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Abstract: Scheduling in a production plant with a high product diversity is an NP-hard problem. In large plants, tradi-
tional optimization methods reach their limits in terms of computational time. In this paper, we use inspiration
from two bio-inspired optimization algorithms, namely, the artificial bee colony (ABC) algorithm and the bat
algorithm and apply them to the job shop scheduling problem. Unlike previous work using these algorithms
for global optimization, we do not apply them to solutions in the solution space, though, but rather choose a
bottom-up approach and apply them as literal swarm intelligence algorithms. We use the example of a semi-
conductor production plant and map the bees and bats to actual entities in the plant (lots, machines) using
agent-based modeling using the NetLogo simulation platform. These agents then interact with each other and
the environment using local rules from which the global behavior – the optimization of the industrial plant
– emerges. We measure performance in comparison to a baseline algorithm using an engineered heuristics
(FIFO, fill fullest batches first). Our results show that these types of algorithms, employed in a bottom-up
manner, show promise of performance improvements using only low-effort local calculations.

1 INTRODUCTION

In today’s production plants organized by the job shop
principle we face an increased complexity in schedul-
ing due to the dynamics of customized, flexible, on-
demand production combined with a high product di-
versity. Throughout this paper, we consider the semi-
conductor manufacturer Infineon Technologies1 that
additionally deals with typical low-volume batches
of integrated circuits in the logic and power sector.
Exemplary, they produce 1500 products in around
300 process steps using up to 1200 stations (Schranz
et al., 2021; Khatmi et al., 2019). These production
plant conditions lead to an NP-hard problem where
linear optimization methods reach their limits for a
global plant optimization due to the excessive com-
putation time (Lawler et al., 1993). Centrally pre-
computed swarm intelligence algorithms have already
been used for the optimization of industrial produc-
tion plants. They show good performances and thus,
are used as an alternative or extension for linear op-
timization methods (for a comprehensive review, the
reader is referred to Gao et al. (Gao et al., 2019)).
Nevertheless, they face the same problems in terms
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of calculation time and complexity (Khatmi et al.,
2019). As proposed in (Schranz et al., 2021), we use
the novel approach to model the production plant as
a self-organizing system of agents, using local rules,
local knowledge and local interactions. This transfers
the problem of computing an overall solution to en-
gineering a distributed algorithm that produces a so-
lution from the bottom-up. An optimization from the
bottom-up is able to dynamically react on changing
environmental conditions (e.g., tool downs, product
priorities) and to produce near-optimal solutions for
NP-hard problems.

In this paper, honeybees and microbats serve as in-
spiration to derive two distributed swarm intelligence
algorithms. Honeybees live in a colony, search for
pollen, and transport it back to their hive. To attract
other bees for the same food source, they perform a
waggle dance that shows the direction and distance to
the food source. They also use pheromones to com-
municate a possible attack. Microbats use echoloca-
tion signals to search for nearby prey. They update
the loudness, rate of pulse and the frequency of the
signal based on the distance of the bats to the prey.
Our contribution is related to exactly this natural bee
and bat behaviour originally designed as the artificial
bee colony algorithm (ABC) (Karaboga and Basturk,
2007) and the bat algorithm (Yang, 2010), but engi-
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neered onto the problem of the semiconductor pro-
duction plant. For the first time, the ABC and the bat
algorithm are not used as a centrally computed op-
timization approach, but rather the rules are adapted
and used as local rules to perform the optimization
from the bottom-up. In this paper we introduce a
model of the production plant and the problem to op-
timize in Section 2. In Section 3, we describe the
general, global optimizer version of the ABC and bat
algorithms and their main characteristics. Then, we
use the novel approach of bottom-up production plant
optimization by engineering the ABC and bat algo-
rithms to the problem statement (Section 4), and eval-
uate the resulting algorithms in a NetLogo framework
to show their performance compared to an engineered
baseline algorithm using FIFO queues and fill-least-
empty-batch first principles (Section 5). The paper is
closed out with sections on related work (Section 6)
and the conclusion (Section 7).

2 MODEL

We model the semiconductor production plant as fol-
lows: there are a number of so-called lots Lt =
{lt

1, l
t
2, . . .} (comprised of 25 wafers each), which

need to be produced. The lots follow a specific recipe
Rt related to their product type t. This recipe pre-
scribes which process steps P = {pm

1 , pm
2 , . . .} to take

in which order. The plant has a set of machines Mm,
where m indicates the machine type that is related to
the process step Pm. Each machine Mm

i has a queue
Qm

i . In conclusion, the recipes imply a directed graph
G = (V,E) of possible movements between the ma-
chines of the plant, where the nodes V consist of all
machines Mm

i and the edges E are defined between
two machines Mm

i and Mp
j if there exists a lot lt

n with
a recipe Rt containing processes Pm and Pp in direct
succession. A set of machines Mm that can run the
same process Pm form a workcenter W m ⊂ M. The
modeled production plant contains several workcen-
ters of machines W m = {Mm

1 ,M
m
2 , . . .}. As there typi-

cally are multiple machines per workcenter W m, a lot
lt
n must choose which (or be assigned to one) of the

suitable machines Mm
i ∈W m to use for each necessary

process step Pm ∈ Rt . The machines Mm
i can be one

of two kinds: either single-step (processing one lot
after the other), or batch-oriented (processing a batch
of several lots at once, such as a furnace). In a pro-
duction cycle, single-step and batch machines follow
each other. This makes optimization especially hard
because in the optimal case batch machines would
like to accumulate a full batch of lots of a product type
before starting their process. If these lots are all in the

same queue of one of the preceeding single-step ma-
chines, the batch machine would have to either wait
a long time to fill the batch or to run with a partially
filled batch to avoid idling. Conversely, for single-
step machines theory suggests that high utilization is
only possible when arrival times are uniform (Stid-
ham Jr, 2002). I.o.w. single-step machines would op-
timally be “fed” by a stream of lots with an evenly
spaced arrival rate instead of waves of lots from pre-
ceeding batch machines. Therefore, these switches
between batch and single-step processing introduces
so-called WIP (work in progress) waves between ma-
chines which are a major obstacle to production opti-
mization.

