
Modeling Machine Learning Concerns in Collective Adaptive Systems

Petr Hnětynka a, Martin Kruliš b, Michal Töpfer c and Tomáš Bureš d

Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic

Keywords: Collective Adaptive Systems, Machine Learning, Model-Driven, Meta-Model.

Abstract: Collective adaptive systems (CAS) are systems composed of a large number of heterogeneous entities without
central control that adapt their behavior to reach a common goal. Adaptation and collaboration in such systems
are traditionally specified via a set of logical rules. Nevertheless, such rules are often too rigid and do not allow
for the evolution of a system. Thus, recent approaches started with the introduction of machine learning (ML)
methods into CAS. In the is paper, we present a model-driven approach showing how CAS, which employs ML
methods for adaptation, can be modeled—on both the platform independent and specific levels. In particular,
we define a meta-model for modeling CAS and a mapping of concepts defined in the meta-model to the Python
framework.

1 INTRODUCTION

Collective adaptive systems (CAS) (Anderson et al.,
2013) are commonly understood as systems composed
of a large number of heterogeneous entities without
central control. The entities adapt their behavior in
order to reach a collective goal. Contemporary smart
systems like smart homes, smart cities, smart agricul-
ture, or Industry 4.0 management systems typically
fall into the category of CAS.

Adaptation and collaboration in such systems are
traditionally specified via a set of rules (i.e., logical
hard and soft constraints) that are continuously evalu-
ated. While the specification via the rules is straightfor-
ward and easy to understand, they are often too rigid
and do not allow for the evolution of the system when
its context gradually changes.

Therefore, many recent approaches (Muccini and
Vaidhyanathan, 2019; Gheibi et al., 2021a; Saputri and
Lee, 2020; Weyns et al., 2021) have started with the
introduction of machine learning (ML) methods, espe-
cially neural networks, to the adaptation loop. Usually,
ML methods in these approaches are added in an ad-
hoc manner, are “hidden” in their implementation, and
there is a lack of support on the architectural level
for a system components specification that provides
abstractions for ML. Thus, we have introduced the
concepts of estimators (Töpfer et al., 2022), which are

a https://orcid.org/0000-0002-1008-6886
b https://orcid.org/0000-0002-0985-8949
c https://orcid.org/0000-0002-3313-1766
d https://orcid.org/0000-0003-3622-9918

architectural-level objects providing predictions about
a particular quantity, and which are internally backed
by ML methods.

In this paper, we formalize the concept of the es-
timators using meta-models and show how the mod-
els are transformed to specification in Python. The
formalization of estimators represents a platform-
independent model while the mapping to Python is
a particular platform-specific one.

The presented approach is described in the scope of
the DEECo ensemble-based component model (Bureš
et al., 2020), but it is applicable for CAS that are
modeled using components.

The work in this paper is a continuation of our work
presented in (Bureš et al., 2022), where we have de-
signed a model-driven approach of a gradual transfor-
mation of system models that describe their behavior
via logical rules into models with behavior specified
via specially constructed neural networks while keep-
ing a clear relation to the original logical rules. With
the introduction of estimators, the logical rules can be
directly enhanced with ML capabilities without a need
for extra steps in design and development.

The main contribution of this paper is a complete
model-driven approach for collective adaptive systems
which employ ML methods. Our approach makes it
possible to model such systems and the ML inference
on a platform-independent level (via a set of meta-
models) and on platform-specific levels (via a mapping
to Python).

The paper is structured as follows. Section 2 de-
scribes a running example and the basics of ensemble-
based component models, including the DEECo model.

Hnětynka, P., Kruliš, M., Töpfer, M. and Bureš, T.
Modeling Machine Learning Concerns in Collective Adaptive Systems.
DOI: 10.5220/0011693300003402
In Proceedings of the 11th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2023), pages 55-62
ISBN: 978-989-758-633-0; ISSN: 2184-4348
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

55



Section 3 formalizes the concept of estimators via the
meta-model, and Section 4 describes its mapping to the
Python constructs. Section 5 discusses related work
and Section 6 concludes the paper.

