, certain debiasing mea-

sures (re-sampling and scrubbing of identity terms)

w.r.t. the downstream tasks only effectively removes

biases when the model was not pretrained (i.e. never

contained biases from the start). This in turn indi-

cates that mitigating biases in PLM is not sufficient

but must also not be neglected.

It has been shown that templates used for bias

measurements have a large impact on the results, i.e.

modifying a template without changing the seman-

tic meaning can alter the measured bias significantly

(Seshadri et al., 2022). The authors point out that

many works use a limited amount of templates, which

makes scientific claims less reliable.

Similarly, the compatibility of bias measures from

the literature, including the test scenario (used words,

templates, attributes) has been found limited. (Delo-

belle et al., 2021). This authors argue that the ”seman-

1https://github.com/HammerLabML/PLMBiasMeasur
eBenchmark

tically bleached” templates suggested by other work

do in fact influence the biases measured when insert-

ing the targets/attributes of interest, hence are not as

”bleached”. Furthermore, the way sentence represen-

tations are created (e.g. CLS embedding vs. mean

pooling) influences bias measurements.Basically, a

major issue with (intrinsic) bias measures are the in-

compatible testing conditions.

To summarize bias defintions from other works,

a unifying bias framework has been proposed (Shah

et al., 2019) that includes four definitions of bias ori-

gins (semantic bias in embeddings, selection bias,

over-amplification by the model and label bias) and

two definitions of predictive biases/ bias conse-

quences (outcome disparity and error disparity).

While (Schröder et al., 2021) aim to compare dif-

ferent bias measures, they focus more on theoretical

aspects of bias scores and are, furthermore, restricted

to cosine based scores.

3 BIAS EVALUATION METHODS

In the following, we depict the intrinsic bias scores

from the literature which we compare in our exper-

iments. Some of these offer both a bias score for

single words (e.g. the gender bias of secretary), oth-

ers only a bias score that determines bias over sets of

words. This is often a mean word bias or some con-

trasting bias measure that checks whether stereotypi-

cal groups exist.

3.1 SEAT

SEAT (May et al., 2019) is an extension of the

Word Embedding Association Test (Caliskan et al.,

2017) for sentence representations. WEAT and

SEAT are among the most commonly used intrin-

sic bias measures. In our experiments we apply

SEAT since we use contextualized embeddings and

hence need to compare bias measures in the context

of sentences. We evaluate both the word dissimilar-

ity score s(~w,A,B) and the effect size d(X ,Y,A,B).
Since WEAT and SEAT are only defined for bi-

nary bias evaluations, we also use the generalized

WEAT (GWEAT) (Swinger et al., 2019), which pro-

poses a score for an arbitrary number of groups

g(X1,A1, ...,Xn,An). Again we apply it to sentence

representations in the way of SEAT.

3.2 DirectBias and RIPA

The DirectBias (DB) (Bolukbasi et al., 2016) deter-

mines a bias subspace in the embedding space, which
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is defined by bias attributes, such as gender words.

Then any correlation of neutral words with this sub-

space is considered a bias. RIPA (Ethayarajh et al.,

2019) is closely related to the DirectBias as it uses

the same strategy. Contrary to the DirectBias, which

normalizes word vectors, RIPA considers the vector

length. In our experiments we apply both measures to

sentence representations instead of words, in the same

way as SEAT. Both can report a word-wise bias score

as well as a mean bias for a set of words.

3.3 Clustering, Classification and

Neighbor Test

In order to evaluate the effect of debiasing on word

embeddings, the clustering, classification and neigh-

bor test (Gonen and Goldberg, 2019) were introduced.

These bias tests detect whether words with similar

gender stereotypes cluster together in the embeddings

space. The neighbor test evaluates how many of the

closest k neighbors of a word have the same stereo-

type. The clustering and classification test measure

the accuracy of k-Means clustering and a SVM classi-

fier for separating two groups of stereotypical words.

All of these test require the user to define stereotypi-

cal groups beforehand. In the paper, the authors sort

words by WEAT’s dissimilarity score s(~w,A,B) into

stereotypical male/female groups. We extend the clas-

sification and neighbor test to cases with multi-group

biases. For the classification test, we simply use a

multi-class classifier, for the neighbor test we count

the amount of neighbors that are part of the same

stereotypical group. While k-Means itself could also

handle multiple clusters, the authors used accuracy to

evaluate the clustering performance, which cannot be

used with more than two groups.

