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Abstract: Pedestrian detection is subject to high complexity with a wide variety of pedestrian appearances and postures
as well as environmental conditions. Building a sufficient real-world dataset is labor-intensive and costly.
Thus, the application of synthetic data is promising, but deep neural networks show a lack of generalization
when trained solely on synthetic data. In our work, we propose a novel method for concept-based domain
adaptation for pedestrian detection (ConDA). In addition to the 2D bounding box prediction, an auxiliary body
part segmentation exploits discriminative features of semantic concepts of pedestrians. Inspired by approaches
to the inherent interpretability of DNNs, ConDA has been shown to strengthen generalization. This is done by
enforcing a high intra-class concentration and inter-class separation of extracted body part features in the latent
space. We report performance results regarding various training strategies, feature extractions and backbones
for ConDA on the real-world CityPersons dataset.

1 INTRODUCTION

The reliable perception of vulnerable road users is a
key requisite for automated driving. State-of-the-art
deep neural networks for pedestrian detection (PD-
DNNs) are specifically designed and developed for
real datasets. A limiting factor is the labor-intensive
and expensive manual generation of ground truth an-
notations for real-world images. Contrarily, syn-
thetic data generation is more cost-effective, cus-
tomizable and scalable. The consortium project KI
Absicherung1 (KI-A) focuses on generating synthetic
data for pedestrian detection. Unfortunately, even
photo-realistic synthetic data and real data exhibit a
great domain shift. PD-DNNs solely trained with syn-
thetic data generalize poorly to the real world. Un-
supervised domain adaptation (UDA) aims to over-
come insufficient generalization by enhancing super-
vised learning from synthetic data with unsupervised
learning from real and unlabeled data. Due to the ac-
cessibility of synthetic data, additional task-specific
labels such as body part segmentation (BPS) or in-
stance segmentation can easily be provided. Based
on this, pedestrian detection can be framed as a set of
main tasks such as localization and classification and
auxiliary segmentation.

Increasing emphasis on the segmentation of se-

1translation: AI Safeguarding, https://www.
ki-absicherung-projekt.de/en/

mantic concepts is also consistent with recent re-
search on interpretability for DNNs. Interpretability
is increasingly seen as a requirement for models used
in safety-critical applications (Rudin, 2019). Some
works analyze if an already trained DNN embeds pre-
defined semantic concepts (Kim et al., 2018; Hasel-
hoff et al., 2021). Another line of work focuses on
the adaption of DNN architectures to enable inherent
interpretability (Chen et al., 2019; Koh et al., 2020;
Feifel et al., 2021b; Feifel et al., 2021a). The common
idea is that classes are predicted based on distances
to prototypes or concept vectors in the latent space.
Methods for inherent interpretability make heavy use
of achievements in the field of metric learning. The
common goal is to diminish the disadvantages of the
softmax loss and improve generalization.

Motivated by the interdependent benefits of inher-
ent interpretability and metric learning, we propose
a methodology for concept-based domain adaptation
for pedestrian detection (ConDA). Our contribution
can be summarized as follows:

• We show that learning an auxiliary body part seg-
mentation from synthetic data improves general-
ization on real data of a DNN for pedestrian de-
tection.

• We show that inherent interpretable DNNs in-
spired by techniques from metric learning offer
superior generalization on real data.
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• We propose a novel methodology for concept-
based domain adaptive pedestrian detection
(ConDA) that enhances supervised learning from
synthetic data with unsupervised learning from
real and unlabeled data.

2 RELATED WORK

2.1 Pedestrian Detection

Pedestrian detection is about locating and classifying
2D bounding boxes for pedestrians in a given im-
age. Recent research has produced more and more
high-performing anchor-free approaches. Two-stage
PD-DNNs such as F2DNet (Khan et al., 2022) ap-
ply a region proposal as an intermediate step to iden-
tify possible areas of an image that might hold an ob-
ject. Contrarily, CSP (Liu et al., 2019), APD (Zhang
et al., 2020) and BGCNet (Li et al., 2020) use a simple
one-stage architecture to achieve state-of-the-art per-
formance. These PD-DNNs predict keypoints, most
commonly the center point of an object, and encode
boxes with additional regression heads for the scale
and offset of a bounding box. Our proposed ConDA
builds upon the simple single-stage architecture with-
out relying on default anchors.