2 RUNNING EXAMPLE AND
BACKGROUND

Our running example is a simplified use-case taken
from our recently successfully finished ECSEL JU
project AFarCloud1.

Figure 1: Running example.

In the example (that is visualized in Figure 1), there
is a farm with a number of fields with crops (yellow
rectangles) that need protection from flocks of birds.
The farm is monitored by a number of drones that
observe the fields and perform various measurements.
Also, drones are employed to scare flocks away from
the fields (to farm areas that are not “bird-sensitive”).
Typically, a group of drones is necessary to scare a
flock away from the fields. Additionally, the drones
operate with a limited battery capacity and need to
recharge at the charger (the blue square with the light-
ning icon in the figure), which can charge only a lim-
ited number of drones at a single time.

It is obvious that drones need to cooperate closely
and adapt their behavior in order to work successfully.
First, the drones need to form groups to scare flocks
away, and the size and position of the group depend on
the size and position of the flock. Second, the drones
need to cooperate in order to optimize their battery
charge level and charger utilization, ensuring drones
do not terminate without energy and the charger is
used as much as possible.

2.1 Ensembles

To model such adaptive systems, we are exploiting the
power of autonomic component ensembles. Namely,

1https://www.ecsel.eu/projects/afarcloud

we are using the DEECo ensemble-based component
model (Bureš et al., 2020).

Figure 2 shows a meta-model (simplified to save
space) describing the core concepts of the ensembles.

Using DEECo, entities in a system are modeled as
Components that are instances of the ComponentType
meta-class. ComponentType declares component
fields (i.e., data) that contain a state of a particular
component. Also, ComponentType declares compo-
nent actions, i.e., its behavior. In the case of the exam-
ple, there are three component types: (i) for the drones,
(ii) for the charger, and even (iii) for the flocks. In the
case of the flocks, the components are “beyond direct
control”, and thus their state can be observed only.

Ensembles are dynamically established groups of
components and model interactions among the com-
ponents, and they are instances of EnsembleType. For-
mally, the ensemble type definition consists of the
following: (i) a priority providing ordering, in which
the ensembles are evaluated; (ii) an Action to be per-
formed on components grouped in the ensemble; and
(iii) a set of Roles that determine which components
are to be included in the ensemble. A role is either
StaticRole or DynamicRole. Both kinds of roles define
cardinality, i.e., how many components of the same
type have to be set for the role. The static roles are
specified when the ensemble is instantiated and cannot
change. The dynamic ones are populated in an adap-
tive way, given the situation in the system. Technically,
the dynamic roles have a Selector consisting of a pred-
ication determining if a component may be selected
for the particular role, and the utility function (which
orders the components selected for the role, if there
are more potential components than is its cardinality).

Figure 3 shows a part of the Drone component
type that is instantiated by individual drones. It has the
battery energy field, the drone state field, and others
(omitted due to space constraints) and actions to fly
to a position, return to the charger, etc. In a similar
manner, other components (Charger, Field, Flock, etc.)
are defined.

In the running example, there are two ensemble
types: the DroneChargingAssignment ensemble type
grouping drones with a charger (the green group in Fig-
ure 1), and the FieldProtections ensemble type group-
ing drones to protect a particular field (the red group
in Figure 1). The former ensemble type is instantiated
once per each Charger component; the latter one is
instantiated once per a field in danger.

An excerpt of DroneChargingAssignment is de-
picted in Figure 4. A particular charger, for which
the ensemble is instantiated, is assigned to the ensem-
ble static role charger and cannot be later reassigned.
Drones to the ensemble dynamic role are selected ac-

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

56



Figure 2: Meta-model of ensemble-based component architectures.

Figure 3: Drone component type.

cording to the role Selector, which select drones in-
need-to-be-charged, which are close to the particular
charger. As the cardinality is unlimited, there is no util-
ity function defined (as all the drones can be assigned
to the role).

The FieldProtection ensemble is defined similarly.

