
A Proposal Towards Discovering Metamodels from Low-Code
Application Platforms

Fernando Moreira1 a, Nuno Bettencourt2 b, Alexandre Bragança1 c and Isabel Azevedo3 d

1Institute of Engineering of Porto, Polytechnic of Porto, Portugal
2Interdisciplinary Studies Research Center, Institute of Engineering of Porto, Polytechnic of Porto, Portugal

3GILT Research Unit, Institute of Engineering of Porto, Polytechnic of Porto, Portugal

Keywords: Model Driven Engineering, Meta-Model Discovery, Low-Code Applications, Model to Model
Transformations, Ecore, Mapping, REA.

Abstract: Low-Code platforms enable users to quickly create apps of various types, with little or no coding in general-
purpose programming languages. Despite their popularity, these platforms are often closed-source and do not
adhere to standards. Users of these platforms face two major issues: the first is the difficulty in the evolution of
applications in terms of platform updates, and the second is the inability to migrate the applications to another
platform, restraining users to use the original platform. Thus, we investigated the feasibility of discovering
these platforms’ meta-models by using some exported models as a starting point. This possibility could enable
apps to be migrated, for example, to a new version of the platform or a different one by describing transfor-
mations using the discovered meta-models. A proposal for solving this issue is described, also its evaluation.
By analysing the obtained test results, the proposal was considered successful.

1 INTRODUCTION

This article is part of the Business Application Mod-
eling Language – Low-Code Platform (BAMoL)
project, whose main goal is designing and implement-
ing a Domain Specific Language (DSL) for the Low-
Code Application Platform (LCAP) named Omnia.

This is a joint project between the team behind
LCAP, Instituto Superior de Engenharia do Porto
(ISEP), and Faculdade de Engenharia da Universi-
dade do Porto (FEUP).

At the moment, two approaches for building the
DSL are being considered. The traditional method of
manually constructing the DSL is the first option. The
second option is a technique that seeks to automate
as much of the DSL generation as possible, using
exported models from LCAP-based applications as a
starting point. This work focused on contributions to
the latter, particularly the generation of a meta-model
from a set of models.

The interoperability of low-code platforms (Sahay
et al., 2020) is lacking. For instance, it is impossi-

a https://orcid.org/0000-0002-9268-2007
b https://orcid.org/0000-0003-1767-8240
c https://orcid.org/0000-0002-4882-9497
d https://orcid.org/0000-0003-2172-633X

ble to reuse artefacts from one low-code development
platform to another. Although this work’s objective is
to obtain a meta-model, a DSL would follow, allow-
ing to achieve some level of interoperability.

The remainder of this paper is structured as fol-
lows. The next section describes the context and ex-
istent problem. Section 3 presents some related work.
Section 4 proposes a solution for the enunciated prob-
lem, and Section 5 describes its evaluation. The paper
concludes in Section 6, where some limitations and
some work for the near future are also presented.

2 CONTEXT AND PROBLEM

LCAP is a term used to describe a class of applica-
tions that facilitate the development of other applica-
tions that require little to no code being written. Users
of these platforms are typically called citizen develop-
ers.

At their core, these platforms implement Model-
Driven Engineering (MDE) principles, allowing citi-
zen developers to model the applications they are de-
veloping, as opposed to explicitly writing their code
with a general-purpose programming language. Such
a feature is enabled using advanced graphical user in-

168
Moreira, F., Bettencourt, N., Bragança, A. and Azevedo, I.
A Proposal Towards Discovering Metamodels from Low-Code Application Platforms.
DOI: 10.5220/0011688800003402
In Proceedings of the 11th International Conference on Model-Based Software and Systems Engineering (MODELSWARD 2023), pages 168-175
ISBN: 978-989-758-633-0; ISSN: 2184-4348
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



terfaces and visual abstractions (Sahay et al., 2020).
The Omnia Platform is an LCAP whose modelling

follows the Resources, Events, Agents (REA) eco-
nomic modelling system (Hruby, 2006).

However, LCAPs are typically closed-source so-
lutions that do not adhere to standards, hence each
individual platform probably has its own approach to
designing its meta-model. Furthermore, due to their
closed-source nature, usually the meta-model is not
explicitly provided or properly versioned.

