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Abstract: Deep Reinforcement Learning (DRL) agents are susceptible to adversarial noise in their observations that can
mislead their policies and decrease their performance. However, an adversary may be interested not only
in decreasing the reward, but also in modifying specific temporal logic properties of the policy. This paper
presents a metric that measures the exact impact of adversarial attacks against such properties. We use this
metric to craft optimal adversarial attacks. Furthermore, we introduce a model checking method that allows
us to verify the robustness of RL policies against adversarial attacks. Our empirical analysis confirms (1) the
quality of our metric to craft adversarial attacks against temporal logic properties, and (2) that we are able to
concisely assess a system’s robustness against attacks.

1 INTRODUCTION

Deep reinforcement learning (DRL) has changed how
we build agents for sequential decision-making prob-
lems (Mnih et al., 2015). It has triggered applica-
tions in critical domains like energy and transporta-
tion (Farazi et al., 2021; Nakabi and Toivanen, 2021).
An RL agent learns a near-optimal policy (based on
a given objective) by making observations and gain-
ing rewards through interacting with the environ-
ment (Sutton and Barto, 2018). Despite the success
of RL, potential security risks limit its usage in real-
life applications. The so-called adversarial attacks in-
troduce noise into the observations and mislead the
RL decision-making to drop the cumulative reward,
which may lead to unsafe behaviour (Huang et al.,
2017; Amodei et al., 2016).

Generally, rewards lack the expressiveness to en-
code complex safety requirements (Vamplew et al.,
2022; Hasanbeig et al., 2020). Therefore, for an ad-
versary, capturing how much the cumulative reward
is reduced may be too generic for attacks targeting
specific safety requirements. For instance, an RL
taxi agent may be optimized to transport passengers
to their destinations. With the already existing ad-
versarial attacks, the attacker can prevent the agent
from transporting the passenger. However, the at-
tacker cannot create controlled adversarial attacks that

may increase the probability that the passenger never
gets picked up or that the passenger gets picked up
but never arrives at its destination. More generally,
current adversary attacks are not able to control tem-
poral logic properties.

This paper aims to combine adversarial RL with
rigorous model checking (Baier and Katoen, 2008),
which allows the adversary to create so-called prop-
erty impact attacks (PIAs) that can influence specific
RL policy properties. These PIAs are not limited by
properties that can be expressed by rewards (Hahn
et al., 2019; Hasanbeig et al., 2020; Vamplew et al.,
2022), but support a broader range of properties that
can be expressed by probabilistic computation tree
logic (PCTL; Hansson and Jonsson, 1994). Our ex-
periments show that for PCTL properties, it is pos-
sible to create targeted adversarial attacks that influ-
ence them specifically. Furthermore, the combination
of model checking and adversarial RL allows us to
verify via permissive policies (Dräger et al., 2015)
how vulnerable trained policies are against PIAs. Our
main contributions are: a metric to measure the im-
pact of adversarial attacks on a broad range of RL
policy properties, a property impact attack (PIA) to
target specific properties of a trained RL policy, and
a method that checks the robustness of RL policies
against adversarial attacks.
The empirical analysis shows that the method to at-
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tack RL policies can effectively modify PCTL prop-
erties. Furthermore, the results support the theoretical
claim that it is possible to model check the robustness
of RL policies against property impact attacks.

The paper is structured in the following way. First,
we summarize the related work and position our pa-
per in it. Second, we explain the fundamentals of our
technique. Then, we present the adversarial attack
setting, define our property impact attack, and show
a way to model check policy robustness against such
adversarial attacks. After that, we evaluate our meth-
ods in multiple environments.

2 RELATED WORK

We now summarize the related work and position our
paper in between adversarial RL and model checking.

There exist a variety of adversarial attack methods
to attack RL policies with the goal of dropping their
total expected reward (Chan et al., 2020; Lin et al.,
2017b; Ilahi et al., 2022; Lin et al., 2017a; Clark et al.,
2018; Yu and Sun, 2022). The first proposed adversar-
ial attack on DRL policies (Huang et al., 2017) uses
a modified version of the fast gradient sign method
(FGSM), developed by Goodfellow et al. (2015), to
force the RL policy to make malicious decisions (for
more details, see Section 3.2). However, none of the
previous work let the attacker target temporal logic
properties of RL policies. Chan et al. (2020) create
more effective attacks that modify only one feature
(if the smallest sliding window is used) of the agent’s
observation by empirically measuring the impact of
each feature on the reward. We build upon this idea to
measure the feature impact on temporal logic proper-
ties.