Figure 4: DroneChargingAssignment ensemble type.

3 MODELING ESTIMATORS

In this section, we present support to model machine
learning concepts directly on the level of components
and ensembles. In (Töpfer et al., 2022), we have intro-
duced the concepts of estimators. An estimator is an
object, which provides predictions about a particular
quantity. We limit the scope of this work to supervised
ML only. This allows for predicting quantities, for
which the true value will be available later during the
run of the system, e.g. predicting a future state of a
component.

The estimator concept itself is a general one and
can be used in any approach for modeling collective

Modeling Machine Learning Concerns in Collective Adaptive Systems

57



adaptive systems. In ensemble-based modeling, it
can be attached to a component, ensemble, or pair
component-ensemble. In either case, there can be mul-
tiple estimators attached to a given entity, and each of
the estimates predicts another value. Regarding the
predicted value, estimators can be divided to be used
for:

(i) classification—predicting a value from a pre-
defined fixed set of possibilities, e.g., possible
states of a component,

(ii) regression—predicting a continuous value, and

(iii) time-to-condition—predicting when a condition
becomes true.

Internally, each estimator is implemented by a ma-
chine learning model (e.g., neural network) that per-
forms predictions. Each estimator can have a number
of inputs via which data are collected for the training
of the internal ML model.

In the running example, the Drone component has
two estimators: one predicting how long it will take for
the drone to start charging, and another one predicting
its battery state at time instant in the future. These
estimators are then used in the drone to decide when to
start to signal the drone needs to be charged. Similarly,
the DroneChargingAssignment ensemble type defines
a component-ensemble estimator used in the ensemble
selector to select the best drone for charging.

In the rest of the section, we present the estimators
meta-model in detail, together with particular exam-
ples of usage in the running example.

3.1 Estimators Meta-Model

Figure 5 shows the meta-model of the above-discussed
estimators and how they are incorporated into DEECo
(technically, this meta-model is a package that extends
the core meta-model in Figure 2—the gray dashed
elements are defined in the core meta-model).

The core element is the Estimate, which represents
values to be learned together with all the necessary
inputs, guards, etc. The Estimate can be attached
to a component (each component can have multiple
Estimates—each for a different data field), an ensem-
ble, or a pair ensemble-component.

The Estimate itself is parameterized by the
EstimatorModel, which defines parameters for the un-
derlying neural network and thus the estimate imple-
mentation and behavior. Each Estimate can have mul-
tiple Inputs (training features), i.e., fields of the com-
ponent needed for training and prediction. We distin-
guish here between numerical and categorical features,
which influences whether the value is used as-is (pos-
sibly normalized) or whether one-hot encoding (in the

Figure 5: Estimate meta-model.

case of categorical features) is used.
The Estimate is further specialized to distinguish

between the options “what” it predicts. In the value
case (represented by subclass ValueEstimate), it spec-
ifies a target, which denotes the truth values that
are to be predicted by the estimator. This can
be either a numerical or a categorical value com-
puted based on the component fields. For numeri-
cal values, we use the RegressionEstimate subclass of
ValueEstimate, and for categorical values, we use the
ClassificationEstimate. The number of time steps we
want to predict into the future is set by the inTimeSteps
attribute of ValueEstimate.

For the time-to-condition case, there is another sub-
class of Estimate—TimeToConditionEstimate—which
specifies a required condition.

The Estimate further defines a guard predicate
(over component fields), which determines if inputs
and outputs (i.e., the target feature or the result of the
condition) are valid and thus can be used to collect
data for training the estimator.

Such a description of an estimator is enough for
automated data collection and training. As already
stated, we focus on supervised ML tasks, so we assume
the correct values for the estimator predictions will
be observed later during the run of the simulation.
The semantics of the modeling concepts in the data
collection phase is as follows.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

58



In the case of the ValueEstimate, we perform the
following actions in every time step:

1. We collect the inputs and the current time provided
that the guard condition on inputs is true.

2. We collect the true outputs (represented by class
Target) for the predictions realized earlier during
the run of the system, provided that the guard con-
dition on the output is true. We associate the output
with inputs that were collected inTimeSteps time
steps ago. If the guard condition on the output is
false, we discard the inputs recorded inTimeSteps
time steps ago.

