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Abstract: Deep Learning on face recognition problems has shown extremely high accuracy owing to their ability in
finding strongly discriminating features. However, face images in the wild show variations in pose, lighting,
expressions, and the presence of facial attributes (for example eyeglasses). We ask, why then are these vari-
ations not detected and used during the matching process? We demonstrate that this is indeed possible while
restricting ourselves to facial attribute variation, to prove the case in point. We show two ways of doing so. a)
By using the face attribute labels as a form of prior, we bin the matching template pairs into three bins depend-
ing on whether each template of the matching pair possesses a given facial attribute or not. By operating on
each bin and averaging the result, we better the EER of SOTA by over 1 % over a large set of matching pairs.
b) We use the attribute labels and correlate them with each neuron of an embedding generated by a SOTA
architecture pre-trained DNN on a large Face dataset and fine-tuned on face-attribute labels. We then suppress
a set of maximally correlating neurons and perform matching after doing so. We demonstrate this improves
the EER by over 2 %.

1 INTRODUCTION

Face images when trained on large-scale public
databases, such as Vggface2 has the ability to cre-
ate embedding that is capable of ensuring verifica-
tion accuracy of over 99.5 on some public evalua-
tion datasets. However, when these trained mod-
els are inferenced on various test-datasets unseen
during train (open-set verification) the resulting em-
bedding are known to capture variations such as
soft-biometrics and facial attributes. For exam-
ple, (Terhörst et al., 2020a) shows that attribute-rich
dataset such as CelebA (open-set verification), the
resulting embeddings are capable of capturing soft-
biometrics such as age, demographics, ethnicity, and
facial-hair. Also, (O’Toole et al., 2018) that attributes
clustered images are found at different layers of the
face-space. Also, (Sankaran et al., 2021) have shown
that templates constructed for similar poses yielded
better verification accuracy. Finally, we too experi-
mented and observe as shown in Fig1 that the pres-
ence or absence of an attribute in probe and gallery in-
fluences the verification accuracy of the attribute com-
puted from the same embedding. This finding of ours
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on the specified facial attribute, motivated us to devise
methods for better verification/matching by exploit-
ing the prior knowledge of the presence or absence of
a specific facial attribute. This prior knowledge can
be obtained by a trained attribute detector or human-
labels if available. For demonstrating our idea in this
paper, we use human-labels available in the datasets
we are testing in. The two proposed methods to obtain
better verification performance exploiting the prior in-
formation are discussed in the next two sub-sections.
While the third subsection discusses the need and rel-
evance of having two such methods.

1.1 Configuration Specific Operating
Threshold

In the first method, henceforth referred to as, CSOT
(Configuration Specific Operating Threshold) we cre-
ate three bins consisting of matching template pairs
where both the templates of the matching pair in the
first bin, possess the attribute, and in the second bin
one template does and other does not, and in the
third bin, both do not possess facial attribute, and use
different matching thresholds for each of these bins.
We refer to these three bins/configurations/protocols
henceforth as att-att (short for attribute-attribute), att-
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Figure 1: A plot for the ’Smiling’ attribute, showing that
matching operates differently depending on whether probe
and gallery have the attribute in question or not. att in the
plot above refers to probe and gallery having attribute. att-
noatt is probe having the attribute and gallery without the
attribute. noatt refers to probe and gallery not having the
attribute.

noatt (short for attribute-no attribute) and noatt-noatt,
our work leverages the facial attribute labels on chal-
lenging IJB-C dataset to create the three bins, each
consisting of probe and gallery samples, conditioned
on the bin type i.e att-att/att-noatt/noatt-noatt. We
have created an extensive set of 60000 pairs for each
bin, and ran an inference of SOTA networks on the
same to determine the threshold