3 ORIGINAL ALGORITHMS

3.1 The ABC Algorithm

The artificial bee colony (ABC) algorithm is inspired
by the foraging behavior of honeybees introduced in
(Karaboga and Basturk, 2007; Karaboga, 2010) for
the optimization of numerical problems. It uses typ-
ical swarm concepts: recruitment of foragers to rich
food sources resulting in positive feedback and aban-
donment of poor sources by foragers causing negative
feedback. For the ABC you consider an optimization
problem that is first converted to the problem of find-
ing the best parameter vector, which minimizes an ob-
jective function. It uses different kinds of agents:

• Food source: is described with several parame-
ters, including distance and orientation to the nest,
quality of the food and concentration, and ease of
extracting the food.

• Employed foragers: are bees that are associated
with the food source they are “employed” at. They
hold the information about the food source they
are associated with (distance and orientation from
the nest). They share the information of the food
source with a certain probability by performing
so-called waggle dances. For each food source
there is only one employed bee (number of em-
ployed bees equals the number of food sources).

• Unemployed foragers: are bees that continuously
look for a food source. We differ between (1)
scouts that search for a new food source in the sur-
rounding of the nest, and (2) onlookers that wait in
the nest and get information about the food source
from the employed foragers. They watch several
waggle dances by employed foragers and decide
on the most profitable source.
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Generally, the ABC algorithm as global optimizer has
following steps (for more formal details, the reader is
referred to (Karaboga, 2010)):

Algorithm 1: ABC as global optimizer.

1: Initialization Phase (population of the food
source)

2: repeat
3: Employed Bees Phase
4: Onlooker Bees Phase
5: Scout Bees Phase
6: Memorize the best solution
7: until Cycle = Maximum Cycle Number or a Max-

imum CPU time

Several research works already used the ABC
algorithm in job scheduling applications (see Sec-
tion 6). Summarized, they typically use population
of bees that present a solution space, and make cal-
culations centrally. Instead, in this paper, we do not
create a solution space, but rather choose the bottom-
up approach, where bees represent agents (instead of
solutions) that work with local rules from which a
global behavior (optimization of the industrial plant)
emerges. Thus, we follow a completely new approach
of the ABC algorithm application.

3.2 The Bat Algorithm

The bat algorithm was first introduced in (Yang, 2010)
and was inspired by the behavior of microbats that use
echolocation to detect and hunt their prey. Like other
metaheuristic nature-inspired algorithms, it is primar-
ily used for optimization problems. The algorithm is
based on three idealized rules of the behavior of mi-
crobats:

1. Bats use echolocation to measure the distance to
the prey.

2. Bats move with a velocity vi at a certain position
xi with a fixed frequency fmin and they can adjust
the loudness A0 and the rate of pulse r ∈ [0,1] of
their signal depending on their proximity to the
prey.

3. The loudness of the emitted signal varies from
maximum A0 to minimum Amin, depending on the
proximity of the bat to the prey.

The movement and frequency of the bats are de-
scribed by equations 1 – 3. The first equation denotes
the pulse frequency fi of the signal, where β ∈ [0,1] is
a vector drawn from a uniform distribution. The up-
date rules for the positions xi and velocities vi of bats
are defined by Equations 2 and 3. The positions and

velocities are updated at every time step t. In Equa-
tion 2, x∗ denotes to the best current global solution.

fi = fmin +( fmax − fmin) ·β (1)

vt
i = vt−1

i +(xt
i − x∗) · fi (2)

xt
i = xt−1

i + vt
i (3)

Once the current best global solution is found, a
new solution for each bat is generated by a random
walk. Equation 4 describes how the new solution is
achieved, where ε ∈ [−1,1] is a random number and
At is the average loudness of bats at the current time
step.

xnew = xold + εAt (4)

The loudness Ai of the emitted signal and the pulse
rate ri are updated according to Equations 5 and 6,
where α and γ are constant values. The loudness de-
creases the closer the bat is to its prey. On the con-
trary, the pulse rate increases when the bat homes in
on the target. The pseudo code for the original bat
algorithm is described in Algorithm 2.

At+1
i = At

i ·α (5)

rt+1
i = r0

i · [1− exp(−γt)] (6)

Just as with the ABC algorithm, the original bat
algorithm is applied to the problems within the solu-
tion space and is used as a global optimizer. For the
objective of our problem adjustments have been made
to adapt the algorithm to the bottom-up approach.

Algorithm 2: Bat algorithm as global optimizer.