In the case of the TimeToConditionEstimate, we
perform the following action in every time step:

1. We collect the inputs and the current time to a
buffer provided that the guard condition on inputs
is true.

2. If the condition specified by the Condition is true,
we associate all the inputs collected in the buffer
(as per step #1) with the difference between the
current time and the time of the input in the buffer.
We clear the buffer.

Figure 6: Drone component.

To illustrate the concepts, Figure 6 shows an
instance of the meta-model for the drone compo-
nent of the running example. It extends the model
from Figure 3. In addition to the fields and ac-
tions, the drone has attached two estimates. The first
one—TimeToConditionEstimate—predicts how long it
will take for the drone to get into the CHARGING
state (thus the Condition is a simple predicate check-
ing equality of the State to the CHARGING value).
The estimate has two inputs—BatteryEnergyInput and
DroneStateInput (the former of the numeric kind while
the latter of the categorical kind). Similarly, the sec-

ond one—FutureBatteryEstimate—is for predicting
the battery energy.

Figure 7: DroneChargingAssignment ensemble.

Figure 7 shows an example of the component-
ensemble attached estimator. It is applied to com-
ponents selected in the DroneChargingAssignment en-
semble (the model extends the model from Figure 4).
The estimate predicts time how long the drone will
be waiting for the charger. As inputs, the estimate
takes the distance to the charger, the drone battery en-
ergy level, and the number of drones waiting for the
charger. All the inputs are valid only when the drone
is considered for the charger as defined by the guard
condition.

4 MAPPING TO PYTHON

As an evaluation and proof of concept, we developed
an open-source Python-based framework that realizes
the approach described in Section 3. The Python
framework represents a particular platform-specific
model to which the concepts defined in the previous
section are mapped. The framework features API
for defining components, ensembles, and estimators—
thus providing an internal domain-specific language
for the design of ensemble-based component systems
that employ machine learning.

The framework uses decorators2 to define inputs,
expected outputs (value or condition), and guards for
the estimators—exactly following the concepts in the
meta-model shown in Figure 5.

2A decorator in Python is a function/method that takes
the function/method over which is applied and assigns the
result to the identifier of the original function/method—see
https://www.python.org/dev/peps/pep-0318/.

Modeling Machine Learning Concerns in Collective Adaptive Systems

59



Both the component and ensemble types are de-
fined as classes.

Listing 1 shows the definition of the compo-
nent type Drone. The class extends the predefined
Component class. The fields of the component are
defined in the constructor (i.e., the __init__ method).

The Drone component showcases two estimators
as defined in the model in Figure 6—one for battery
level estimation and another for estimating the time till
charging is needed. The battery level estimator uses
the current battery level and the state of the drone as
inputs and predicts the battery level 50 time steps in
the future. The definition of the estimator is split into
three parts: (a) The definition of the machine learning
model and storage for the collected data (lines 1–4).
This part is specific to the implementation, thus we do
not reflect it in the meta-model. (b) The declaration of
the estimate field in the component; this corresponds to
the association from the ComponentType to Estimate
in the meta-models (lines 8–9). (c) The definition
of inputs, targets, and guards. These are realized as
decorators on component fields and getter functions of
the component.

Namely, the decorators are as follows. The
@futureBatteryEstimate.input() decorates methods re-
turning input values. The inputs are marked
whether they are numeric values or categorical ones.
The target is similarly decorated with the @future-
BatteryEstimate.target() (line 33). The @future-
BatteryEstimate.inputsValid() and @futureBatteryEsti-
mate.targetsValid() (starting at line 42) denote guards,
i.e., conditions under which the inputs and targets can
be used for training the estimators (in this particular
case, the drone must not be in the TERMINATED
state—line 46).