2.2 Inherent Interpretability

Although a general definition of interpretability cur-
rently doesn’t exist, a widespread idea in terms of in-
herent interpretability is to enforce intra-class concen-
tration and inter-class separation based on distances
in the latent space. Hence, two opposing mechanisms
are key aspects: (1) clustering positive pairs of the
same class and (2) separation of negative samples.
The conclusive reasoning process is based on repre-
sentations that can either be unsupervised prototypes
(e.g. ProtoPNet (Chen et al., 2019), ProtoNCE (Li
et al., 2021) and CSPP (Feifel et al., 2021b)) or prede-
fined semantic concepts as supervised anchors for the
training process (e.g. SupCon (Khosla et al., 2020)
and CPD (Feifel et al., 2021a)).

Since semantic concepts or prototypes are rep-
resented by feature vectors in the latent space and
distance measures are used for predictions, inherent
interpretability is closely related to metric learning.
Proposed methods are motivated by well-known is-
sues with the softmax loss (inner product and cross-
entropy loss) arising from the use of the inner product
as a similarity measure (Peng and Yu, 2021; Ghiasi-
Shirazi, 2019). Loss formulations such as I2CS (Peng

and Yu, 2021), SupCon (Khosla et al., 2020) and Pro-
toNCE (Li et al., 2021) try to enforce intra-class con-
centration in order to learn more discriminative fea-
tures.

2.3 Unsupervised Domain Adaptation

Motivated by the easy accessibility of synthetic data
and insufficient generalization capabilities of state-of-
the-art DNNs, methods for UDA aim at closing the
occurring domain gap. Similar to our proposed ap-
proach, self-paced learning for object detection (So-
viany et al., 2021) uses a teacher-student framework.
UMT (Deng et al., 2021) follows a similar approach
where a student learns from pseudo labels but they
also apply adversarial training for cross-domain dis-
tillation. Contrarily, our proposed ConDA does not
rely on any kind of style transfer or adversarial train-
ing. Regarding UDA for semantic segmentation,
ProDA (Zhang et al., 2021) and SePiCo (Xie et al.,
2022) leverage prototypes as feature vectors in the la-
tent space to rectify noisy pseudo labels. Softmax-
based class predictions are adjusted by distances to
prototypes, allowing for more robust classification
and generalization in the presence of class imbal-
ances or outliers. Both approaches leverage promis-
ing key ideas from the field of inherent interpretability
and metric learning. Additionally, DAFormer (Hoyer
et al., 2022) specifically designs data augmentation
techniques for the target domain.

3 METHODOLOGY

3.1 Generic Pedestrian Detector

In this work, we extend the generic DNN architec-
ture for pedestrian detection (Feifel et al., 2022). We
define a PD-DNN h = f ◦ g as a composition of the
feature extraction f and multiple perception heads g.
Figure 1 shows three different PD-DNN architectures
that are investigated in our work: (1) PD-DNN for
center, scale and offset prediction (CSO), (2) CSO
with an auxiliary BPS (CSO+BPS) and (3) CSO with
an interpretable reasoning process (IRP) for an auxil-
iary BPS (CPD). An optional stacked hourglass (HG)
(Newell et al., 2016) might increase performance.
Fixed deconvolutions (Yu et al., 2018) upsample the
predicted BPS.

All PD-DNNs predict a set of 2D bounding boxes
for pedestrians. A set of 2D bounding boxes R =
{(x1,y1,x2,y2)}K

i=1 can be defined as a set of K tu-
ples of four corner coordinates. Predicted bounding
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Figure 1: The baseline for our work is given by a simple PD-DNN architecture that applies center, scale and offset heads (CSO)
to predict 2D bounding boxes. CSO can be extended with an auxiliary body part segmentation (BPS), denoted as CSO+BPS.
The third method uses an interpretable reasoning process (IRP) to predict a body part segmentation for the concept-based
pedestrian detection (CPD) (Feifel et al., 2021a).