3.4 Log Probability Scores

There exist a variety of log probability scores, which

are closely related to the masked language objective

of BERT. Initially (Kurita et al., 2019) proposed the

log probability bias score (LPBS), which queries the

probability of BERT to replace a mask token with

a male over a female term (or vice versa) given a

context like a stereotypical male/female occupation.

Thereby, the authors could show that BERT does con-

tain human-like biases. Similar scores in literature are

the CrowS-Pairs Score (Nangia et al., 2020), Stere-

oSet Score (Nadeem et al., 2021) or All Unmasked

Likelihood score (Kaneko and Bollegala, 2021).

4 EXPERIMENTAL DESIGN

Our goal in the following is to be able to compare and

judge different intrinsic bias measures regarding their

performance to measure bias and their robustness. For

this purpose, we aim to achieve a setting, where bi-

ases are fully observable: We simulate various demo-

graphic distributions from which we derive pretrain-

ing corpora and train LMs. To keep computation time

minimal and enable training of many models, we use

a pretrained Hugginface model (bert-base-uncased)

for Masked Language Modeling (MLM) and train it

on each of our corpora for a few epochs. Figure 1 il-

lustrates our approach. As a baseline for biases man-

ifesting in the PLM, we directly query our model for

the probabilities to replace mask tokens with certain

demographic attributes. The details are explained in

Section 4.3. Our test cases include gender, ethnic-

ity and religious biases regarding occupations. For

ethnicity we consider 5 and for religion 4 different

groups, which is crucial because related work often

neglects settings with more than two groups.

4.1 Generating Training Data

Many works that evaluate bias measures either only

use one or few PLMs or, based on one PLM, miti-

gate or amplify existing biases to generate a variety

of biased models. To achieve a more diverse setting

and simulate the whole cycle of data acquisition, pre-

training and bias manifestation, we generate demo-

graphic distributions, specifically the probabilities of

certain demographic groups being associated with oc-

cupations. These associations are randomized and do

not have to align with actual biases in humans and so-

ciety. This has the advantage that we can distinguish

if the PLM actually learns the biases presented dur-

ing our training instead of sticking to biases it learned

beforehand.

Given a list of target words (here occupations),

attributes (gender, religion, ethnicity) and groups

per attribute (e.g. male/female for gender), we cre-

ate a probability distribution per target and attribute

p(group|target,attribute), e.g. how likely does a

cook belong to a certain ethnicity (if ethnicity is men-

tioned). Algorithm 1 describes our approach. We

used the groups mentioned in Table 1.

Table 1: Demographic groups used in our experiments.

Attributes Groups per Attribute

Gender male, female

Ethnicity black, white, asian, hispanic, arab

Religion christian, muslim, jewish, hindu
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Pretraining Corpus

Demographic biases

p(ATTRIBUTE=ai | TARGET)

Test Corpus

Demographic attributes

masked out/ removed 
PLM

Pretraining Biases

Query PLM for

p(ATTRIBUTE=ai | TARGET)

Model-intrinsic Biases

cosim/ inner product-based

clustering-based

log probability based

Figure 1: Our experimental setup to evaluate intrinsic bias measures with regard to the pretraining of language models.

Data: groups,minP < maxP

Result: groups, probs

n← size(groups);
minP← minP/n;

maxP← maxP/n;

P← 1.0;

groups← shu f f le(groups);
probs = [];
while i < n− 1 do

maxBound←min(maxP,P−minP∗ n);
p← randomUni f orm(minP,maxBound);
P← P− p;

AddItem(probs, p);
end

AddItem(probs,P);

Algorithm 1: This algorithm generates a random demo-
graphic distribution for a list of groups. minP < 1.0 is a
strict lower bound for the group probabilities. The higher,
the less likely are extreme differences between the demo-
graphic groups. maxP is the maximal upper bound. If
maxP < 1.0 an equal distribution is impossible and there

will be exactly one majority group with p(group) > 1
n

.

We create a unique demographic distribution for

each combination of minP∈ {0.05,0.1,0.15,0.2} and

maxP ∈ {0.8,0.85,0.9,0.95}. Due to the choice of

both parameters, each group will be represented with

p(group) > 0 and there will be exactly one major-

ity group (the last one chosen by the algorithm) with

p(group)> 1
n

given n groups.