The definition of the estimator for the time till
charging is needed is very similar. The only difference
is that instead of defining the target, a condition is
provided (line 48).

1 droneBatteryEstimator = NeuralNetworkEstimator(
2 hidden_layers=[32, 32], # two hidden layers with 32

neurons
3 name="Drone battery"
4 )
5 timeToChargingEstimator = ...
6

7 class Drone(Component):
8 futureBatteryEstimate =

ValueEstimate().inTimeSteps(50)\
9 .using(droneBatteryEstimator)

10 timeToChargingStateEstimate = TimeEstimate()\
11 .using(timeToChargingEstimator)
12

13 def __init__(self, location):
14 self.battery = 1
15 self.state = DroneState.IDLE
16 # more code
17

18 @futureBatteryEstimate.\
19 input(NumericFeature(0, 1))
20 @timeToChargingStateEstimate.\
21 input(NumericFeature(0, 1))
22 def battery(self):
23 return self.battery
24

25 @futureBatteryEstimate.\
26 input(CategoricalFeature(DroneState))
27 @timeToChargingStateEstimate.input(
28 CategoricalFeature(DroneState))
29 def drone_state(self):
30 return self.state
31

32 @futureBatteryEstimate.\
33 target(NumericFeature(0, 1))
34 def battery(self):
35 return self.battery
36

37 @timeToChargingStateEstimate.target(
38 CategoricalFeature(DroneState))
39 def drone_state(self):
40 return self.state
41

42 @futureBatteryEstimate.inputsValid
43 @futureBatteryEstimate.targetsValid
44 @timeToChargingStateEstimate.inputsValid
45 def not_terminated(self):
46 return self.state != DroneState.TERMINATED
47

48 @timeToChargingStateEstimate.condition
49 def is_charging_state(self):
50 return self.state == DroneState.CHARGING
51

52 def actuate(self):
53 # more code

Listing 1: Drone component specification.

Ensemble types are specified in a way similar to
components. This is illustrated in Listing 2, which
shows the DroneChargingAssignment ensemble type
that we already introduced in Section 2 and its estima-
tors described Section 3.

The static role (charger) is declared on line 8. The
value of the role is set in the constructor of the ensem-
ble.

The dynamic role (drones) is declared on line 11.
Its content is set dynamically by the framework based
on the actual state, position, and battery levels of the
drones. The declaration of the role is done via the
someOf function, which denotes that the role is a col-
lection. (An opposite would be oneOf, which would
mean the role contains only one instance.) The declara-
tion of the drones role further contains the declaration
of the estimator that is associated with the role. This
we will describe later in the text.

Cardinality and selector of the dynamic role are
declared using decorated methods of the ensemble. In
this case, the cardinality is defined on line 13. The
cardinality is a tuple containing the lower and the upper
bound. The selector is defined on line 17.

The ensemble priority (influencing order in which

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

60



1 class DroneChargingAssignment(Ensemble):
2 def __init__(self, charger: ’Charger’):
3 self.charger = charger
4

5 def priority(self): return 2
6

7 # static role
8 charger: Charger
9

10 # dynamic role
11 drones: List[Drone] =

someOf(Drone).withTimeEstimate()\
12 .using(waitingTimeEstimator)
13 @drones.cardinality
14 def drones(self):
15 return 0, ENVIRONMENT.droneCount
16

17 @drones.select
18 def drones(self, drone, otherEnsembles):
19 waitingTime = self.drones.estimate(drone)
20 return drone in self.charger.potentialDrones and

drone.needsCharging(waitingTime)
21

22 @drones.estimate.input(NumericFeature(0, 1))
23 def battery(self, drone):
24 return drone.battery
25

26 @drones.estimate.input(NumericFeature(0,
ENVIRONMENT.size))

27 def charger_distance(self, drone):
28 return self.charger.location.\
29 distance(drone.location)
30

31 @drones.estimate.
32 input(NumericFeature(0,

ENVIRONMENT.chargerCapacity))
33 def accepted_drones_length(self, drone):
34 return len(self.charger.acceptedDrones)
35

36 @drones.estimate.inputsValid
37 def is_preassigned(self, drone):
38 return drone in self.charger.potentialDrones
39

40 @drones.estimate.condition
41 def is_accepted(self, drone):
42 return drone in self.charger.acceptedDrones
43

44 def actuate(self):
45 self.charger.waitingDrones = self.drones

Listing 2: Ensemble specification.

the ensembles are instantiated) is specified as the
method priority (line 5).