1: Initialization Phase (initialization of the bat pop-
ulation xi, objective function f(x), frequency fi at
xi, pulse rate ri, velocity vi and loudness Ai)

2: repeat
3: Generate new solutions by adjusting position

xi, frequency fi and velocity vi according to
Equations 1 – 3

4: Evaluate solutions and select the best one
5: Generate new local solution around the best

solution
6: Generate new random solution (random fly)
7: Adjust loudness Ai and pulse rate ri
8: Select the best solution x∗
9: until Cycle = Maximum Cycle Number or a Max-

imum CPU time
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4 THE ALGORITHMS IN A
BOTTOM-UP APPROACH

4.1 The ABC Algorithm

For the needs of our use case of production schedul-
ing, the following mapping has been chosen:

• food source = machine, Mm
i ∈W m, i = 1,2, . . . , I

• bees = lot from one product, lt
n ∈Lt ,n= 1,2, . . . ,N

where machine Mm
i belongs to a workcenter W m ⊂ M

and M represents all machines in the fab. Each lot
lt
n ∈ Lt has access to its Rt (sequence of process steps

Pm) and thus, a list of the machines that are used by
the lot.

Therefore lots, which we modeled as bees, need
to choose the next machine Mm

i out of the set W m,
to perform their next process Pm ∈ Rt . For this, it is
important to distinguish between lt

n modeled as scout
bee lSB and onlooker bee lOB, due to each lot type
choosing machines differently.

The scout bees are those that explore the food
sources. They share their experience and knowledge
of food quality with all other bees. In the beginning of
our simulation, there is no a-priori quality knowledge
of any machine. For this reason, our simulation starts
with the Scout Bees Phase, due to scout bees selecting
their food source randomly. This leads to lt

n modeled
as lSB starting the search for their machines first, to
collect quality information. The collected informa-
tion will be later used to attract lOB. Upon finishing
the process Pm ∈ Rt at the chosen machine Mm

i ∈W m,
lSB will evaluate the quality of the machine Mm

i fol-
lowing Equation 7:

Q(Mm
i ) =

1
wSB

(7)

where wSB represents queuing time and processing
time of a previous lSB that has chosen machine Mm

i ∈
W m to perform its next process Pm ∈ Rt . Therefore,
the longer it took machine Mm

i to process the previous
lSB, the lower the quality Q(Mm

i ) will be.
Unlike the original ABC algorithm, in our model

of the industrial use case, there is no employed bee
concept as such, due to all lt

n, only moving forward
and not coming back to the hive to bring the infor-
mation about machines (i.e., to perform the waggle
dance). Instead, we model this function of an em-
ployed bee as the machine’s own memory of its qual-
ity communicated by the lSB. Lots modeled as on-
looker bees, i.e. lOB, and interested in having their
process performed on one of the machines Mm

i ∈W m,
can access the machines’ memory and read the quality
information left by the lSB. Therefore, our model uses

stigmergy as communication media, i.e., no messages
are exchanged among the swarm members.

Once lSB provides quality information of possible
next machines, lOB will probabilistically choose the
best-quality machine. The probability Pr(Mm

i ) with
which lSB choose the best solution, which is one Mm

i
out of the set W m, is described in (Karaboga, 2010)
and given as follows:

Pr(Mm
i ) =

fit(Mm
i )

∑
I
i=1 fit(Mm

i )
(8)

where fit(Mm
i ) denotes the fitness value of ma-

chine Mm
i over the sum of fitness values of all I ma-

chines in workcenter W m.
In the original ABC algorithm, bees in the Em-

ployed Bees Phase try to find a new better solution
in the neighborhood of an existing solution. The new
solution is generated randomly and then compared to
the existing one. If the newly selected food source has
better quality, greedy selection will be applied.

In our adaptation, in the Employed Bees Phase the
neighborhood consists of lots waiting in Qm

i of a cho-
sen Mm

i . Namely, when lots choose their preferred
Mm

i ∈ W m they are put in Qm
i to wait for their pro-

cessing turn. By default, the lt
n at the beginning of the

Qm
i will be processed first, following a simple First-

In First-Out algorithm. In our model, when queued
and in case their next step Pm ∈ Rt corresponds to a
batch machine, all such lots enter the Employed Bees
Phase. The reasoning for this is the different mode of
processing of single-step and batch machines. Since
batch machines wait for a certain time period for lots
to accumulate, it may happen that there are some lots
that could have filled the batch machine if they had
been processed first at the previous single-step ma-
chine.

Lastly, in the original ABC algorithm, employed
bees abandon their food sources due to the food
source having poor quality or becoming poor quality
due to excessive exploitation. As already stated be-
fore, in our model there is no concept of an employed
bee, therefore we use a predefined limit value l that
serves as a machine’s quality value timeout. After a
certain number of onlooker lots lOB have visited and
exploited the chosen Mm

i ∈ W m, its quality Q(Mm
i )

will have to be re-evaluated by another lSB.
In contrast to the original ABC algorithm, our

variant implements different phases wrt. the differ-
ent process steps in Rt of lt

n. For each processing step
in Rt , the lt

n moves from Mm
i to Mp

j , and go through
the following steps:
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Algorithm 3: Bottom-up ABC.

1: Initialization Phase (population of lots and ma-
chines)

2: repeat
3: switch mprev → mnext do

4: case 0 → SingleStep:
Scout Bees Phase;
Onlooker Bees Phase;

5: case 0 → Batch:
Scout Bees Phase;
Onlooker Bees Phase;

6: case SingleStep → SingleStep:
Scout Bees Phase;
Onlooker Bees Phase;

7: case SingleStep → Batch:
Employed Bees Phase;

8: case Batch → Batch:
Scout Bees Phase;
Onlooker Bees Phase;

9: case Batch → SingleStep:
Scout Bees Phase;

10: until all lots have found their last machine

4.1.1 Initialization Phase

Firstly, a number of lots and machines in a fab is set,
as well as the limit l after which a machine’s quality
will have to be updated. The machine’s memory gets
initialized as well.