This issue results in the inability to migrate appli-
cations modelled with one LCAP to another, causing
the user to become dependent on one platform.

Another issue that occasionally affects users of
these platforms is related to updating the application
with a new version of the LCAP, i.e., the user ini-
tially created an application with an older version of
the platform and is then unable to make use of the
features in more recent versions since the migration
mechanisms might not have been implemented.

Both issues challenge proper maintenance and
evolution of applications. In a lot of cases, the only
solution is to redo and remodel the application.

Since developing in an LCAP is, at its core, just
creating and manipulating a model of the final appli-
cation, each LCAP requires a meta-model that sets the
boundaries of what is possible to develop through the
platform.

The solution proposed by this article aims at dis-
covering this meta-model from a set of existing mod-
els (i.e., exported applications created in the tar-
get LCAP, represented in a serializable format, such
as JavaScript Object Notation (JSON) or Extensible
Markup Language (XML)). For the sake of simplic-
ity, the approach depicted in this article only deals
with models serialized in a JSON format. By apply-
ing this approach, the source and target meta-models
can be constructed and then used to define transfor-
mation with the goal of, for example, migrating an
application from a source LCAP to a target LCAP.

The main goal of this article is to test the hypoth-
esis that it is possible to automatically deduce a meta-
model for an existing application from its LCAP ex-
ported models.

The deduced metamodel must be precise enough
to ensure the acceptance of agreeing models by
LCAP. In other words, models instantiated by the de-
duced meta-model should be valid compared to the
original one.

Moreover, it should be as complete as possible to
cover the wide range of features that an LCAP can
have. This means that every feature that exists in the
initial models should also be covered in the deduced
meta-model.

3 RELATED WORK

This section compiles and sums related works in
meta-model deduction.

The authors (Cánovas Izquierdo and Cabot, 2013)
demonstrate an approach to find the implicit domain
model from a set of JSON-based services. To illus-
trate this, they use a Representational State Trans-
fer (REST) Application Programming Interface (API)
provided by a real case.

Their implementation consists of three stages:
Pre-discovery; Single-Service Discoverer and Multi-
service Discoverer.

In the Pre-discovery stage, JSON documents are
transformed into models conforming to a JSON meta-
model. During the Single-Service Discoverer stage,
for each JSON service, the JSON models are trans-
formed into Ecore models by applying defined map-
ping rules. Finally, the Multi-service Discoverer stage
is performed. During this stage, all the Ecore models
from the previous stage are merged according to a set
of rules as well. The result is a model that is as close
as possible to the complete domain model of the set
of JSON-based services.

The paper by (Bragança et al., 2021) describes the
experience of using DSLs to add support for a Soft-
ware Product Line (SPL) engineering approach on an
LCAP. For that purpose, a DSL capable of represent-
ing all the LCAPs modeling concepts is developed:
the Low-Code DSL (LC-DSL).

Since LCAPs are usually closed source and do not
provide access to the underlying meta-model but do
provide ways for exporting models, a method was de-
vised that allowed the meta-model to be deduced from
exported models. This meta-model is used as input to
create the LC-DSL.

The LC-DSL is then used to model groups of
LCAP applications that can be managed as a SPL, in
other words, the LC-DSL is a model that covers all
LCAP applications that can be managed as a SPL.

The work includes an import/export process to ob-
tain the LC-DSL from the models in the LCAP (and
vice versa), to integrate the existing LCAP with the
new LC-DSL.

Other works like (Javed et al., 2008) or (Zolotas
et al., 2019) also exist, but their applicability in the
context of this work is not clear.

4 PROPOSAL

A Model to Model (M2M) Transformation was fun-
damental for the approach. This section describes the
source (LC-Metamodel) and the target meta-models

A Proposal Towards Discovering Metamodels from Low-Code Application Platforms

169



Figure 1: Class diagram of the LC-Metamodel.

(LC-MetametaModel). Then it presents the existing
mapping workflow, detailing the Basic Structure In-
ference and Reference Deduction stages.

4.1 LC-Metamodel

The source meta-model is the meta-model of LC-
Model, which shall be referred to as LC-Metamodel.
Its class diagram can be found in Figure 1 and the de-
scription of its elements is as follows.