1.2 Attribute Aware Face Embedding
and Suppression

In the second method, hence referred to as,
AAFES(Attribute Aware Face Embedding and Sup-
pression) given the understanding that verification ac-
curacy is influenced by the presence of an attribute,
we create an attribute-aware embedding and then de-
vised a method to isolate the neurons most sensitive to
a given facial-attribute, and suppress it. The concep-
tion of this embedding is that it should leverage the
learning from a pre-trained state-of-the-art network
on a large data and to this effect we for pre-trained
InceptionResnetV1 trained on VGGFace, and thus
serve as a face-embedding, while we fine-tune the
later layers of the DNN to serve as attribute classifier,
hence making it more plausible to suppress the neu-
rons. We had to train such as attribute-aware face em-
bedding because existing attribute embeddings aren’t
suited for face verification. For instance, while there
have been efforts to learn the correlations between la-
bels of CelebA data, and effort was made to take the
low/mid-level representation in (Chen et al., 2021), it
is still based on the limited data of CelebA which is
high class imbalanced and hence doesn’t suit our goal
of having high identity learning in addition to the at-
tributes. Even this work (Chen et al., 2021) wonders
in the conclusion section if pre-training could have

helped learn a more robust attribute classifier.
We noticed, with a drop of about 5 percent face

verification accuracy after the training above, the at-
tribute recognition accuracy remains intact at 93,99.6
and 96 percent for attributes Smiling, Eyeglasses, and
Mustache respectively. The verification accuracy was
assessed using probe/gallery template match detailed
in section 4, while the attribute recognition accuracy
was measured from the fully connected network out-
put.

1.3 Need for the Two Approaches

In this section, we discuss the need and application
areas for two approaches stated above i.e. 1.1 and
1.2.

The CSOT approach is relevant when we would
like to directly use SOTA face verification models
(both public and COTS), with no access or resources
to train our own. We can directly inference the above
models over a pool of attribute-labelled dataset, and
determine the operating threshold for att-att, att-noatt,
noatt-noatt configurations.

The AAFES approach is primarily relevant when
we have access to both compute and data that need
to be fine-tuned on. We can retrain using our DNN
model architecture, generate attribute-aware embed-
ding, and further suppress the attribute information
before matching. In addition to this we can piggy-
back on the other research areas that take interest
in attribute-aware embedding, and directly apply our
method of isolating the most sensitive neurons in the
embedding, on the embedding from those methods.
For instance, (Ranjan et al., 2019) attempts to create
an embedding, that is capable of detection, landmark
localization, pose estimation, and gender recognition.
Embedding generated from attempts of this nature
could be passed through the pipeline of our method,
to get better verification accuracy. Also, Attribute-
aware embedding has a lot of potential applications.
They could be used in language tasks, as we can
rely on the embedding to perform visual Q and A
and other such language tasks. There have been sev-
eral works to enhance attribute recognition accuracy
(Han et al., 2017) (Rudd et al., 2016) (Samangouei
and Chellappa, 2016) using multi-task and other nu-
anced approaches. Face recognition tasks also have
been shown to improve by leveraging attribute infor-
mation (Gonzalez-Sosa et al., 2018). However, there
are approaches that aim for a joint representation of
both identity and attributes as in (Hu et al., 2017) be-
cause as noted here Face Attribute Feature (FAF) are
more robust though less discriminative, whereas Face
Recognition Features (FRF) is less robust but more
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discriminative. Other approaches such as (Lu et al.,
2018) further analyze co-variation of attributes with
generated embedding, and combined training used in
(Ranjan et al., 2016) further denotes relevance of at-
tribute aware embedding even if not captured in sin-
gle embedding. In the work, (Wang et al., 2017)
joint training in the multi-task setting of attributes and
identity is performed, but for attributes that are invari-
ant to the visual appearance of a person in a differ-
ent situation (which is opposite to our goal). In the
work (Taherkhani et al., 2018) it is also attempted to
create a joint representation of attribute and embed-
ding (using a Kronecker product in the fusion layer).
All methods listed above highlight two important fac-
tors. (a) There is a direction to look for the combined
embedding of attributes and identity (b) Also, the ap-
proaches don’t aim to create such an embedding to
beat the state of art embeddings generated by discrim-
inative Deep DNNs trained on massive data (using
metric learning or triplet loss schemes, etc). The for-
mer point helps us assert our current direction of work
involving both attribute-aware embedding and sup-
pression of attribute information, while the latter jus-
tifies our attribute-aware embedding’s lower accuracy
compared to SOTA open-set embeddings, despite be-
ing very relevant to fine-tuning on a given dataset of
concern.