The action that gets periodically executed by the
ensemble for the member components is given in the
function actuate (on lines 44—45).

The DroneChargingAssignment ensemble type il-
lustrates the most complex case of estimation when the
estimator is associated dynamically with a component
in the context of the ensemble. In this case, it is the
TimeToConditionEstimate predicting the waiting time
before an actual charging of the drone can start (this
includes the time needed to fly to the charger and the
time a drone has to circle around the charger to be
given a free slot in which it can charge).

The configuration of the estimator is similar to
the example in Listing 1. The specification of the
estimator is split into three parts: (a) The defini-
tion of the machine learning model—this is exactly
the same as already explained. (b) The declara-
tion of the estimator in the ensemble differs in that
we are associating the estimator with the ensemble-
component pair. Following the meta-model in Fig-
ure 5, the estimator is associated with a role in the
ensemble, which stems from the transitive relationship
Role→ComponentInRole→Estimate. This is reflected
in the code using the withTimeEstimate method used in
role declaration (line 11). (c) The definition of inputs
and the target condition is again the same as before,
only associated with the ensemble role. Namely, the
inputs are specified on lines 22–34, the target condi-
tion is given on lines 40–42 and the guard is given on
lines 36–38.

5 RELATED WORK

Related approaches to our one are any that employ
machine-learning techniques to collective adaptive sys-
tems. As stated already in the introduction, there are a
number of such approaches, but most of them incorpo-
rate ML techniques "under the hood" and "hard-coded"
in implementations. Typically, ML is employed in
the planning and adaptation phases of the adaptation
loop as it is confirmed by several systematic litera-
ture reviews (e.g., (Saputri and Lee, 2020; Gheibi
et al., 2021a)). Below, we discuss several particular
approaches that are the closest ones.

A number of approach use ML methods to reduce
the size of an adaption space. These are for exam-
ple (Van Der Donckt et al., 2020; Van Der Donckt et al.,
2020; Gheibi et al., 2021b). In (Cámara et al., 2020),
an approach combining machine learning and proba-
bilistic model checking is described, which again tries
to select the best possible adaptations and thus achieve
optimal decisions. In (Muccini and Vaidhyanathan,
2019), ML methods are used in both the monitoring
and analysis phases of the MAPE-K loop to forecast
future values of QoS parameters of a given system and
therefore to select an optimal adaptation strategy. As
mentioned, these approaches use ML internally and,
contrary to our approach, do not bring ML capabilities
to the level of architectural specifications of systems.

A large but not closely related usage of ML meth-
ods in adaptive systems is for attack and anomaly
detection (approaches overviewed e.g., in (Moham-
madi Rouzbahani et al., 2020)).

Regarding the explicit modeling of adaptive sys-
tems and model-driven approaches for their develop-

Modeling Machine Learning Concerns in Collective Adaptive Systems

61



ment, approaches can be found in (D’Angelo et al.,
2018) or (Weyns and Iftikhar, 2019). Nevertheless,
they do not integrate ML techniques.

6 CONCLUSION

In the paper, we have presented an approach for the
formal modeling of machine learning concepts in col-
lective adaptive systems. We have presented the con-
cept of estimators, which are architectural-level ob-
jects providing predictions about a particular quantity,
and defined a meta-model for them. Also, we have
proposed a mapping of concepts defined by the meta-
model to the Python framework, which thus represents
a particular platform-specific model.

While the Python framework is fully functional,
our future work is twofold. Currently, we are working
on incorporating additional machine learning methods
to be used as estimators implementation. Additionally,
we plan to provide an automated transformation from
the platform-independent specifications to the Python
framework.