An Archive is a collection of ArchiveFiles. An
ArchiveFile represents a file. Each ArchiveFile is
identified by a name and a parent path, which is
relative to the root of the archive. When it contains
JSON it is a JsonFile, otherwise a DefaultFile. Both
types of files are extensions and specifications of an
ArchiveFile. While the first, a DefaultFile repre-
sents a generic file by adding the file’s contents on the
content property, the latter, a JsonFile represents a
JSON file and adds a reference to a JsonNode.

A JsonNode represents a JSON value that can
be specialized as: an ArrayNode; an ObjectNode;
a TextNode; a BooleanNode; a NumberNode; or a
NullNode;

Each TextNode, NumberNode, BooleanNode
and NullNode represent a JSON primitive value,
whose type depends on the instance.

An ArrayNode represents a JSON array and has
the elements property, which supports a collection of
JsonNodes. An ObjectNode represents a JSON ob-
ject and has one or more properties, which are Key-
ValuePairs.

A Property represents a key/value pair that be-
longs to a JSON object, has a key property to identify
the property and a value, which is a reference to a
JsonNode.

4.2 LC-MetametaModel

The target meta-model is the meta-model of Meta-
model. Since it is a meta-model of a meta-

Figure 2: Class diagram portraying the target meta-model.

Figure 3: Evolution of a meta-model as more models are
inspected, represented using a Class Diagram.

model, the target meta-model is a meta-metamodel
for all LCAPs, referred from now on as LC-
MetametaModel.

Figure 2 presents a class diagram representing the
LC-MetametaModel. Its elements are described as
follows.

The Metamodel is a collection of Concepts.
Each Concept is essentially a collection of At-

tributes, identified by a name, and described by two
boolean properties isRoot and isAbstract.

Each Attribute represents a name/value pair. It
is identified by a name and has two boolean proper-
ties, isArray, and isNullable. Attributes can be
further specialized by the SimpleAttibute and Refer-
ence. A Simple Attribute represents a primitive at-
tribute, i.e., its value is either null, boolean, number
or string. Each Reference represents a Concept,
either by containment (the concept is defined as the
value of the attribute) or a simple text attribute whose
value identifies a Concept, which is indicated by the
isContainment property.

4.3 Workflow

The working principle of this algorithm is gradually
building the meta-model with each inspected model,
adding, or updating Concepts when new information
is found.

This is illustrated by Figure 3, where initially the
Agent concept with the name Attribute is found in a
model and then, when processing the next model, a
new description Attribute is found, and the Con-
cept is updated accordingly. Finally, when another
model is processed, an array Attribute with name
properties is found. This time, the type of this At-
tribute is the Property Concept, with name and type
Attributes. This workflow has two major stages.

On the first stage (Basic Structure Inference),
the goal is to create an initial meta-model by inspect-
ing the input models. The information gathered is rel-
ative to which data structures exist in the models, in-

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

170



cluding their fields, respective types, and other nested
data structures. In MDE terms, this stage can be seen
as a M2M transformation.

On the second stage (Reference Deduction), the
goal is to identify which simple attributes are in fact
references to a concept. In MDE terms, this step is a
model refinement.

4.3.1 Basic Structure Inference

This stage consists in iterating over all the JSON files
and recursively apply a set of rules that are further
described.

The first rule states that an ObjectNode is mapped
to a Concept. If the ObjectNode is the root element
of the file, i.e., it is referenced by a JsonFile, then
the name in the resulting Concept is the name of the
parent directory of the file, and the isRoot flag is set
to true. It is assumed that only ObjectNodes can be
root nodes.

If the ObjectNode is the value of a Property, the
name of the resulting Concept includes the path from
the root Concept to it. For example, if the name
Agent.attributes.multiplicity is given to a Concept,
that would imply the hierarchy of concepts Agent ->
Agent.attributes -> Agent.attributes.multiplicity.
Each Property of the JsonNode is mapped to an At-
tribute in the resulting Concept. The property flag
isAbstract is always set to false, since the fact that
a JsonObject exists means the concept cannot be ab-
stract.