The rest of the paper is organized as follows. Af-
ter a brief Related Work section, we have the Problem
Setting section. After this, we explain the technical
implementation of the two methods discussed above,
in the Methodology sections. Results and Conclusions
follow. The relevant code for this paper will be avail-
able at the following link 1

1.4 Related Work

Intuitively our work resonates with (Sankaran et al.,
2021) in that, we too, take cognizance of the fact
that one can exploit the properties of the target tem-
plate matched against. However, we deviate from the
work that, we aren’t aiming to create sub-templates
to match against. Further, we deviate in the usage of
eyeglasses as an attribute as opposed to pose in their
work. We have further performed a large-scale test on
the attribute-rich CelebA dataset.

W.r.t our latter approach involved attribute aware
embedding section 1.2, work related to ours are simi-
lar only in the aspect of curiosity but not the end goal.
(Diniz and Schwartz, 2021) for instance, also aims to
find and isolate neurons that maximally activate for
an attribute, however, the goal there is oriented more
towards interpret-ability, whereas our work aims to

1https://github.com/arunsubk/AttributeAwareFaceVerif

find suppress able neurons in the embedding layer for
a better match. Another work in a similar spirit is
(Ferrari et al., 2019), but it differs in that it bins the
average of the neurons of the embedding after aver-
aging all the templates of a given identity (which too
is a deviation, because we in our work are focusing on
attributes).

2 PROBLEM SETTING

It is important we delineate the key dataset, attribute
choice, and configuration setup assumptions before
the next section section 3 because the configuration
setup is unique to this work for the problem at hand.
And since the evaluation is also based on the config-
uration setup, the previous results section is also re-
ported on this configuration setup

2.1 Verification Configurations Used in
Our Methodology

In usual face verification evaluation methodology in-
volves having a probe and a gallery set of genuine and
impostor identities. However, since our work looks at
leveraging attribute information for face verification,
the genuine-impostor probe and gallery is now condi-
tioned on the attribute label i.e. we first choose an at-
tribute, and then create a probe-gallery set of genuine
impostors inside it. This leads to three configurations:

• Attribute-Attribute (att-att): Probe and the gallery
contain genuine-impostor pairs of persons pos-
sessing the attribute

• Attribute-NoAttribute (att-noatt): Probe and
gallery contain genuine-impostor pairs of persons
with probe possessing the attribute but not gallery

• NoAttribute-NoAttribute (noatt-noatt): Probe and
gallery contain genuine-impostor pairs of persons
not possessing the attribute

Given the above setup we are bound to reporting
attribute specific face verification accuracy either on
CelebA dataset (since they have attribute label anno-
tations and identity annotations in the training set),
or for eyeglasses attribute within IJB-C (Maze et al.,
2018) as explained in Choice of Facial Attributes sec-
tion section 2.3

We are therefore not reporting on other face verifi-
cation datasets (such as AGEDB, LFW) because they
don’t have attribute label annotations.
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2.2 Template Matching and CelebA
Dataset

To the best of our knowledge, we are for the
first time reporting face verification accuracies on
CelebA.(CelebA dataset is publicly available as of
date) This is not surprising given that any attempt to
enhance face verification accuracies report on LFW,
CFG-FP, AGE-DB, etc, however, they don’t serve our
purpose, because they don’t have attribute label anno-
tations. As you’ll see in the next section below, at-
tribute information is critical for binning our data into
different probe and gallery sets.

We however leveraged the implicit labeling of
IJB-C occlusion grid labeling helping us identify eye-
glasses attributes.

2.3 Choice of Facial Attributes

2.3.1 Attributes Chosen for Experiments on
CelebA Dataset

The choice of the attributes used for both approaches
involves five attributes Smiling, Eyeglasses, Heavy-
Makeup, Goatee and Mustache which display a vari-
ation of the same identity in different situations. It
is this variation that we are aiming to combat by
suppression for better matching. For CSOT method,
we use Eyeglasses, HeavyMakeup, Goatee and Mus-
tache; while, for AAFES method we use the Smiling
attribute

2.3.2 Attributes Chosen for Experiments on
IJB-C Dataset

We use eyeglasses attribute and occluded forehead in
IJB-C dataset since that is an implicit label provided
by IJB-C in their occlusion grid labeling on the eye
region and forehead region respectively. This also sat-
isfies the criteria of variation of the same identity in
different situations as mentioned above.