4.1.2 Case 0 to SingleStep

At the beginning of our simulation, there is no a-
priori information on machines, as already explained.
Therefore lots that are first to choose a machine Mm

i ∈
W m, must do it without comparing their quality value
given that it does not exist yet. For this reason, firstly
lSB are allocated. After the machine Mm

i processes
them, it will be evaluated by the lSB. Once all ma-
chines in W m had been evaluated, the Onlooker Bees
Phase will begin. Namely, lOB will choose probabilis-
tically, the best one from the W m.

4.1.3 Case 0 to Batch

Given the difference in the mode of operation for both
single-step and batch machines, the implementation
of the concept described above is slightly changed.

Namely, instead of calculating the machine’s quality
as in Equation 7, after a random lSB allocation, lOB
lots will choose Mm

i ∈W m as follows: Firstly, all ma-
chines in W m that already have some other lots in their
queues of the same product type (i.e., belonging to the
same group Lt ), will be inspected. Then a number of
free places nfs (until the full batch) in such machines,
will be counted. If there is a batch-oriented machine
Mm

i ∈W m with nfs = 1, the lot lOB will choose this ma-
chine. If there is more than one machine with nfs = 1,
then the best machine is considered the one with the
shortest remaining wait time tMm

i
for lots to accumu-

late, before Mm
i processes a semi-filled batch. If there

is not one Mm
i ∈W m with nfs = 1, then the lOB lot will

search for machines having nfs = 2 places missing,
etc.

4.1.4 Case SingleStep to SingleStep

Assuming lots have progressed with their production
following Rt , some of the machines with good quality
Q(Mm

i ) will be chosen more frequently than others in
the same workcenter W m. This will eventually lead
to accumulated lots in the queues of such machines,
therefore the total waiting time wSB will increase. To
maintain wSB up to date, the limit value l of a ma-
chine Mm

i gets decreased each time Mm
i gets chosen

by a lot. When the limit value l becomes equal to
0, this Mm

i will lose its “evaluated” status. This will
mean that some of the incoming lSB will choose this
Mm

i randomly, and upon finishing the process will re-
evaluate it. This will provide a new, updated Q(Mm

i )
value for the incoming lOB. Additionally, since lOB
chooses the best Mm

i ∈W m probabilistically, there is a
1−Pr(Mm

i ) chance, that this lOB will change its status
to an lSB. Namely, instead of exploiting the best ma-
chine, it will explore the W m and select one machine
randomly.

4.1.5 Case SingleStep to Batch

Since the influence of batch machines on the produc-
tion of industrial plants is severe, it is important to
optimize this change in each lot’s recipe. As already
mentioned earlier in this section, it may happen that
some lots waiting in a queue of a single-step machine
could have filled out a batch machine if they had been
processed first. In the original ABC algorithm, in the
Employed Bees Phase, a new solution gets generated
and compared to the existing one and then a better
one gets selected following the greedy selection ap-
proach. Therefore, in our algorithm, we model a bet-
ter solution generated in the Employed Bees Phase
and greedy selection as follows:

All lots in queue Qm
i of a single-step machine
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Mm
i that have next machine Mp

j batch-oriented, will
be compared. Instead of processing the first lot in
the Qm

i , single-step machine Mm
i will process the

lot which gives the minimum values from the set
[ nfs, tMm

i
] , as described in case 0 → Batch.

4.1.6 Case Batch to Batch

The concept here is similar to the one described in
case 0 → Batch. Instead of a single lOB, here we con-
sider the whole batch of lots processed by a batch-
oriented Mm

i . Since the next process step Pp of these
lots corresponds to another batch-oriented Mp

j , the
group of lots will choose one Mp

j ∈ W p as given
above.

4.1.7 Case Batch to SingleStep

Finally, since a batch machine waits and then pro-
cesses several lots at once, this results in waves of lots
being introduced to the following machines. In or-
der to evenly distribute these lots and not create over-
whelming queues of lots for single-step machines, we
modeled this case by randomly distributing lots over
the whole set W m of the next possible machines.

4.2 The Bat Algorithm

As with the ABC algorithm, we propose a mapping
for the bottom-up bat algorithm to the production
scheduling problem as follows:

• bats = machine, Mm
i ∈W m, i = 1,2, . . . , I

• prey = lot from one product, lt
n ∈ Lt ,n= 1,2, . . . ,N

where machine Mm
i belongs to a workcenter W m ⊂ M

and M represents all machines in the fab. Each lot
lt
n ∈ Lt has access to its Rt (sequence of process steps

Pm) and thus, the machine types that have to be used
to produce the lot.

In the original bat algorithm, the population of
bats is initialized with a certain position, velocity and
frequency, as well as loudness and pulse rate of the
echolocation, which varies depending on the distance
of the bat to the prey. With each iteration new so-
lutions are generated by adjusting these parameters,
then the bats are evaluated and the best solution is
chosen.