The second rule states that an ArrayNode is
mapped as an Attribute. Each element of the Ar-
rayNode is mapped to an Attribute according to the
rules defined for that specific element and then the re-
sulting Attributes are merged/reduced into a single
Attribute, which property isArray is set to true.

The third rule states that a Property pair is
mapped to an Attribute. The name of the resulting
Attribute is the key ti the pair and the isIdentifier
property is set to true if the name is equal to the
identifier name and set to false if otherwise. The
isArray property in the resulting Attribute is set to
false if no other mapping rule is applied. If the value
is a primitive node (e.g., NullNode, NumberNode,
BooleanNode or TextNode), then the resulting At-
tribute is a SimpleAttribute with the respective data
type. If the value is null, then the isNullable prop-
erty is set to true. Otherwise, it is set to false. If the
value is an ObjectNode, then the resulting Attribute
is a Reference with the isContaiment property set
to true and the ObjectNode is mapped using its spe-
cific rules.

For example, take the input model shown on List-
ing 1 and the resulting meta-model instance repre-

Listing 1: JSON Model.
{

"name": "Company",
"attributes": [

{
"name": "code",
"type" "Text"

}
]

}

Figure 4: New Concept.

sented using an object diagram that can be seen in
Figure 4.

The input model was placed in the Agent direc-
tory under the name Company.json. When mapping
this model to its respective meta-model, the process
is started at its top-level ObjectNode, which has the
Properties name and attributes.

Since it is a top-level/root object, the name of its
respective Concept is Agent, since it is the name of
the directory where the file is located, and its isRoot
property is set to true.

Then, its Properties are mapped to Attributes in
the respective Concept.

The name property is mapped to a SimpleAt-
tribute, since its value is a text value and the
isIdentifier property is set to true, since the word
name is assumed to be the designation for the identi-
fier properties. The value is a single value, and it is
not null so the isArray and isNullable properties
are both set to false.

As for the attributes property, since its value
is an ArrayNode which only contains one Ob-
jectNode, the Property is mapped to a Reference
whose target property is the resulting Concept
(mapped from the singular ObjectNode) and both its
isContainment and isArray properties are set to
true.

The singular ObjectNode of the array is then
mapped to a Concept, with Agent.attributes as its
name and, since the object is a property value prop-
erty, its isRoot property is set to false. Like the
previous object, the Properties of the ObjectNode
are then mapped to their respective Attributes in the
Concept.

A Proposal Towards Discovering Metamodels from Low-Code Application Platforms

171



When a Concept or Attribute is added to the
Meta-model it can already exist, since it could have
been found previously. In this situation, new infor-
mation is added to the current Concept or Attribute,
according to some predefined rules.

When merging a Concept: new attributes are
added to the existing Concept and existing attributes
are merged.

When merging an Attribute, if the new At-
tribute is a Reference and the previous is a Sim-
pleAttribute, it upgrades it to a Reference. This fea-
ture is useful for the Reference Deduction stage. For
the boolean properties, the merged value is obtained
by performing an OR operation between the old and
the new value. For the type of the simple attribute,
the merged value is the broader type between the old
and new type. The types are order from broader to
narrower accordingly: string -> number -> boolean
-> null.

4.3.2 Reference Deduction

The goal of this stage is to determine which simple
attributes are, in fact, a reference to another concept.
As an example, the general rule for an attribute A to
reference a concept C is that, given the set of values
of A values(A) and the set of identifiers/names for the
concept C names(C), the attribute A is a reference to
C if names(C) contain all the values in values(A), i.e.,
values(A) are a subset of names(C). This relationship
can be expressed in the form values(A)⊂ names(C).

This approach generally works well to identify
references to a single concept, but if an Attribute ref-
erences more than one Concept at the same time, that
is, it references an abstract Concept that one or more
concepts can extend, this method would not be able to
find those kinds of references. One way to deal with
this issue is to predict what the abstract concept could
be.

In the context of metamodel inference, abstract
Concepts are only relevant if at least one reference
uses it as its target. Therefore, a way to find possi-
ble references to abstract concepts is to first consider
a possible Concept hierarchy, including abstract and
non-abstract Concepts, and, for each Concept, find
the SimpleAttributes for which the relationship ex-
pressed by values(A)⊂ names(C) hold true.