boxes R̃ are encoded by the center, scale and off-
set head. The loss for bounding boxes is defined as
Lbox = λceLce +λscLsc +λoLo. The trade-off weights
λce,λsc and λo are empirically set to 0.01,1.0 and 0.1.
The scale loss Lsc and offset loss Lo are defined as
smooth L1 loss. Due to the high positive-negative
sample discrepancy, Lce uses a focal loss with γ = 4
(Lin et al., 2017) that is further weighted with a Gaus-
sian map µi, j for every pedestrian center (Liu et al.,
2019; Feifel et al., 2022). Moreover, an ignore map
oi, j highlights ignored bounding boxes. The final cen-
ter loss is given by

Lce =−
1
K

H ′

∑
i=1

W ′

∑
j=1

µ̄i, j(1−oi, j)(1− ν̄i, j)
γ log ν̄i, j (1)

where

µ̄i, j =

{
1 if ξi, j = 1

(1−µi, j)
β otherwise

(2)

ν̄i, j =

{
ξ̂i, j if ξi, j = 1

1− ξ̂i, j otherwise
(3)

Predictions of the center head of the student network
hce

θ
for a given source image xS are defined as ξ̂i, j =

hce
θ
(xS). All binary maps (ξi, j,µi, j and oi, j) are created

based on a set of ground truth bounding boxes R.
According to Figure 1, the auxiliary BPS can be

predicted based on two different transformations: (a)
convolutional module (CM) for CSO+BPS or (b) in-
terpretable reasoning process (IRP) for concept-based
pedestrian detection (CPD) (Feifel et al., 2021a). We
use four predefined body parts and define the set Ca =
{background,head, torso,arm, leg}. In the case of the
interpretable approach the set of classes is reduced to

semantic concepts: Cb = {head, torso,arm, leg}. Con-
sequently, the number of classes NC depends on the
chosen transformation: (a) NC = |Ca|= 5 or (b) NC =
|Cb| = 4. The perception head for BPS of CSO+BPS
or CPD outputs the predictions π̂k,i, j. Fixed de-
convolutions (Yu et al., 2018) compute upsampled
confidence scores Π̂k,i, j: π ∈ [0,1]NC×H ′×W ′ → Π ∈
[0,1]NC×H×W . Based on one-hot encoded ground
truth body part annotations Πk,i, j, the focal binary
cross-entropy loss is formulated as

Lseg =−
1
N

NC

∑
k=1

H

∑
i=1

W

∑
j=1

(1−Sk,i, j)
γ log(Sk,i, j) (4)

with

Sk,i, j =

{
Π̂k,i, j if Πk,i, j = 1

1− Π̂k,i, j otherwise
(5)

and N = NCHW . The focal term Sk,i, j is introduced
due to the high class imbalance of negative (back-
ground) and positive (body part) pixels.

We define a set of latent representations Z =

{zi, j}H ′,W ′
i, j with z∈ [0,1]64 as an encoding of an image

x output by feature extraction f (x) : X → Z. The ex-
tracted latent representations are matched with learn-
able concept vectors ck for four concepts (i.e., head,
torso, arm and leg) with the help of binary concept
masks πk,i, j. The loss for IRP of CPD is defined as
Llatent = λclLcl + λscLcon

sep + λsbLback
sep . We define the

mean square loss to learn concept clusters by mini-
mizing the squared euclidean distance of latent repre-
sentations zi, j to concept vectors ck as

Lcl =
1

Mcl

NC

∑
k=1

H ′

∑
i=1

W ′

∑
j=1

πk,i, j∥ck− zi, j∥4 (6)
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Mcl = ∑
NC
k=1 ∑

H ′
i=1 ∑

W ′
j=1 πk,i, j describes the number of

positive concept pixels. To achieve a high inter-class
separation, we introduce a safety margin δ′k = εδ∗k
with parameter ε describing a multiple of the critical
distance δ∗ (Feifel et al., 2021a). The safety margin
δ′k is used to define a weighted loss contribution based

on ψk = exp
(

log(z)
δ′k−δ∗k

·
(
δk−δ∗k

))
that penalizes small

distances of negative samples. The generic separation
loss is defined as

Lsep =
1

Msep

NC

∑
k=1

H ′

∑
i=1

W ′

∑
j=1

ρk,i, j
(
ψk

(
δ
′
k−∥ck− zi, j∥2))2

(7)
with Msep = ∑

NC
k=1 ∑

H ′
i=1 ∑

W ′
j=1 ρk,i, j as the number of

negative pixels. In the case of separation against back-
ground (Lback

se ) or other concepts (Lcon
se ), the one-hot

encoded binary mask for negative pixels ρk,i, j must
be adapted accordingly (Feifel et al., 2021a).