3 BACKGROUND

In this section, we introduce the necessary founda-
tions.

3.1 Probabilistic Systems

A probability distribution over a set X is a function
µ : X → [0,1] with ∑x∈X µ(x) = 1. The set of all dis-
tributions over X is denoted by Distr(X).

Definition 3.1 (Markov Decision Process). A
Markov decision process (MDP) is a tuple M =
(S,s0,Act,T,rew) where S is a finite, nonempty set
of states, s0 ∈ S is an initial state, Act is a finite set
of actions, T : S× Act → Distr(S) is a probability

transition function. We employ a factored state rep-
resentation S ⊆ Zn, where each state s ∈ Zn is an n-
dimensional vector of features ( f1, f2, ..., fn) such that
fi ∈ Z for 1 ≤ i ≤ n. We define rew : S×Act → R as
a reward function.

The available actions in s ∈ S are Act(s) = {a ∈
Act | T (s,a) 6=⊥}. An MDP with only one action per
state (∀s ∈ S : |Act(s)|= 1) is a discrete-time Markov
chain (DTMC). Note that features do not necessarily
have to have the same domain size. We define F as
the set of all features fi in state s ∈ S.

A path of an MDP M is an (in)finite sequence
τ = s0

a0,r0−−−→ s1
a1,r1−−−→ ..., where si ∈ S, ai ∈ Act(si),

ri := rew(si,ai), and T (si,ai)(si+1) 6= 0. A state s′ is
reachable from state s if there exists a path τ from
state s to state s′. We say a state s is reachable if s is
reachable from s0.

Definition 3.2 (Policy). A memoryless deterministic
policy for an MDP M=(S,s0,Act,T,rew) is a function
π : S→ Act that maps a state s ∈ S to an action a ∈
Act(s).

Applying a policy π to an MDP M yields an
induced DTMC, denoted as D, where all non-
determinism is resolved. We say a state s is reachable
by a policy π if s is reachable in the DTMC induced
by π. Λ is the set of all possible memoryless policies.

To analyze the properties of an induced DTMC, it
is necessary to specify the properties via a specifica-
tion language like probabilistic computation tree logic
PCTL (Hansson and Jonsson, 1994).

Definition 3.3 (PCTL Syntax). Let AP be a set
of atomic propositions. The following gram-
mar defines a state formula: Φ := true | a | Φ1 ∧
Φ2 | ¬Φ |P./p|Pmax

./p (φ) | Pmin
./p (φ) where a ∈ AP,./∈

{<,>,≤,≥}, p ∈ [0,1] is a threshold, and φ is a
path formula which is formed according to the follow-
ing grammar φ := XΦ | φ1 U φ2 | φ1 Fθt φ2 |G Φ with
θ = {<,≤}.

PCTL formulae are interpreted over the states of
an induced DTMC. In a slight abuse of notation, we
use PCTL state formulas to denote probability values.
That is, we sometimes write P./p(φ) where we omit
the threshold p. For instance, P(F≤100collision) de-
notes the reachability probability of eventually run-
ning into a collision within the first 100 time steps.

There is a variety of model checking algorithms
for verifying PCTL properties (Courcoubetis and
Yannakakis, 1988, 1995), and PRISM and Storm offer
efficient and mature tool support (Kwiatkowska et al.,
2011; Hensel et al., 2022). COOL-MC (Gross et al.,
2022a) allows model checking of a trained RL policy
against a PCTL property and MDP. The tool builds the
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induced DTMC on the fly via an incremental building
process (Cassez et al., 2005; David et al., 2015).

3.2 Adversarial Attacks on DRL
Policies

The standard learning goal for RL is to find a policy
π in a MDP such that π maximizes the expected ac-
cumulated discounted rewards, that is, E[∑L

t=0 γtRt ],
where γ with 0≤ γ≤ 1 is the discount factor, Rt is the
reward at time t, and L is the total number of steps.
DRL uses neural networks to train policies. A neu-
ral network is a function parameterized by weights θ.
In DRL, the policy π is encoded using a neural net-
work which can be trained by minimizing a sequence
of loss functions J(θ,s,a) (Mnih et al., 2013).