To find a Concept hierarchy, for each Concept C
let attributes(C) be the set which holds all the names
of all the attributes belonging to Concept C. Then,
for all the Concepts found in the 4.3.1 stage, for
each unique pair of Concepts C1 and C2, compute
attributes(C1)∩attributes(C2). If the intersection of
the sets is not empty, use it to define a new abstract
Concept. Repeat this with the new abstract Concepts

until no new Concept can be defined.
However, there is one issue with this approach:

given a Concept C that extends abstract Concept AC,
then it follows that names(C)⊂ names(AC).

Transitively, any Attribute A for which
values(A) ⊂ names(C) holds true implies that
values(A) ⊂ names(AC) also hold true. This might
result in wrongly deduced reference, which is why
out of all the Concepts A might target, the most
specific Concept (the one with the largest set of
labels) is chosen. This stage of the algorithm can be
summed in the following specific steps.

1. Find possible abstract Concepts by finding com-
mon attributes in the existing Concepts;

2. For each non-identifier SimpleAttribute in the
meta-model find the Concepts for which the con-
dition values(A) ⊂ names(AC) holds true. If at
least one Concept is found, select the most spe-
cific one;

3. For each SimpleAttribute in the last step, if one
Concept is chosen, upgrade it to a Reference,
with the selected Concept as its target and the
containment properties set to false.

5 EVALUATION

In this section we discuss what guided the assessment,
the tools used and how, and the results obtained.

5.1 Evaluation Criteria

Besides the fulfilling of the requirements, some eval-
uation measures are used to validate the hypothesis,
namely: (i) using the generated meta-model, it should
be able to instantiate the same models that were used
for deduction; (ii) instances of the generated meta–
model should be able to be imported into the LCAP;
(iii) the coverage of the features of the input models.

5.2 Test Tools

Four tools (i.e., Input Model Validator, Generated
Model Validator, Metamodel Validator, and Model
Generators) were used for testing the proposal. Their
usage and procedures are explained in this section.

5.2.1 Input Model Validator

The goal of this tool is to validate the inferred meta-
model by validating the input models against it. This
assumes that the input models are valid from the out-
set and, as such, if the meta-model can successfully

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

172



Listing 2: Omnia meta-model.
[{

"Name": "Agent",
"Description": "...",
"Properties":[
{

"Name": "Name",
"Description": "The name of the

entity (unique identifier)
.",

"TypeKind": "Primitive",
"TypeName": "Text",
...

},
{

"Name": "Description",
"Description": "The textual

explanation of the entities
’ purpose.",

"TypeKind": "Primitive",
"TypeName": "Text",
...

}]
}...]

validate them, then the meta-model should be valid as
well. However, since the meta-model only captures
structural features of the models, its validity is limited
to that and does not include semantic relationships be-
tween Concepts/Attributes of the meta-model.

5.2.2 Generated Model Validator

This tool is vendor-specific, and part of the Omnia
platform being used for this proposal. It is accessible
through the platform’s REST API, whose documen-
tation can be found at the Omnia’s Swagger UI web-
page1, or through the platform’s modeller. To evaluate
the validity of the models, both features can be used
to import a model into the Omnia platform. This as-
sumes that the model is checked for its validity, mean-
ing that if the process is successful, then the model is
valid.

5.2.3 Metamodel Validator

The purpose of this tool is to automatically validate
the meta-models deduced by the solution. For that,
the target meta-model needs to be available in a for-
mat that can easily be read by an algorithm. Thank-
fully, Omnia makes its meta-model available via a
GitHub repository (cf. Figure 2)2.

Figure 5 shows the meta-metamodel that the Om-
nia meta-model follows. Therefore, the work per-
formed by this tool is to compare Omnia’s meta-

1https://platform.omnialowcode.com/api/docs/index.html
2https://github.com/OMNIALowCode/omnia3/tree/

master/docs/pages/omnia3/Languages

Figure 5: Omnia Meta-metamodel.

model found in GitHub with the one that was inferred
(cf. Figure 2), particularly comparing analogous fea-
tures, such as OmniaConcepts and the inferred Con-
cepts.