Predicted bounding boxes post-processed
by the non-maximum suppression (NMS)
are a set of detection bounding boxes
R̂. We only accept bounding boxes R̂ f ={
(x1,y1,x2,y2) ∈ R̂ | ∑NC

k=1 ∑
y2
i=y1 ∑

x2
j=x1

Π̂k,i, j > 0
}

that contain pixels of at least one body part.

3.2 Concept-Based Domain Adaptation

We opt for a two-stage methodology for UDA simi-
lar to ProDA. Note that, unlike our work, this method
focuses on semantic segmentation and not pedestrian
detection. Our methodology proposes two consec-
utive training stages. Initially, a PD-DNN with an
auxiliary BPS is trained solely on synthetic data and
validated on real data. Hereafter, the pre-trained PD-
DNN is used as a starting point for UDA. Since our
methodology is related to inherent interpretability and
metric learning, we refer to it as concept-based do-
main adaptation for pedestrian detection (ConDA).

Due to superior generalization, we use CPD as
PD-DNN for ConDA. Consequently, ConDA utilizes
a structured latent space due to the cluster and sepa-
ration mechanism of CPD. In contrast to ProDA and
SePiCo, we integrate concept vectors (similar to their
prototypes) directly into the DNN architecture. Al-
gorithm 1 gives a detailed description of the different
training steps for ConDA. The unsupervised domain
adaptation starts with a pre-trained CPD h and param-
eters θ. It was previously trained on images xS ∈ XS
with labels yS as ground truth from a source domain
XS. In our case, the source domain is represented by
synthetic data. We use a conventional self-training ap-
proach where pseudo labels are fixed during the sec-
ond training stage for domain adaptation. Pseudo la-

bels are generated on-the-fly by a pseudo network h̃
with parameters θ for images xT ∈ XT from the target
domain XT represented by real data.

Algorithm 1: Pseudocode for ConDA.
Input: Training dataset (XS,YS,XT ), CPD h

with pre-trained parameters θ and
thresholds τign,τce,τsep,τcl.

Output: Teacher model hθ′ .
1 Initialize student network hθ;
2 Initialize pseudo network: h̃θ← hθ;
3 Initialize teacher network: hθ′ ← hθ;
4 while i≤ iterations do
5 Get source images xi

S and ground truth
YS = (ξi,πi,Πi);

6 Train student hθ with loss LS:
LS = Lbox +Lseg +Llatent;

7 Get target images xi
T ;

8 Get pseudo targets (ξ′i,π′i,Π′i) from h̃θ;
9 Train student hθ with loss LT :

LT = LT
box +LT

seg +LT
cl +LT

sep;
10 Update teacher hθ′ :

- Parameters θ′: θ′i+1← αθ′i +(1−α)θi

- Running batch norm: hθ′ = hθ′(xT ) ;

11 end

Pseudo bounding boxes are encoded by out-
puts of the center, scale and offset heads of the
pseudo network h̃θ. Center predictions for a sam-
ple xT drawn from the target domain are defined
as ξ̃i, j = h̃ce

θ
(xT ). Generating pseudo bounding

boxes R̃ = d
([

ξ̃i, j > τce

]
, h̃sc

θ
(xT ), h̃o

θ
(xT )

)
is done

by applying a decoding function d() (including
NMS) with the scale and offset predictions as addi-
tional inputs. Applying a center threshold τce and
the Iverson bracket [·] guarantees that only bound-
ing boxes with high certainty are used as posi-
tive pseudo labels. Finally, a hard pseudo tar-
get for the center map ξ′i, j can be generated from
R̃. To efficiently denoise pseudo labels, ignored
(pseudo) bounding boxes are defined as R̃ign =

d
([

ξ̃i, j > τign∧ ξ̃i, j ≤ τce

]
, h̃sc

θ
(xT ), ...