To create datasets based on these distributions, we

use a selection of template sentences, containing a

placeholder for target words and at least one place-

holder for a protected attribute. There might be mul-

tiple attributes or multiple mentions of the same at-

tribute in one template. Formally, a template sentence

S contains a target placeholder and attribute place-

holders Ai with i denoting the type of attribute (e.g.

gender/ethnicity). Contrary to other works, we do

not limit ourselves with ”semantically bleached” tem-

plates, as it has been shown that even those templates

influence the measured biases (Seshadri et al., 2022).

Instead, we chose a larger number of templates in-

cluding many with additional context, assuming that

averaging over a variety of templates improves the

Table 2: Exemplary templates and the terms that can be
inserted as attributes.

i saw the OCCUPATION at the RELIGION2

(church, mosque, synagogue, mandir)

the OCCUPATION enjoyed GENDER1 lunch

(his, her)

the OCCUPATION often visits GENDER1

family in ETHNICITY8

(his, her)/(africa, europe, asia, mexico, qatar)

stability of bias measurements. Some exemplary tem-

plates are shown in Table 2.

Given a template S and a list of target words T , we

create sentences St∀t ∈ T . For each attribute place-

holder Ai in St we choose a fitting group j and in-

sert the corresponding group attribute ai, j based on

p(ai, j|t,Ai). For MLM training we mask out one at-

tribute instead of random words to ensure that BERT

specifically learns to infer these. If multiple attributes

are present, we create a training sample per attribute,

where this one is masked out. The resulting corpora

contain 29800 training samples derived from 100 oc-

cupations as target words and 165 templates. Among

our training templates, 60 include an ethnicity refer-

ence, 145 a gender and 45 a religion reference.

4.2 Training and Model Validation

On each of our generated training datasets, we retrain

BERT for 5 epochs using the Masked Language Ob-

jective. We repeat this for 5 iterations, resulting in

5 BERT instances trained on the same demographic

distribution, which will be relevant in our robustness

experiments. To ensure that our models learned the

biases well enough, we test the Pearson correlation

of the unmasking probabilities punmask(ai, j|t,Ai) (see

Section 4.3) with the group probabilities in the train-

ing data pdata(ai, j|t,Ai). If the correlation is below

a threshold of 0.85, we repeat the training (starting

from the pretrained BERT again). After a maximum

of 5 training runs, we keep the best performing model,

to keep computation time limited.

We utilize 113 test templates to generate our test

data similarly to the training data, i.e. inserting each
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target word into each template. However, we do not

insert any demographic attributes, but instead mask

out one attribute that was tested for and replace all

other attributes by a neutral term. This results in

17600 test sentences. Given these, we query the un-

masking probabilities of all groups and average over

each target. The exact same test sentences are used

for the evaluation of the different intrinsic bias scores

(see Section 5.2).

4.3 Baseline: Unmasking Bias

To evaluate intrinsic bias scores in terms of a pre-

trained model, we choose a measure directly linked

to the MLM objective and hence similar to the LPBS,

called unmasking bias. Given a template such as

”GENDER is a TARGET”, we replace GENDER by a

mask token and TARGET by a target word for which

we want to determine the gender bias. Instead of gen-

der one could also use a protected attribute with more

than two groups such as religion or ethnicity. Then,

we query BERT for the probabilities of certain pro-

tected groups to replace the mask token normalized

by the probability to choose any of group associated

with that attribute. In this example, one could com-

pare the probabilities of ”he” and ”she”.

More formally, given a template s, a target words

t and an attribute Ai (e.g. ethnicity), we are interested

in the probability that our trained language model as-

sociates this target with a group j ∈ [1,n] (e.g. black),

where n is the number of groups for Ai (e.g. 5 for eth-

nicity, in our case). For this purpose, we insert t and

query the model for the probability of the correspond-

ing group attribute ai, j to be inserted into s:

punmask(ai, j|s, t,Ai) =
P([MASK] = ai, j|s, t,Ai)

∑
n
k=1 P([MASK] = ai,k|s, t,Ai)

.

(1)

By using a large set of templates S, we achieve a ro-

bust estimate of the probability that group j is associ-

ated with target t in the model:

punmask(ai, j|t,Ai) =
1

|S|∑
s∈S

punmask(ai, j|s, t,Ai). (2)

One advantage of this formulation over LPBS is that

punmask(ai, j|t,Ai) does not depend on the number of

protected groups.

Now we can use this probability in order to judge

in how far our model has learned the biases present

in the data: From our training data, we estimate

pdata(ai, j|t,Ai) by the relative frequencies of the ac-

cording group attribute and target word occurring to-

gether (we have generated the training using such

templates). Then we could measure the dissimilarity

between punmask(ai, j|t,Ai) and pdata(ai, j|t,Ai).