When mapping the original algorithm to this par-
ticular production scheduling problem parts of the al-
gorithm have been adapted and simplified. First of
all, since the bats or the machines in the factory are
static, as opposed to the original algorithm where the
bats fly and change their position and velocity, there
is no need to use the before mentioned equations 1
– 3. The bats are static in said environment due to

the fact that the machines in the production are them-
selves static, and the lots are the ones that are dynamic
and move throughout the factory from one work cen-
ter to the next. Thus, the problem is reconfigured from
bats having to search and hunt their prey, to prey be-
ing “lured” by the bat that is closest to them. In other
words, the lot to be processed is being chosen by the
most optimal machine in the work center. The mech-
anism behind the choice is further described in the
following section.

The distance from the bat to the prey is calculated
based on the Equation 9.

Dist = min∑(α ·Pdistr +β ·Qdistr) (9)

In terms of production, the equation corresponds
to the minimum value of the sums of the product
(Pdistr) and queue (Qdistr) distributions of a specific
work center. The equation is calculated before the lot
chooses a queue of a current work center, depending
on the lot’s recipe.

Product distribution is calculated for each ma-
chine in the work center. In Equation 10 the sum in
the nominator corresponds to the number of the lots
with the same product type as the lot choosing the
queue for each machine. The sum in the denominator
corresponds to the number of the lots with the corre-
sponding product type for the whole work center.

Pdistr =
∑

num(Mm
i )

j=1 lt
j

∑
I
k=1 lt

k
(10)

Queue distribution is also calculated for each ma-
chine in the work center. As shown in Equation 11
it is achieved by dividing the queue length of each of
the machines in the work center by the sum of all the
queue lengths of the work center.

Qdistr =
qlen(Mm

i )

∑
I
j=1 qlen j(Mm

i )
(11)

The product and queue distributions for each ma-
chine in the work center are saved in the memory of
their respective machines. Once both distributions are
calculated for each machine, as described in Equa-
tion 9, they are multiplied by their respective weights,
added up and saved in the memory again, thus creat-
ing a list of values for each machine. The machine
with the minimum distribution value then is chosen to
process the lot.

Parameters α and β are the weights that are ap-
plied to the product and queue distributions respec-
tively. For this version of the algorithm α and β are
constant values (α = 0.7, β = 0.3). The values were
chosen based on testing.
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The before mentioned solution is proposed for the
case of a work center with single-step machines. To
choose the optimal machine in a work center with
batch machines we use the same mechanism as the
cases “0 to Batch” and “Batch to Batch” in the ABC
bottom-up algorithm described in Sections 4.1.3 and
4.1.6.

The pseudo code for the bottom-up bat algorithm
is shown in Algorithm 4.

Algorithm 4: Bottom-up bat algorithm.

1: Initialization Phase (initialization of the alpha,
beta parameters, memory)

2: repeat
3: switch msingleStep → mbatch do

4: case SingleStep:
Calculate Qdistr for the WC;
Calculate Pdistr for the WC;
Save Qdistr and Pdistr to the memory of

each machine of the WC;
Calculate the weighted sum of the queue

and product distributions for each machine in the
WC;

Save the weighted sum of the distribu-
tions (the distance) to memory of each machine
of the WC;

Choose the machine with the minimum
weighted sum value (Choose the bat with the
minimum distance to the prey);

5: case Batch:
Analogous to bottom-up ABC cases

“case 0 → Batch” and “case Batch → Batch”;

6: until all lots have found their last machine

5 EVALUATION AND RESULTS

5.1 Simulation Environment

We use NetLogo(Wilensky, 1999) which is one of the
most-used agent-based simulation platforms world-
wide and free to use. On top of this we implemented
a simulation framework which models the machines,
queues, and products in the fab and supports differ-
ent plug-in algorithms to optimize and control product
movement, queue management and process schedul-
ing. Machines, their queues, and the lots to be pro-
duced are each modelled as agent types (NetLogo
“breeds”) with their own, respective attributes. The
main simulation loop is run once per time tick and
drives the movement of lots through the factory: first,

each lot not currently being processed or in a queue
gets to choose the next queue. This is facilitated by
the choose-queue callback to the currently active al-
gorithm. Then, every machine that is not currently
processing chooses the next lot (or set of lots, in
case of a batch machine) from its respective queue.
This decision is made via the take-from-queue call-
back to the currently active algorithm. After the
lot(s) has/have finished processing, the algorithm is
called again (move-out callback) to facilitate commu-
nications or other updates before the lot(s) move to
the next queue. At the beginning and end of every
tick, two more algorithm callbacks (tick-start, tick-
end) enable time-based updates (such as, e.g., the
degradation of pheromones). We use NetLogo Be-
haviorSpace to control the simulation runs and result
log file creation and the R statistics package to post-
process the results. A detailed description of our sim-
ulation framework can be found in (Umlauft et al.,
2022) and the source code plus necessary configura-
tion files can be obtained at our GitHub repository at
https://swarmfabsim.github.io.

5.2 The Baseline Algorithm

Baseline is a memoryless/stateless algorithm pro-
vided as reference for performance comparisons. The
idea of the baseline algorithm is to use simple heuris-
tics which use only local information to calculate its
decisions like the swarm algorithms that it is com-
pared to. We choose this model of only using local in-
formation/computation because we want to consider
problem sizes that would be too large to calculate an
optimal global solution in feasible time.