ACKNOWLEDGMENTS

This work has been partially supported by the Czech
Science Foundation project 20-24814J and also par-
tially supported by Charles University institutional
funding SVV 260588.

REFERENCES

Anderson, S., Bredeche, N., Eiben, A., Kampis, G., and
van Steen, M. (2013). Adaptive collective systems:
Herding black sheep. Bookprints.

Bureš, T., Gerostathopoulos, I., Hnětynka, P., Plášil, F., Krijt,
F., Vinárek, J., and Kofroň, J. (2020). A language and
framework for dynamic component ensembles in smart
systems. International Journal on Software Tools for
Technology Transfer, 22(4):497–509.

Bureš, T., Hnětynka, P., Kruliš, M., and Pacovský, J. (2022).
Towards model-driven fuzzification of adaptive sys-
tems specification. In Proceedings of the 10th Interna-
tional Conference on Model-Driven Engineering and
Software Development, pages 336–343.

Cámara, J., Muccini, H., and Vaidhyanathan, K. (2020).
Quantitative Verification-Aided Machine Learning: A
Tandem Approach for Architecting Self-Adaptive IoT
Systems. In Proceedings of ICSA 2021, Salvador,
Brazil, pages 11–22. IEEE.

D’Angelo, M., Napolitano, A., and Caporuscio, M. (2018).
CyPhEF: a model-driven engineering framework for

self-adaptive cyber-physical systems. In Companion
Proceedings of ICSE 2018, Gothenburg, Sweden, pages
101–104. ACM.

Gheibi, O., Weyns, D., and Quin, F. (2021a). Applying Ma-
chine Learning in Self-adaptive Systems: A Systematic
Literature Review. ACM Transactions on Autonomous
and Adaptive Systems, 15(3):9:1–9:37.

Gheibi, O., Weyns, D., and Quin, F. (2021b). On the Impact
of Applying Machine Learning in the Decision-Making
of Self-Adaptive Systems. In Proceedings of SEAMS
2021, Madrid, Spain, pages 104–110. IEEE.

Mohammadi Rouzbahani, H., Karimipour, H., Rahimne-
jad, A., Dehghantanha, A., and Srivastava, G. (2020).
Anomaly Detection in Cyber-Physical Systems Using
Machine Learning. In Handbook of Big Data Privacy.

Muccini, H. and Vaidhyanathan, K. (2019). A machine
learning-driven approach for proactive decision mak-
ing in adaptive architectures. In Companion Proceed-
ings of ICSA 2019, Hamburg, Germany, pages 242–
245.

Saputri, T. R. D. and Lee, S.-W. (2020). The Application
of Machine Learning in Self-Adaptive Systems: A
Systematic Literature Review. IEEE Access, 8:205948–
205967.

Töpfer, M., Abdullah, M., Bureš, T., Hnětynka, P., and
Kruliš, M. (2022). Ensemble-based modeling abstrac-
tions for modern self-optimizing systems. In Proceed-
ings of ISOLA 2022, Rhodes, Greece, volume 13703
of LNCS, pages 318–334. Springer.

Van Der Donckt, J., Weyns, D., Quin, F., Van Der Donckt,
J., and Michiels, S. (2020). Applying deep learning to
reduce large adaptation spaces of self-adaptive systems
with multiple types of goals. In Proceedings of SEAMS
2020, Seoul, South Korea, pages 20–30. ACM.

Weyns, D. and Iftikhar, M. U. (2019). ActivFORMS: A
Model-Based Approach to Engineer Self-Adaptive Sys-
tems. arXiv:1908.11179 [cs].

Weyns, D., Schmerl, B., Kishida, M., Leva, A., Litoiu, M.,
Ozay, N., Paterson, C., and Tei, K. (2021). Towards
Better Adaptive Systems by Combining MAPE, Con-
trol Theory, and Machine Learning. In Proceedings of
SEAMS 2021, Madrid, Spain, pages 217–223. IEEE.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

62