An adversary is a malicious actor that seeks to
harm or undermine the performance of an RL system.
For instance, an adversary may try to decrease the ex-
pected discounted reward by attacking the RL policy
via adversarial attacks.
Definition 3.4 (Adversarial Attack). An adversarial
attack δ : S→ S maps a state s to an adversarial state
sadv (see Figure 1). A successful adversarial attack
at a given state s leads to a misjudgment of the RL
policy (π(s) 6= π(δ(s))) and an attack is ε-bounded
if ‖δ(s)− s‖∞ ≤ ε with l∞-norm defined as ‖δ(s)−
s‖∞ = maxδi∈δ|δi− si|.

Recall that states are n-dimensional vectors of fea-
tures from Zn. Executing a policy π on an MDP M
and attacking the policy π at each reachable state s by
δ yields an adversarial-induced DTMC Dadv. There
exist a variety of adversarial attack methods to create
adversarial attacks δ (Ilahi et al., 2022; Gleave et al.,
2020; Lee et al., 2020, 2021; Rakhsha et al., 2020;
Carlini and Wagner, 2017).

Our work builds upon the FGSM attack and the
work of Chan et al. (2020). Given the weights θ

of the neural network policy π and a loss J(θ,s,a)
with state s and a := π(s), the FGSM, denoted as
δFGSM : S→ S, adds noise whose direction is the same
as the gradient of the loss J(θ,s,a) w.r.t the state s to
the state s (Huang et al., 2017) and the noise is scaled
by ε ∈ Z (see Equation (1)). Note that we are deal-
ing with integer ε-values because our states are com-
prised of integer features. We specify the5-operator
as a vector differential operator. Depending on the
gradient, we either add or subtract ε.

δFGSM(s) = s+ ε · sign(5sJ(θ,s,a)) (1)

A FGSM for feature fi, denoted as δ
( fi)
FGSM(s), modifies

only the feature fi in state s.

δ
( fi)
FGSM(s) = s+ ε · sign(5s fi

J(θ,s,a)) (2)

RL policy

Environment

π(s)

s
rew

(a) RL policy interaction with the environment.

RL policy

Environment

Attacker

π(sadv)

s
rew

sadv = δ(s)
rew

(b) An adversary manipulates with δ the observations of the
RL policy π and its interaction with the environment.

Figure 1: RL (a) vs. adversarial RL (b).

We denote the set of all possible ε-bounded attacks
at state s via feature fi, including δ( fi)(s) = s for no
attack, as ∆

( fi)
ε (s).

Chan et al. (2020) first generate for all features
a static reward impact (SRI) map by attacking each
feature (in the case of the smallest sliding window)
with the FGSM attack to measure its impact (the drop
of the expected reward) offline. A feature fi with a
more significant impact indicates that changing this
feature fi via δ

( fi)
FGSM will influence the expected dis-

counted reward more than via another feature fk with
a less significant impact. For each feature fi, this is
done multiple times N, where each iteration executes
the RL policy on the environment and attacks at every
state the feature fi via the FGSM attack δ

( fi)
FGSM. Af-

ter calculating the SRI, they use all the SRI values of
the features fi to select the most vulnerable feature to
attack the deployed RL policy.

Adversarial training retrains the already trained
RL policy by using adversarial attacks during train-
ing to increase the RL policy robustness (Pinto et al.,
2017; Liu et al., 2022; Korkmaz, 2021b).

4 METHODOLOGY

We introduce the general adversarial setting, the prop-
erty impact (PI), the property impact attack (PIA), and
bounded robustness.

4.1 Attack Setting

We first describe our method’s adversarial attack set-
ting (adversary’s goals, knowledge, and capabilities).

Goal. The adversary aims to modify the prop-
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erty value of the target RL policy π in its environ-
ment (modeled as an MDP). For instance, the adver-
sary may try to increase the probability that the agent
collides with another object (i.e. maxδ P(F collision)
in the adversarial-induced DTMC).

Knowledge. The adversary that knows the
weights θ of the trained policy (for the FGSM attack)
and knows the MDP of the environment. Note that
we can replace the FGSM attack with any other at-
tack. Therefore, knowing the weights of the trained
policy should not be a strict constraint.

Capabilities. The adversary can attack the trained
policy π at every visited state s during the incremen-
tal building process for the model checking of the
adversarial-induced DTMC and after the RL policy
is deployed.

4.2 Property Impact Attack (PIA)

Combining adversarial RL with model checking al-
lows us to craft adversarial property impact attacks
(PIAs) that target temporal logic properties. Our work
builds upon the research of Chan et al. (2020). In-
stead of calculating SRIs (see Section 3.2), we calcu-
late property impacts (PIs). The PI values are used to
select the feature fi with the most significant PI-value
to attack the deployed RL policy in its environment
( fi = argmax fi∈F PI(π,P(φ), fi,ε)).