)
. Based on

R̃ign and ξ′i, j, pseudo ignore areas o′i, j are defined. To
counteract trivial solutions, bounding boxes below a
minimal threshold τign are seen as negative samples.
We empirically set the thresholds τign and τce to 0.1
and 0.6. The unsupervised center loss for center pre-
dictions of student network ξ̂i, j for K predicted pedes-
trians and hard pseudo targets ξ′i, j for an unlabeled
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sample from the target domain is given by

LT
ce =−

1
K

H ′

∑
i=1

W ′

∑
j=1

µ̄i, j(1− õi, j)(1− ν̄i, j)
γ log ν̄i, j (8)

Scale and offset behave accordingly with the same ig-
nore area õi, j.

ConDA utilizes the predicted distance-based body
part segmentation to strengthen the clustering and
further, minimize the distance of positive latent rep-
resentations to concept vectors. Soft pseudo pre-
dictions of the pseudo network for body part seg-
mentation are given by π̃k,i, j. We apply the clus-
ter threshold τcl to define the pseudo concepts masks
π′k,i, j =

[
k = argmaxk′ π̃k′,i, j ∧ π̃k,i, j > τcl

]
. We empir-

ically set the threshold τcl to 0.8. The unsupervised
cluster loss with pseudo concept mask π′k,i, j, concept
vectors ck and latent representations zi, j of the student
network is defined as

LT
cl =

1
M̃cl

NC

∑
k=1

H ′

∑
i=1

W ′

∑
j=1

π
′
k,i, j∥ck− zi, j∥4 (9)

where M̃cl is the number of pseudo positive concept
pixels.

To avoid degenerate solutions, negative latent rep-
resentations have to be separated. The binary hard
pseudo separation mask ρ′k,i, j is based on the soft
pseudo targets π̃k,i, j of the pseudo network and can be
formulated as ρ′k,i, j =

[
π̃k,i, j < τsep

]
. We empirically

set the threshold τsep to 0.1. The final unsupervised
separation loss is defined as

LT
sep =

1
M̃sep

NC

∑
k=1

H ′

∑
i=1

W ′

∑
j=1

ρ
′
k,i, j

(
ψk

(
δ
′
k−∥ck− zi, j∥2))2

(10)
where M̃sep is the number of pseudo negative concept
pixels.

Finally, pseudo targets for the body part segmen-
tation are defined as Π′k,i, j =

[
k = argmaxk′ Π̃k′,i, j

]
.

To efficiently rectify the pseudo labels for nega-
tive and positive samples, an ignore area O′k,i, j =[
τsep ≤ Π̃k,i, j ≤ τcl

]
is defined. The BPS loss can be

formulated as

LT
seg = −

1
M̃seg

NC

∑
k=1

H

∑
i=1

W

∑
j=1

(1−O′k,i, j)

(1−Sk,i, j)
γ log(Sk,i, j)

(11)

where M̃seg = ∑
NC ∑

H
∑

W
πk,i, j gives the number of

non-ignored pixels for the body part segmentation.
It is well known that DNNs show a tremen-

dous bias towards texture, while shape information
is mostly neglected (Geirhos et al., 2018). Limited
simulation and rendering resources are the reason

that synthetic data is prone to show less variation in
shapes (pedestrian posture and perspective) and tex-
tures (pedestrian appearance and illumination). To re-
duce the texture bias and strengthen the shape bias
on body parts, we texturize the background and body
parts with 50 different textures randomly sampled
from the Describable Texture Dataset (DTD) (Cim-
poi et al., 2014). Furthermore, we use extensive nat-
ural data augmentation techniques to alter brightness,
contrast, blurring and other properties. Inspired by
(Geirhos et al., 2018; Liu et al., 2019), we propose a
shape-enforcing data augmentation strategy (SA) for
pedestrian detection.