For single-step oriented machines, assigning a lot
to the machine with the shortest queue out of the
possible machines for the next step and to run these
queues in FIFO mode fulfills these requirements. In
real-world production plants, such as Infineon Tech-
nologies, of course more sophisticated approaches are
used, typically involving several priority levels to re-
shuffle lots in a queue. The underlying principle on
which those approaches are based, can in its most
simple form be abstracted to “shortest queue/FIFO”.

For batch machines, the most important idea is to
use the machine at maximum capacity and neither run
it with semi-filled batches nor have it sit idle. There-
fore, in the real world, there is a waiting time WT that
a batch machine will wait for enough lots of the same
type to arrive to fill a whole batch. When only using
information local to the current machine (the smallest
information horizon), the best a simple algorithm can
do is to start the machine immediately once enough
lots of a type have arrived to fill a batch or to wait for
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the waiting time WT and to then take the largest semi-
filled batch available. In real life, this basic princi-
ple would be enhanced by corporate secret algorithms
that additionally take other information into account,
like deadlines that lots have to conform to.

In our version of baseline, we try to keep the infor-
mation horizon as small as possible and therefore do
not implement such communications. We also delib-
eratey do not consider the interplay between single-
step machines and batch machines as described in
Section 2, because we want to investigate the potential
for performance improvement inherent in addressing
these alternating processing modes.

In detail, the baseline algorithm works as fol-
lows: for the choose-queue callback it differentiates
between single-step and batch machines. For ma-
chines that process lot-by-lot, it simply chooses the
shortest queue. For batch machines it looks for the
queue where the least amount of lots of the current
type is missing to fill an already waiting, semi-filled
batch. If there are no partially filled batches of this
type in any of the potential queues, it chooses the
queue with the least overall queue length.

For the take-from-queue callback, it uses a FIFO
approach on single-step machines, while on batch ma-
chines, if a full batch is available, that batch is chosen.
If several full batches exist, one is chosen at random.
If no full batch exists, the machine waits up to a max-
imum waiting time WT . After timeout, the largest
batch is chosen (in case of contention, one is chosen
at random). If a batch fills up during WT , it is chosen
and processed immediately.

5.3 Simulation Settings

We evaluated the algorithms in three scenarios, a
small (SFAB), a medium-sized (MEDIUM), and a
large (LFAB) model of a fab with different numbers
of machines and machine types. The LFAB scenario
also has a higher number of product types and lots per
type than the SFAB and MEDIUM scenarios. The pa-
rameters for these scenarios are shown in Table 1.

Table 1: Parameters used to create the three evaluation sce-
narios.

Parameter SFAB MEDIUM LFAB
Mach. types 25 50 100
Mach. / type U(2,5) U(2,10) U(2,10)
Product types 50 50 100
Recipe length U(90,110) U(90,110) U(90,110)
Lots per type U(1,10) U(1,10) U(2,10)

Table 2 depicts the distribution parameters used
to create machines, where N(µ,σ2) denotes a Normal
Distribution and U(a,b) a uniform distribution. Neg-

ative values from the normal distribution have been
capped for parameters that cannot be negative, like
process time.

Table 2: Machine parameters used in the simulation.

Machine Parameter Value
Raw process time N(µ,σ2) with µ =

1.16, σ2 = 0.32
Probability batch machine 50%
Batch size batch machines U(2,8)
Waiting time batch machines U(1,2)

5.4 Results and Discussion

For the evaluation, each scenario setting has been run
30 times, and averaged.The algorithms are evaluated
according to four performance metrics: makespan,
average flow factor, average tardiness, and average
machine utilization. Tables 3, 4, and 5 depict a com-
parison between the performance of the reference al-
gorithm “Baseline” and the ABC and bat inspired al-
gorithms.
Makespan (MS): represents the total time for the pro-
duction plant to produce all lots from start to finish (in
simulation ticks). All lots are introduced into the fab
at the same time at the start of the simulation.
textbfFlow factor (FF): describes the relation between
the actual production time (including queue waiting
times) and the theoretical minimum production time
(sum of raw processing times of all required steps in
the recipe). The result is averaged over all lots.
Tardiness (TRD): describes how much additional
time (due to lots waiting in a queue) has been accu-
mulated until production of the lot compared to the
theoretical minimum production time. The result (in
simulation ticks) is averaged over all lots.
Machine utilization (UTL): represents how much
percent of time an average machine has been in op-
eration. For this, the total sum of working time of all
machines is divided by the simulation time and nor-
malized by the number of machines.

Table 3: Small Scenario (SFAB). Changes in %, positive
values denote improvement over Baseline.

Baseline ABC Change Bat Change

MS 10398 10838 -4.2% 9851 5.3%
FF 6.51 6.55 -0.6% 5.24 19.6%
TRD 6971.1 7031.5 -0.9% 5312.5 23.8%
UTL 35.90 33.74 6.0% 32.58 9.2%

Although the ABC and the bat algorithm are not
new alogrithms, we engineer them as literal swarm in-
telligence algorithms: instead of performing a global

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

66



Table 4: Medium Scenario (MEDIUM). Changes in %, pos-
itive values denote improvement over Baseline.

Baseline ABC Change Bat Change

MS 4536 5403 -19.1% 5604 -23.5%
FF 3.21 3.36 -4.9% 3.30 -2.8%
TRD 2481.8 2656.0 -7.0% 2576.9 -3.8%
UTL 23.87 19.58 18.0% 19.34 19.0%

Table 5: Large Scenario (LFAB). Changes in %, positive
values denote improvement over Baseline.