The algorithm behind this tool will essentially
check if for each of the deduced Concepts, there is
also a matching OmniaConcept, i.e., a OmniaCon-
cept with the same name or with the same set of at-
tributes/properties. Only non-abstract Concepts are
considered at this stage, since Omnia’s meta-model
makes no mention of them. This results in the follow-
ing metrics:

• Total number of OmniaConcepts.

• Total number of Concepts existing in the input
models.

• Total number of inferred Concepts.

• Number of Concepts that had a matching Omni-
aConcept.

• Number of Concepts that had did not have a
matching OmniaConcept.

• Number of OmniaConcept that had no matching
Concept.

For each Concept and OmniaConcept compared,
their attributes/properties are also compared. Simi-
larly, for each Attribute, the algorithm will check if
there is a OmniaProperty with the same name in the
OmniaConcept. Attributes are then validated by as-
serting the following criteria:

• If the Attribute is a SimpleAttribute, the match-
ing OmniaProperty should have typeKind of
PRIMITIVE or ENUMERATION.

• If the Attribute is a Reference, the matching
OmniaProperty should have typeKind of CLASS
and the following requirements must be met:

A Proposal Towards Discovering Metamodels from Low-Code Application Platforms

173



– If the isContainment property is set to true,
the aggregationKind of the OmniaProperty
should be COMPOSITE.

– The Reference target should match the Om-
niaProperty’s typeName value.

5.2.4 Model Generators

This tool, as the name indicates, is responsible for
generating models according to the specified meta-
model. This process starts by recursively navigating
the generated meta-model, starting with the root Con-
cepts, and applying a set of generation rules.

If generating the value for a Concept:
• A Concept will originate a JSON object.
• If it is a root Concept, generate a configurable

amount of JSON files. Inside each file the Con-
cept’s generated JSON object is placed, differing
for each file.

• The Concept’s Attributes will each originate a
key/value pair inside the respective JSON object.

If generating the value for an Attribute:

• The attribute will originate a key/value pair inside
its respective parent JSON Object.

• The key is the name of the Attribute.

• If the isArray property is set to true, the gener-
ated value shall be an array and its parametrized
length.

• If the Attribute is a SimpleAttribute:

– If the name of the Attribute is lower, upper,
aggregationKind or type it will treat it as an
ENUM and its value is one of the values that
the Attribute assumed previously.

– If the Attribute requires no special treatment,
then it is generated randomly, with its type con-
sidered.

• If the Attribute is a Reference:

– If the isContaiment property is set to true,
the value of the key/value pair is the JSON Ob-
ject that the target Concept is mapped to.

– If the isContaiment property is set to false,
the value of the key/value pair is the name of
one of the generated instances of the Concept.

5.3 Results

Three models were exported from the Omnia plat-
form and used as input for the meta-model inference.

Using the “Metamodel Validator” tool presented
in Subsection 5.2.3, the data shown in Table 1 was

obtained. All the percentages are rounded to the near-
est decimal unit.

The Input Model column identifies the model
used for inferring the meta-model.

The Valid column indicates whether the input
model is valid when compared to the inferred meta-
model.

The No. of Concepts in input models column
displays the number of unique Concepts existing in
the input model.

The Percentage found column shows the percent-
age of Concepts that were correctly deduced out of
the total number of Concepts existing in the Omnia
meta-model, which is 56.

The Relative percentage found column repre-
sents the percentage of Concepts correctly deduced
out of the total number of Concepts existing in the
input models.

The Attributes found average percentage repre-
sents the average percentage of Attributes found for
each Concept

The Not matched Concepts is a list of deduced
Concepts that did not have a matching OmniaCon-
cept.

The models used as input did not cover the en-
tirety of Omnia’s meta-model, since the goal here is
not to find what Omnia’s meta-model is but rather if
the algorithm can extract all the concepts present in
the input models. Given the data in Table 1, all the
Concepts that were present in the input models were
discovered with no exception.

This claim is supported by the Valid column,
which indicates whether the input model follows the
structure of the deduced meta-model and is further
validated by the Relative percentage found column.
Furthermore, shown by column Attributes found av-
erage percent, practically all Attributes were found,
since the input models contain all the Attributes, for
each of the Concepts they contain.