4 EXPERIMENTS

In our work, we use synthetic data from KI-A, real
data from the CityPersons dataset (Zhang et al., 2017)
and the Cityscapes-Panoptic-Parts dataset (Meletis
et al., 2020) (CS). Results are provided for the val-
idation set of the CityPersons dataset. The domain
gap is analyzed based on the performance of the ora-
cle training (CS→ CS), i.e., supervised training and
validation on CS as the target domain. Furthermore,
we investigate the following scenarios: Source-only
training (KI-A→ CS), i.e., supervised training on the
source domain (KI-A) and validation on the target do-
main (CS) to analyze generalization and UDA, i.e.,
supervised training on source domain combined with
unsupervised training on target domain and validation
of ConDA on target domain (CS).

The most common performance metric for PD-
DNNs is the log-average miss rate for the reasonable
subset (LAMRr) of the CityPersons dataset (Dollar
et al., 2011). Another metric is the MR@1FPPI de-
scribing the miss rate if we accept one false posi-
tive per image (Dollár et al., 2009). To evaluate the
segmentation performance of body parts, we utilize
the reasonable subset for CityPersons and extend it to
the instance segmentation of Cityscapes and further
to the body part segmentation given by Cityscapes-
Panoptic-Parts and define the mean intersection over
union (mIoUr).

4.1 Implementation Details

The following feature extractions are used: MDLA-
UP-34 (Yu et al., 2018; Dai et al., 2017), CSP-
ResNet-50 (Liu et al., 2019) and FPN-ResNet-50
(Zhang et al., 2020). The Adam optimizer with a
learning rate of 1e-4 and a linear warm-up strategy
for 2k iterations is applied. With ConDA, the learn-
ing rate subsequently decreases linearly. We train for
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Table 1: Performance of different PD-DNNs and domain adaptation scenarios. The oracle training (CS→ CS) of CSO and
CSO+BPS shows competitive performance to state-of-the-art PD-DNNs. Compared to CSO and CSO+BPS, CPD shows
superior generalization for source-only training (KI-A→ CS). MDLA-UP-34 is used as feature extractor for all methods.

Prediction Method Transformation Hourglass (HG) CS→ CS KI-A→ CS
LAMRr mIoUr LAMRr mIoUr

2D BB CSO - - 9.6 - 39.6 -

2D BB + BPS
CSO+BPS CM - 9.0 73.4 36.4 44.9

✓ 10.8 70.8 35.6 48.5

CPD IRP - 14.2 59.8 41.0 58.5
✓ 13.3 46.1 34.0 62.1

Table 2: Performance for the CityPersons validation dataset considering different domain adaptation scenarios. We can see
that ConDA substantially exceeds the baseline performance (comparing underlined values) by benefiting from CPD. The
MR@1FPPI is shown for different subsets (i.e., reasonable (R), bare (B) and large (L)). MDLA-UP-34 is used as feature
extractor for all methods.

Method Scenario LAMRr
MR@1FPPI mIoUr

IoUr
R B L Head Torso Arm Leg

CSO
CS→ CS

9.6 3.9 5.5 5.5 - - - - -
CSO+BPS 9.0 3.9 2.2 2.3 73.4 75.2 64.6 53.0 74.7
CPD 14.2 4.9 3.3 3.4 59.8 0.0 66.6 63.5 70.0

CSO

KI-A→ CS

39.6 23.7 18.5 14.6 - - - - -
CSO+BPS 35.6 21.7 14.3 12.3 48.5 46.4 19.1 20.3 57.9
CPD 34.0 21.5 14.2 12.5 62.1 54.6 51.6 43.8 60.9
CPD (w/ SA+WU) 28.7 13.1 7.5 6.8 62.5 55.2 44.9 48.5 64.2

ConDA UDA 23.0 10.0 5.1 6.0 65.8 57.9 56.0 51.2 64.0

a maximum of 50k iterations on 2 GPUs with a batch
size of 8. The parameters θ′ of the teacher network are
constantly averaged based on a student-teacher frame-
work (Tarvainen and Valpola, 2017). For inference,
only center points with a confidence score > 0.1 and
bounding boxes with height ≥ 50 pixels are consid-
ered. For post-processing, we apply a Greedy-NMS
with a threshold of 0.5.