Definition 4.1 (Property Impact). The property im-
pact PI : Λ×Θ×F ×Q→ Q quantifies the impact
of an adversarial attack δ

( fi)
FGSM ∈ ∆

( fi)
ε (s) via a feature

fi ∈ F on a given RL policy property P(φ) ∈ Θ with
Θ as the set of all possible PCTL properties for the
MDP M.

A feature fi with a more significant PI-value indi-
cates that changing this feature fi via δ

( fi)
FGSM will in-

fluence the property (expressed by the property query
P(φ)) more than via another feature fk with a less sig-
nificant PI-value.

We now explain how to calculate the PI-value for
a given MDP M, policy π, PCTL property query P(φ),
feature fi, and FGSM attack δ

( fi)
FGSM. First, we incre-

mentally build the induced DTMC of the policy π and
the MDP M to check the property value r of the policy
π. We do this by using COOL-MC and inputting the
MDP M, policy π, and PCTL property query P(φ) into
it to calculate the probability r. Second, we incremen-
tally build the adversarial-induced DTMC Dadv of the
policy π and the MDP M with the ε-bounded FGSM
attack δ

( fi)
FGSM to check its probability radv. To sup-

port the building and model checking of adversarial-
induced DTMCs via adv property result, we extend
the incremental building process of COOL-MC in the

following way. For every reachable state s by the pol-
icy π, the policy π is queried for an action a = π(s).
In the underlying MDP, only states s that may be
reached via that action a are expanded. The resulting
model is fully probabilistic, as no action choices are
left open. It is, in fact, the Markov chain induced by
the original MDP M and the policy π. An adversary
can now inject adversarial attacks δ(s) at every state s
that gets passed to the policy π during the incremen-
tally building process (Zhang et al., 2020). This may
lead to the effect that the policy π makes a misjudg-
ment (π(s) 6= π(δ(s)) and results into an adversarial-
induced DTMC Dadv. This allows us to model check
the adversarial-induced DTMCs Dadv to gain the ad-
versarial probability radv. Finally, we measure the
property impact value by measuring the absolute dif-
ference between r and radv.

4.3 RL Policy Robustness

A trained RL policy π can be robust against an ε-
bounded PIA that attacks a temporal logic property
P(φ) via feature fi (PI(π,P(φ), fi,ε) = 0). However,
this is a weak statement about robustness since there
still exist multiple adversarial attacks δ( fi)(s) with
‖δ( fi)(s)− s‖∞ ≤ ε generated by other attacks, such
as the method from Carlini and Wagner (2017).

Given a fixed policy π and a set of attacks ∆
( fi)
ε (s),

we generate a permissive policy Ω. Applying this pol-
icy π in the original MDP M generates a new MDP M′

that describes all potential behavior of the agent under
the attack.

Definition 4.2 (Behavior under attack). A permissive
policy Ω : S→ 2Act selects, at every state s, all actions
that can be queried via ∆

( fi)
s (s). We consider Ω(s) =⋃

δ
( fi)
i ∈∆

( fi)
s (s)

π(δ
( fi)
i (s)) with π(δ

( fi)
i (s)) ∈ Act(s).

Applying a permissive policy to an MDP does not
necessarily resolve all nondeterminism, since more
than one action may be selected in some state(s). The
induced model is then (again) an MDP. We are able
to apply model checking, which typically results in
best- and worst-case probability bounds Pmax(φ) and
Pmin(φ) for a given property query P(φ).

We use the induced MDP to model check the ro-
bustness (see Definition 4.3) against every possible ε-
bounded attack δ( fi)(s) for a trained RL policy π in
its environment and bound the robustness to an α-
threshold (property impacts below a given threshold
α may be acceptable).

Definition 4.3 (Bounded robustness). A policy π is
called robustly bounded by ε and α (ε,α-robust) for
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property query φ if it holds that

|P∗(φ)−P(φ)| ≤ α (3)

for all possible ε-bounded adversarial attacks ∆
( fi)
ε (s)

at every reachable state s by the permissive policy
Ω. We define α ∈ Q as a threshold (in this paper,
we focus on probabilities and therefore α ∈ [0,1]).
|P∗(φ)−P(φ)| stands for the largest impact of a pos-
sible attack. We denote P∗ as Pmax or Pmin depending
if the attack should increase (Pmax) or decrease (Pmin)
the probability.