Most bias scores, however, report only an aggre-

gated score for one attribute, aggregating over the

groups. In order to be comparable to this setup,

we also aggregate over the groups using the Jensen-

Shannon divergence (Lin, 1991) between p(ai, j|t,Ai)
and the uniform distribution which represents no bias.

We don’t use KL because we want symmetry.

Calculating this for both punmask(ai, j|t,Ai) and

pdata(ai, j|t,Ai), we obtain scalar scores for each of

the two and for each t. We finally utilize the Pearson

correlation over all t for a measure of similarity be-

tween the bias in the data and the bias learned by the

model. Accordingly, we also compare the similarity

between the bias in the data and a bias score.

5 EXPERIMENTAL RESULTS

In our experiments, we first evaluate the reliability of

our template-based approach w.r.t. the number of tem-

plates. Afterwards, we apply our setup to compare

different bias measures, first when considering only

biases of individual target words, then using the full

bias scores. Finally we investigate the robustness of

our scheme and some bias scores when training dif-

ferent models on the same biased data set.

5.1 Assessing the Reliability of Our

Template-Based Evaluation

There is work suggesting that template based ap-

proaches for bias evaluation are unreliable (Seshadri

et al., 2022), which is mostly due to the fact that a

limited amount of templates is used. For instance,

(Bartl et al., 2020) propose BEC-Pro, a dataset for

bias evaluation which is created from only 5 differ-

ent templates. To circumvent this problem, we use a

much larger number of over 100 templates (see Sec-

tion 4) for training and testing, respectively.

Furthermore, we evaluate the reliability of our

evaluation with respect to changing template num-

bers in the following. We run a statistical test to esti-

mate the significance of biases obtained with our tem-

plates: We compute the unmasking probabilities for

Table 3: Mean and standard deviation of p-values reported
by our permutation test over all models compared to number
of test templates with the respective attribute.

Gender Religion Ethnicity

p-value 0.01 0.08 0.14

±0.01 ±0.03 ±0.03

templates 82 34 53
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Figure 2: Pearson Correlation of word bias scores for ethnicity, gender and religious bias.

each combination of template sentence, target word

and protected attribute and take the mean probabili-

ties per target and attribute combination. Then we run

a permutation test for 1000 iterations under the hy-

pothesis that the ranking of group probabilities does

not change if computed over a subset (90%) of tem-

plates. We report the p-values in Table 3.

These show that in the gender case, which in-

volved the largest number of templates, we achieve

statistical significant results. In the multi group cases

we observe p-values larger than 0.05. Hence results

are not as reliable. We assume that this is due to the

smaller number of test templates and the increased

complexity of bias for more than two groups.

5.2 Comparison of Bias Measures

5.2.1 Word Biases

For each protected attribute, we first evaluate the cor-

relation of different word bias scores. This includes

only the cosine scores and the data and unmasking

probability, where we report the Jensen-Shannon di-

vergence (see Section 4.3).

The results are illustrated in Figure 2. We report

relatively high correlations with the data biases for

our baseline (’unmask’) with any attribute. The co-

sine scores correlate rather well with the baseline and

data biases in the gender case, but not in the multi at-

tribute cases (SEAT is only defined for the binary gen-

der case). Furthermore, the DirectBias and RIPA cor-

relate strongly with each other, which was expected

due to their similar definitions.

This contradicts observations from previous work,

which reports that cosine scores failed to capture bi-

ases in some scenarios (Goldfarb-Tarrant et al., 2020;

Kurita et al., 2019) or produced inconsistent results

(May et al., 2019). However, it has been observed

that the compatibility of different bias measures is

strongly limited by the different test cases, i.e. when

comparing word biases to sentence biases or comput-

ing biases with different kinds of templates (Delobelle

et al., 2021). Our findings underline that unifying test

cases makes different bias scores more compatible.

The fact that we report much higher correlations

in the gender case could mean that a binary concept

such as gender bias is in fact represented in a lin-

ear way, which satisfies the assumptions of cosine

based scores, while non-binary concepts could be rep-

resented in a more complex way which cosine based

scores cannot account for entirely.

5.2.2 Overall Bias Scores

In practice, often a bias score over whole concepts

(set(s) of words) instead of single words is reported,

which is the case e.g. for WEAT/SEAT. Hence, we

evaluate these bias scores compared to the mean un-

masking bias over all target words (see Section 4.3).