4.2 Results

Since ConDA is a two-stage approach, we first an-
alyze the generalization capabilities of source-only
training (KI-A → CS) regarding the LAMRr and
mIoUr of different PD-DNNs in Table 1. The naive
source-only training is seen as our baseline for all do-
main adaptation strategies of ConDA. We can show
that CSO+BPS (w/o HG) improves the LAMRr per-
formance by 0.6% absolute for the oracle scenario
compared to CSO. The performance of source-only
training for CSO+BPS (w/o HG) decreases absolutely
by 27.4% LAMRr and 28.5% mIoUr compared to or-
acle training. CPD (w/ HG) shows the best gener-
alization with 34.0% LAMRr and 62.1% mIoUr. It

Table 3: Ablation study to validate the generalization of
source-only training for CPD (KI-A→ CS), different train-
ing strategies and feature extractions.

Feat. Extr. SA WU LAMRr mIoUr

MDLA-UP-34 - - 34.0 62.1
MDLA-UP-34 ✓ - 32.0 54.8
MDLA-UP-34 - ✓ 39.4 57.5
MDLA-UP-34 ✓ ✓ 28.7 62.5

FPN-ResNet-50 ✓ ✓ 35.7 56.3
CSP-ResNet-50 ✓ ✓ 33.0 57.4

outperforms CSO+BPS (w/ HG) by a large absolute
margin of 1.6% LAMRr and 13.6% mIoUr. The ad-
ditional stacked hourglass (HG) is particularly useful
for CPD. Due to better generalization compared to
CSO and CSO+BPS, CPD is used for our proposed
ConDA approach.

Results of the ablation study for different training
strategies are shown in Table 3 and are complemented
by the performance of two comparable feature ex-
tractions. Improving the initial performance of CPD
seems reasonable since it serves as a starting point for
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Figure 2: Inference results: original image (top row),
ground truth bounding boxes in blue, ignored bounding
boxes in red and ground truth body part segmentation (mid-
dle row) and ConDA predictions (bottom row).

ConDA and has a great impact on the final perfor-
mance. It can be shown that SA in combination with
a linear warm-up strategy for the learning rate (WU)
offers the best performance in terms of LAMRr and
mIoUr for MDLA-UP-34. However, Table 3 shows
an absolute LAMRr increase of 5.4% for WU, demon-
strating strong overfitting to the source domain. WU
can only contribute in combination with SA, which
means extensive data augmentation. CSP-ResNet-50
and FPN-ResNet-50 cannot benefit from the proposed
strategies, thus the following experiments are only
performed with MDLA-UP-34. SA and WU are also
applied to the second training stage of ConDA. Fig-
ure 2 shows exemplary inference results of ConDA
for the CityPersons validation dataset.

Compared to the naive source-only training, Ta-
ble 2 shows that ConDA achieves an absolute im-
provement of 16.6% LAMRr compared to CSO, stat-
ing the successful UDA towards the real CityPersons
dataset. We also show that ConDA improves seg-
mentation performance for often overlapping and thus
difficult body parts such as torso and arm. ConDA
substantially reduces MR@1FPPI compared to the
naive source-only training and misses the oracle per-
formance by only 6.1% absolute for the reasonable
subset. As to be expected, the performance gap is sub-
stantially lower for easier subsets (i.e, bare and large).
We see an absolute MR@1FPPI of only 5.1% and 6%
respectively. Hence, ConDA nearly matches the per-
formance of state-of-the-art PD-DNNs. Due to the
applied metric learning, CPD has well-separated clus-
ters of discriminative features for body parts leading
to better generalization.

5 CONCLUSION

In our work, we propose ConDA as a novel method
for domain adaptation for pedestrian detection that
enhances supervised learning from synthetic data
with unsupervised learning from real and unlabeled
data. We show that enforcing intra-class concentra-
tion of semantic concepts for pedestrians and inter-
class separation leads to a better generalization. Com-
pared to naive training on only synthetic data, ConDA
substantially increases the performance of pedestrian
detection and an auxiliary body part segmentation by
a large margin on real data. In conclusion, our pro-
posed method ConDA can be seen as a promising step
towards using low-cost synthetic data through domain
adaptation for pedestrian detection based on semantic
concepts.
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