By model checking the robustness of the trained
RL policies (as described in Section 4.3), it is pos-
sible to extract for each state s the adversarial attack
δ( fi) that is part of the most impactful attack and use
the corresponding attack as soon as the state gets ob-
served by the adversary. This is possible because
the underlying model of the induced MDP allows
the extraction of the state and action pairs (s,aadv)
that lead to the wanted property value modification
(aadv := π(δ( fi)(s))).

5 EXPERIMENTS

We now evaluate our PI method, property impact at-
tack (PIA), and robustness checker method in multi-
ple environments. The experiments are performed by
initially training the RL policies using the deep Q-
learning algorithm (Mnih et al., 2013), then using the
trained policies to answer our research questions.

5.1 Setup

We now explain the setup of our experiments.
Environments. We used our proposed methods

in a variety of environments (see Figure 2, Figure 4,
and Table 2). We use the Freeway (for a fair com-
parison between the SRI and PI method) and the Taxi
environment. Additionally, we use the environments
Collision Avoidance, Stock Market, and Smart Grid
(see Gross et al. (2022b) for more details).

Freeway is an action video game for the Atari
2600. A player controls a chicken (up, down, no op-
eration) who must run across a highway filled with
traffic to get to the other side. Every time the chicken
gets across the highway, it earns a reward of one. An
episode ends if the chicken gets hit by a car or reaches
the other side. Each state is an image of the game’s
state. Note that we use an abstraction of the original
game (see Figure 2).

In the Taxi environment, the agent must pick up
passengers and transport them to their destination

Figure 2: A comparison between the Atari 2600 Freeway
game (top) and our abstracted version (bottom).

without running out of fuel. The environment ends
when the agent completes a predefined number of
jobs or runs out of fuel. The maximal fuel level for the
taxi is ten and the maximal number of jobs is two. The
agent can refuel at the gas station cell (x = 1,y = 2).
The problem is formalized as follows:

S = {(x,y,Xloc,Y loc,Xdest,Y dest,
f uel,done, pass, jobs,done), ...}

Act = {north,east,south,west, pick up,drop}

penalty =



0, if passenger successfully dropped.
21, if passenger got picked up.
21+ |x−Xdest|+
|y−Y dest|, if passenger on board.

21+ |x−Xloc|+
|y−Y loc|, if passenger not on board.

1500, if not at gas station and out of fuel.

Properties. Table 1 presents the property queries
of the policy trained by an RL agent achieves in these
properties without the attack (=).

Trained RL Policies. We trained in a standard
way using COOL-MC (Gross et al., 2022a).

Technical Setup. All experiments were executed
on an NVIDIA GeForce GTX 1060 Mobile GPU,
16 GB RAM, and an Intel(R) Core(TM) i7-8750H
CPU @ 2.20GHz x 12. For model checking, we use
Storm 1.7.1 (dev).

5.2 Analysis

We now answer our research questions.
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Table 1: PCTL property queries, with their labels and the original result of the property query without an attack (=). Fr stands
for Freeway, Coll. stands for Collision Avoidance, SG for Smart Grid, and SM for Stock Market.

Env. Label PCTL Property Query (P(φ)) =

Fr crossed P(F crossed) 1.0

Taxi deadlock1 P( f uel ≥ 4 U (G( jobs = 1∧¬empty ∧ pass))) 0.0

deadlock2 P( f uel ≥ 4 U (G( jobs = 1∧¬empty∧¬pass))) 0.0

station empty P(((( jobs=0 U x=1∧ y=2) U ( jobs=0∧¬(x=1∧ y=2))) U empty∧ jobs=0)) 0.0

station empty P(F (empty∧ jobs = 0)∧G¬(x 6= 1∧ y 6= 2)) 0.0

pass empty P(F (empty∧ pass)) 0.0

pass empty P(F (empty∧¬pass)) 0.0

Coll. collision P(F≤100 collision) 0.1

SG blackout P(F≤100 blackout) 0.2

SM bankruptcy P(F bankruptcy) 0.0

Figure 3: Freeway feature impacts (normalized between 0
and 1) for the PI and SRI method.

Does the PI method have the same behavior as the
related SRI method? We compare the results of our PI
approach to the empirical SRI approach (Chan et al.,
2020) in the Freeway environment using the reward
function and the expected reachability probability of
crossing the street (see Figure 3). We generate both
the SRI and PI maps using a sample size of N = 300
and an ε = 1. The results show that both approaches
yield similar results.