The DirectBias and RIPA apply an ”objective” mean

word bias. On the other hand, SEAT, GWEAT, the

clustering, classification and neighbor test require the

target words to be sorted into groups based on their

stereotypes. When users choose such groups one can

assume that they have certain knowledge about the

stereotypes that can be expected. However, their ex-

pectations might not exactly align with the biases in

the data/model, either due to subjective views, lim-

ited knowledge or sampling bias of the dataset com-

pared to biases in the real world. To model this,

we derive the groups from the actual demographic

probabilities in our datasets after adding Gaussian

noise (µ = 0,σ = 0.3). For each occupation, we sim-

ply choose the group with the highest co-occurrence

probability in the dataset.

Figure 3 shows the correlations of the bias mea-

sures and the data biases. Overall, correlations are

slightly lower than for the word bias scores. Other

than that the results are similar in the sense that we

observe stable correlations with the data bias for the

baseline (’unmask’) for all three attributes and ob-

serve the best correlations in the gender case. We

find that SEAT and the neighbor bias achieve the

best Pearson correlation both with the data and un-

masking bias and also correlate with each other.
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Figure 3: Pearson Correlation of bias scores for ethnicity, gender and religious bias.

Table 4: Consistency over experiment iterations. Mean
percentage differences of scores reported in models with
the same demographic distributions. Lower values indicate
consistency.

SEAT DB RIPA unmask

Ethnicity - 0.501 0.518 0.111

Gender 1.358 0.358 0.361 0.291

Religion - 0.486 0.483 0.147

GWEAT shows a similar behavior to SEAT, but over-

all lower correlations. The clustering and classifica-

tion (’SVM’) achieve the lowest correlations with the

data biases. Noteworthy the differences between gen-

der and the multi group cases are comparably low for

GWEAT and the neighbor test. Other than that, we

find high correlations between GWEAT and the clas-

sification (’SVM’) bias.

5.3 Robustness of Bias Measures

In addition to the general performance and compat-

ibility of bias measures, we also want to investigate

their robustness. For this purpose, we test how stable

bias measures are, given the same initial bias distribu-

tion. We compare the word bias measures over the 5

iterations (5 different models) trained with the same

bias distribution. Results are aggregated over all bias

distributions and shown in Table 4.

The fact that the unmask baseline achieves very

small percentage differences indicates that the differ-

ent model instances have learned the according bias

robustly. Overall the considered bias measures vary

more than the baseline, where SEAT varies more than

DirectBias and RIPA. For DirectBias and RIPA we

see slightly more stable results in the gender case,

which could indicate that an increasing number of

groups also makes bias measurements more difficult

and thus less robust. For SEAT we see large discrep-

ancies between biases measures over similar models,

which is due to the fact that SEAT reports rather low

biases in general. However, we also observe that the

signs of biases reported by SEAT frequently change.

6 CONCLUSION

In the present work we have proposed a novel test

scenario where different bias measures can be com-

pared using the same test sentences. We have showed

that template-based approaches can produce reliable

results if a sufficient number of templates is em-

ployed. In addition to binary attribute cases, we

have also evaluated multi-attribute cases and showed

large differences between them regarding the detec-

tion of bias. Furthermore, we showed that cosine

and intrinsic scores actually can attest for biases quite

well, given our specific pretraining scenario. We have

shown that the more complex bias tests based on clas-

sification and clustering do not perform better in de-

tecting bias than the simple SEAT score. We have

further investigated the robustness of word biases and

have shown that SEAT performed inferior as com-

pared to DirectBias and RIPA.

Limitations of our work include the not perfect

baseline performance of the pretrained model, i.e. our

trained models do represent the bias perfectly (the un-

mask correlation does not go over 70%). This could

make it somewhat more difficult for bias methods

to detect the bias. Here, more training data could

yield an improvement. Further, our evaluation is lim-

ited to pretraining as such and implications for down-

stream tasks cannot be directly transferred. However,

pretrained models can be used directly without fine-

tuning, so this setup remains valid.

This work opens up new interesting directions of

investigations, including direct evaluations in settings

where fine-tuning the embedding is not possible, such

as similarity ranking or training only a classification

head. Here biases from pretraining are likely to per-

sist. The investigation of intersectional groups is a

So Can We Use Intrinsic Bias Measures or Not?
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further promising application of our setup, because

our template-based approach naturally allows to in-

clude multiple protected groups also in the test set.

Finally, a further extension of the benchmark, w.r.t.

templates for the multi-attribute attributes or other tar-

gets than occupations could improve the evaluation

further.
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