Baseline ABC Change Bat Change

MS 6207 6528 -6.0% 5790 6.7%
FF 3.47 3.54 -1.9% 2.78 20.0%
TRD 3126.8 3210.38 -2.7% 2244.0 28.2%
UTL 22.71 20.37 10.3% 23.94 -5.4%

optimization by applying them to solutions in the so-
lution space, we chose a bottom-up approach where
a global behavior emerges from local rules in an
agent-based modeled plant. The performance evalua-
tion shows that the ABC algorithm performs slightly
worse than Baseline for the SFAB and LFAB sce-
narios and worse in the MEDIUM scenario. For the
bat algorithm, SFAB and LFAB scenarios depict very
promising improvements, while the MEDIUM sce-
nario performs worse.

As described in Section 2, our understanding is
that the job shop problem is exacerbated by the switch
between single-step oriented and batch machines.
Therefore, an algorithm like Baseline, that pursues
a strategy to best fill semi-filled batches (and there-
fore reduces idling time and inefficient use of batch
machines) is hard to beat by algorithms that only em-
ploy local calculations to decide queue assignment.
This has also been observed in our previous work
(Umlauft et al., 2022), where we show how a hor-
mone algorithm that spreads information (in the form
of artificial hormones) back several machines is able
to consistently beat Baseline while an ant algorithm
that uses only local pheromones (at the current work-
center) is not. In general, an optimal algorithm for
this problem should take these switches from single-
step to batch machines and vice versa explicitly into
account. We are therefore planning to improve on
the proposed algorithms in the future by increasing
the size of the local neighborhood by looking several
machines “ahead” and anticipating switches between
machine kinds.

6 RELATED WORK

The following paragraphs gives a summary of the
currently available research activities on the ABC
algorithm. Multiple considerations and variants of
the ABC algorithm for job-shop scheduling problem
(JSSP) exist: (Karaboga and Basturk, 2007) uses the
ABC algorithm for optimizing multivariable func-
tions. (Yao et al., 2010) (Han et al., 2012) propose
the improved artificial bee colony (IABC) algorithm
that can transform roles during the search process and
enhance convergence rate. By comparing with Ge-
netic algorithm (GA) and the simple ABC, IABC is
also examined to be an effective and efficient method
for solving the JSSP. (Gupta and Sharma, 2012) use
additional mutation and crossover operator of GA in
the classical ABC algorithm. They add a crossover
operator after the employed bee phase and a muta-
tion operator after onlooker bee phase of ABC algo-
rithm, with the criterion to decrease the maximum
completion time. (Zhang et al., 2013) apply the
ABC algorithm with the objective of minimizing to-
tal weighted tardiness. (Alvarado-Iniesta et al., 2013)
examine how to optimize the time and effort required
to supply raw material to different production lines
in a manufacturing plant in Juarez, Mexico by min-
imizing the distance an operator must travel to dis-
tribute material from a warehouse to a set of differ-
ent production lines with corresponding demand. The
ABC algorithm is applied in order to find the opti-
mal distribution of material with the aim of estab-
lishing a standard time for this duty by examining
how this is applied in a local manufacturing plant.
(Pan et al., 2011) aim at minimizing total weighted
earliness and tardiness penalties for the lot-streaming
JSSP with equal sized sublots. examine the problem
under both the idling and no-idling cases and pro-
pose a novel discrete artificial bee colony (DABC)
algorithm. (Li et al., 2014) proposes the DABC al-
gorithm for solving the multi-objective flexible JSSP
with maintenance activities. Due to the reasonable
hybridization of the ABC search and tabu search (TS)
based local search, the proposed DABC algorithm has
the ability to obtain promising solutions for the prob-
lem considered. (Tasgetiren et al., 2013) they ex-
pand the DABC to solve the no-idle permutation JSSP
with the total tardiness criterion by applying a novel
speed-up method for the insertion neighborhood. (Liu
and Liu, 2013) use the hybrid DABC algorithm for
minimizing the makespan in permutation JSSP. Also
(Pan et al., 2014), they use the DABC with a hybrid
representation and a combination of forward decod-
ing and backward decoding methods for solving the
problem. (Wang et al., 2012) introduce an enhanced
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Pareto-based artificial bee colony (EPABC) algorithm
to solve the multi-objective flexible JSSP with the
criteria to minimize the maximum completion time,
the total workload of machines, and the workload of
the critical machine simultaneously. (Kumar et al.,
2014) outline a new hybrid of ABC algorithm with
GA. The proposed method integrates crossover op-
eration from GA with original ABC algorithm. The
proposed method is named as Crossover based ABC
(CbABC). The CbABC strengthens the exploitation
phase of ABC as crossover enhances exploration of
search space. (Yurtkuran and Emel, 2014) propose
the modified artificial bee colony (M-ABC) algorithm
to solve p-center problems. The proposed approach
has two main contributions: random key-based en-
coding for solution representation and a new multi
search strategy in which different search strategies are
employed in one overall search process. (Li and Pan,
2015) present a novel hybrid algorithm (TABC) that
combines the ABC and TS to solve the hybrid flow
shop (HFS) scheduling problem with limited buffers.
The main advantages of the proposed algorithms are
as follows: the TS-based self-adaptive neighborhood
strategy is embedded in TABC, which can balance
the exploitation and exploration abilities of the al-
gorithms; (2) the TS-based local search is applied
to the employed bees and onlookers with different
functions, which can further enhance the exploita-
tion ability of the proposed algorithm. In (Gao et al.,
2015) the TABC is compared against and outperforms
eleven heuristic and meta-heuristics algorithms. Fur-
ther, (Gao et al., 2016) investigate the FJSP with fuzzy
processing time. (Sharma and Pant, 2017) introduce a
hybrid version of ABC and shuffled frog-leaping al-
gorithm. (Sharma et al., 2018) present a modified
ABC algorithm to solve JSSP, in the onlooker bee
phase of ABC, to maintain a proper harmony amid
exploration and exploitation capabilities, beer froth
phenomenon inspired position update is incorporated.
The proposed strategy is named as Beer froth artificial
bee colony algorithm. (Zhuang et al., 2019) present
JSSPs with two sequence-dependent setup times. The
problem is different from the traditional open JSSP,
with higher complexity. The mixed integer linear
programming model is proposed to solve small-scale
problems and get exact solutions. Compared with
other four intelligent algorithms, such as GA, PSO,
ant colony optimization and cuckoo search algorithm,
two experiments have been conducted and the com-
putational results shows that the proposed artificial
bee colony algorithm can achieve the best result in
the large-scale problems A detailed review on ABC
variants on data clustering can be found in (Kumar
et al., 2017). They state that the ABC is a simple