Can the PI method generate different property im-
pacts for different advanced property queries? We
now show that PI is suited to measure the property
impact for properties that can not be expressed by re-

fuel x y Xloc Yloc XdestYdest pass jobs done

Features

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Im
p
a
c
t

deadlock1

station empty ǫ = 1

station empty ǫ = 2

Figure 4: Taxi environment. This diagram plots different
advanced property impacts of different PIAs. The original
property values (without an attack) are all zero.

wards which we call here advanced property queries
(see Figure 4). To make the interpretation of ad-
vanced properties more straightforward, we focus on
the Taxi environment and use the advanced prop-
erty queries deadlock1 and station empty. Advanced
property queries contain, for example, the U-operator
(Definition 3.3), which allows the adversary to make
sure that certain events happen before other events.
Figure 4 shows the property impact of each attack on
the policy and different ε-bounded attacks. By attack-
ing the done feature via an PIA (with ε = 1), it is pos-
sible to drive the taxi around without running out of
fuel and not finishing jobs while having a passenger
on board (deadlock1). Figure 4 also shows that it is
possible to let the taxi drive first to the gas station and
let it run out of fuel afterwards (station empty). We
observe that for different ε-bounds, PIAs have differ-
ent impacts via features on the temporal logic proper-
ties (see station empty in Figure 4).

What are the limitations of PIAs? We now analyze
the limitations of PIAs and compare them with the
FGSM attack (baseline) and the robustness checker.
For each experiment, we ε-bounded all the generated
attacks for a fair comparison.
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Table 2: Impact* stands for the optimal adversarial attack impact (|Pmax−P|) via the feature specified in Features, Pmax for
the maximal probability Pmax(φ) with an attack, P for the original probability P(φ) (without an attack), Time in seconds, C for
Collision Avoidance, SG for Smart Grid, SM for Stock Market, Baseline is a standard FGSM attack on the whole observation.

Setup Robustness Checker PIA Baseline (FGSM)

Env. Features ε Property Query Pmax P Impact* Time Impact Time Impact Time

Taxi done 1 deadlock1 0.44 0.0 0.44 9 0.19 20 0.00 6
done 1 deadlock2 0.00 0.0 0.00 9 0.00 20 0.00 6
fuel 2 pass empty 1.00 0.0 1.00 25 0.25 20 0.00 6
y 2 pass empty 1.00 0.0 1.00 27 1.00 20 1.00 6
x 1 station empty 1.00 0.0 1.00 24 1.00 6 1.00 6
x 1 station empty 1.00 0.0 1.00 30 1.00 6 1.00 6

C obs1 x 1 collision 0.87 0.1 0.86 65 0.46 213 0.87 211

SG non renewable 1 blackout 0.97 0.2 0.95 2 0.39 2 0.98 2

SM sell price 1 bankruptcy 0.81 0.0 0.81 15 0.08 20 0.00 4

Table 2 shows that PIAs, in comparison to FGSM
attacks, have similar impacts on temporal logic prop-
erties (compare impact columns of PIA and FGSM).
For temporal logic properties where some correct
decision-making is still needed, PIAs perform bet-
ter than the FGSM attack (for instance, pass empty).
However, PIAs do not necessarily create a maximal
impact on the property values like the robustness
checker method (compare PIA impact with Impact*).

After observing the results of the three methods
(PIA, FGSM, robustness checker), we can summa-
rize. By verifying the robustness of the trained RL
policies, the adversary can already extract for each
state the optimal adversarial attack that is part of
the most impactful attack. Since PIAs build induced
DTMCs and the robustness checker induced MDPs,
PIAs are suited for MDPs with more states and tran-
sitions before running out of memory (see Gross et al.,
2022a, for more details about the limitations of model
checking RL policies).

Does adversarial training make trained RL poli-
cies more robust against PIAs? Figure 4 shows that
an adversarial attack (bounded by ε = 1) on fea-
ture done can bring the taxi agent into a deadlock
and lets it drive around after the first job is done
(deadlock1 = 0.19). To protect the RL agent from
this attack, we trained the RL taxi policy over 5000
additional episodes via adversarial training by using
our method PIA on the done feature to make the pol-
icy more robust against this deadlock attack. The ad-
versarial training improves the feature robustness for
the done feature (0) but deteriorates the robustness for
the other features (all other feature PI-values: 1). That
agrees with the observation that adversarially trained
RL policies may be less robust to other types of ad-
versarial attacks (Zhang et al., 2020; Korkmaz, 2021a,
2022).
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