While there is no way to determine if the refer-
ences are 100% correct, from using the Omnia plat-
form, it is possible to deduce that all the references
are correct.

6 CONCLUSION

It is a complex challenge to infer a meta-model from
a collection of models. This works depicts the prob-
lem related to migrating models from one version of a
Low-Code Development Platforms to an updated one
or even to another platform. It presents a proposal
for partially fixing the problem by exposing a detailed
process explained through different stages.

MODELSWARD 2023 - 11th International Conference on Model-Based Software and Systems Engineering

174



Table 1: Meta-model validation results.

Input Model Valid No. of Concepts
in input models

Percentage
found

Relative
percentage found

Attributes found
average percent

Not matched
Concepts

#1 Yes 29 51.8% 100.0% 98.6% N/A
#2 Yes 20 35.7% 100.0% 98.5%

N/A#3 Yes 29 52.7% 100.0% 100.0%
Combined Yes 33 58.9% 100.0% 99.7%

The procedures for testing the proposal are de-
scribed. By comparing the initial goals with the ob-
tained results, it is possible to conclude that the gen-
erated meta-model covers all the structural features of
the input model. Furthermore, it is possible to sug-
gest potential references which are, for the most part,
accurate.

While it is undoubtedly possible and generally
successful to infer a meta-structure, it is an entirely
different matter when attempting to infer the im-
plicit relationships between its elements and their
constraints. Yet, with the envisaged proposal it is not
possible to determine whether a field’s value is dic-
tated by another field or follows a pattern.

Moreover, there are some parts of this work that
could be improved by adding a mechanism to pre-
dict the identifier’s attribute name and removing the
need for it to be provided as a parameter, therefore
automating the meta-model discovery process.

Additionally, features that allow for manual
changes in the generated meta-model could be im-
plemented (e.g., adding constraints; adding, updating,
and removing elements).

The evaluation of this approach using models
from various LCAPs to further ensure its adaptabil-
ity and broad applicability will begin shortly.

Discussing “counteracting vendor lock-in”
(Di Ruscio et al., 2022), Di Ruscio et al. refer to the
inability to export development artefacts enabling
their importing into other Low-Code Development
Platforms. This paper discussed a possible first step
towards this ambitious and complex goal, particularly
important when initiatives aimed at any regulation in
the sector are missing.

ACKNOWLEDGEMENTS

This work is supported by “Fundo Europeu de
Desenvolvimento Regional (FEDER)” funds through
the “Programa Operacional Competividade e
Internacionalização and Portugal2020” program,
under the project BAMoL Low-Code Platform and
the consortium BAMoL – LCP (POCI-01-0247-
FEDER-39661).

REFERENCES

Bragança, A., Azevedo, I., Bettencourt, N., Morais, C.,
Teixeira, D., and Caetano, D. (2021). Towards sup-
porting SPL engineering in low-code platforms us-
ing a DSL approach. In Proceedings of the 20th
ACM SIGPLAN International Conference on Genera-
tive Programming: Concepts and Experiences, pages
16–28. ACM.

Cánovas Izquierdo, J. L. and Cabot, J. (2013). Discovering
implicit schemas in json data. In International Con-
ference on Web Engineering, pages 68–83. Springer.

Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A.,
Tisi, M., and Wimmer, M. (2022). Low-code de-
velopment and model-driven engineering: Two sides
of the same coin? Software and Systems Modeling,
21(2):437–446.

Hruby, P. (2006). Model-driven design using business pat-
terns. Springer Science & Business Media.

Javed, F., Mernik, M., Gray, J., and Bryant, B. R. (2008).
MARS: A metamodel recovery system using grammar
inference. 50(9):948–968.

Sahay, A., Indamutsa, A., Di Ruscio, D., and Pierantonio,
A. (2020). Supporting the understanding and com-
parison of low-code development platforms. In 2020
46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pages 171–178.
IEEE.

Zolotas, A., Matragkas, N., Devlin, S., Kolovos, D. S.,
and Paige, R. F. (2019). Type inference in flexi-
ble model-driven engineering using classification al-
gorithms. 18(1):345–366.

A Proposal Towards Discovering Metamodels from Low-Code Application Platforms

175