and flexible algorithm and requires less parameters to
be tuned in comparison to other meta-heuristic algo-
rithms. Furthermore, in (Khader et al., 2013) present
a thorough and extensive overview of most research
work focusing on the application of ABC, with the
expectation that it would serve as a reference material
to both old and new, incoming researchers to the field.
Further applications are presented in (Karaboga et al.,
2014).

Bat algorithm and various improved and modi-
fied versions of the algorithm have been applied to
the job shop scheduling problem (JSSP) over the
last decade since the algorithm was first introduced
in (Yang, 2010). In 2012 bat algorithm was used
in (Musikapun and Pongcharoen, 2012) to develop the
Bat Algorithm based Scheduling Tool to solve multi-
stage multi-machine multi-process scheduling prob-
lems. (Marichelvam et al., 2013) apply bat algorithm
to the multistage hybrid flow shop (HFS) scheduling
problems. The results show the bat algorithm out-
performs both the genetic algorithm and the particle
swarm optimization algorithm. (Luo et al., 2014) de-
velop the discrete bat algorithm for optimal permuta-
tion flow shop scheduling problem. (Xu et al., 2017)
developed an improved bat algorithm to solve a dual
flexible job-shop scheduling problem (DFJSP). The
authors use a dual flexible encoding strategy to pro-
duce the mapping between operations and bat popula-
tions. The experiment results show that the proposed
model and improved algorithm could be effectively
applied to DFJSP. (Zhu et al., 2017) proposed a modi-
fied bat algorithm to solve multi-objective JSSP. They
were the first to successfully apply the bat algorithm
to the multi-objective flexible JSSP. (Dao et al., 2018)
put forward an optimization algorithm based on paral-
lel versions of the bat algorithm, random-key encod-
ing scheme and makespan scheme to solve JSSP. The
results show an improvement in the convergence and
accuracy compared to the original bat algorithm and
particle swarm optimization. (Lu and Jiang, 2019)
were the first to apply the bat algorithm to the low-
carbon JSP. They propose a bi-population based dis-
crete bat algorithm, more specifically they propose a
parallel searching mechanism to divide the popula-
tion, as well as a modified discrete updating approach
to make the bat algorithm search within a discrete do-
main. More recently, (Chen et al., 2019) proposed
another improved bat algorithm for solving the JSSP,
which focuses on speeding up convirgance and deter-
mining the optimal global solution. They compare the
improved bat algorithm to the original bat algorithm
and particle swarm optimization algorithm and suc-
cessfully outperform them in minimizing makespan
and finding the optimal global solution. (Yang and
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He, 2013) provide a comprehensive review of differ-
ent variants of the bat algorithm and its applications,
as well as various case studies. A more recent review
was provided in (Jayabarathi et al., 2018). It focuses
on the usage of the bat algorithm and its application
to optimize various engineering problems.

7 CONCLUSION AND FUTURE
WORK

This paper has proposed the use of two bio-inspired
algorithms, namely the artificial bee colony (ABC)
and the bat algorithm in a bottom-up manner to tackle
the problem of optimization for a semiconductor fab
using the job-shop manufacturing principle. Unlike
previous work, where these algorithms are calculated
for global optimization, we do not apply them to
solutions in the solution space. Instead, we chose
a bottom-up approach and applied them as literal
swarm intelligence algorithms in a bottom-up manner.
This means that the active agents (artificial bees, bats)
were mapped to entities in the production plant and
only use information from their current local neigh-
borhood to take decisions from which the global so-
lution then emerges automatically. We used NetLogo
to simulate the fab and to measure the performance of
the proposed algorithms compared to an engineered
baseline algorithm. The evaluation was based on four
key performance indicators: makespan, flow factor,
tardiness, and machine uptime utilization. Our results
show that these types of algorithms, employed in a
bottom-up manner, show promise of performance im-
provements using only low-effort local calculations.
The implementation of the simulation environment is
published as open source in a Git repository2.

Future work will expand on the details of the pro-
posed algorithms by investigating the impact of the
size of the local neighborhood used for calculations
(eg. by looking ahead or back several machines) and
adaptations to explicitly address the switching be-
tween single-step oriented machines and batch ma-
chines during the production process.
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