2.4 Deviation from ”subject-Specific”
Template Modeling in IJB-C
Dataset

As defined in IJB-B paper (http://biometrics.
cse.msu.edu/Publications/Face/Whitelametal
IARPAJanusBenchmark-BFaceDataset CVPRW17.
pdf) ...subject-specific modeling refers to a single
template being generated using some or all pieces
of media associated with a subject instead of the
traditional approach of creating multiple templates
per subject, one per piece of media. However, this

kind of modeling defeats our goal in this paper: to see
the effect of attribute and probe in a given template.
In our configuration setup (explained in section 2.1 ),
while using the IJB-C dataset (images and frames),
instead of creating a subject-specific template in the
gallery, we use the image/frame itself as a gallery.
I.e. Gallery contains images/frames with the attribute
in question or without it.

3 METHODOLOGY

The first subsection of the methodology consists of
explaining the mechanism of CSOT. While the second
subsection describes the mechanism of implementing
AAFES.

3.1 Configuration Specific Operating
Threshold (CSOT)

As shown in 2 the pipeline on the left of the figure
shows two individual presented before the system to
generate DNN embeddings, which is then matched to
get the match score. The right side of the image shows
the two individuals again presented to the system, but
this time, in addition to the DNN embeddings, we also
detect a facial attribute of interest (in this paper how-
ever we use human-annotated attribute labels for ex-
perimental robustness), in each image presented, and
depending on whether the pair of images have an at-
tribute on, we determine the configuration/bin, and
from the bin use a predetermined (by using a huge
number of test pairs per bin) threshold value. We
now use this config-specific threshold value to deter-
mine whether the pair is a match or a non-match The
same is conveyed algorithmically in 1. Please note
FacialAttributeDetectorYesNo method used in the al-
gorithm is replaced by human annotated attributed la-
bels in this paper.

Instead of using a unique threshold for each bin,
we can scale the distances of each bin to have a com-
mon threshold and derive a scaling factor instead to
multiply the matching distance with. It is that scaling-
factor that is being referred to in the figure 2. The
reader can safely assume it is synonymous with a
unique threshold per configuration/bin.

On picking any of the left 4 figures in 7, for
CelebA dataset, we see the blue line with att-att con-
fig, the green with att-noatt config, and finally yel-
low with noatt-noatt config. The black line repre-
sents, the case where all three configurations co-exist
in the data i.e. the data is now mixed. As it is observ-
able, each configuration can best be operated upon,
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Figure 2: On the left, the regular DNN; Proposed method on the right, where we determine the config using attribute detector
network, and use mapped scaling-factor(synonymous to unique threshold).RMSE block computes RMSE between two em-
beddings and multiplies with the scaling factor.

Algorithm 1: Config-specific operating point.

Require: N face image pairs to match
binT hresh ←Threshold per config/bin inferenced
from large test-set
ta1← 0 (Facial attribute yes/no for the first image)
ta2← 0 (Facial attribute yes/no for the second im-
age)
probeImage← f irstimage f rompair
galleryImage← secondimage f rompair
con f ig← None (Placeholder for att-att, att-noatt,
noatt-noatt)
getT hresh← None (picks and returns appropriate
threshold from binThresh for a given config)
matchDist ← None (RMSE distance between im-
age pair)
t1← None (Face template generated by DNN for
image 1)
t2← None (Face template generated by DNN for
image 2)
thresh← None (Threshold returned by getThresh
for a given configuration)
predict ← None (Final genuine impostor predic-
tion by matching function)

Ensure: i = 0,1...N matching pairs
while N ̸= 0 do

t1← DNNEmbeddingGenerator(probe)
t2← DNNEmbeddingGenerator(gallery)
matchDist← RMSE(t1, t2)
ta1← FacialAttributeDetectorYesNo(t1)
ta2← FacialAttributeDetectorYesNo(t2)
if ta1 = ta2 = 1 then

con f ig← att−att
thresh← getT hresh(con f ig,binT hresh)

else if ta1 = 0 and ta2 = 1 then
con f ig← noatt−noatt
thresh← getT hresh(con f ig,binT hresh)

elseta1 = ta2 = 0
con f ig← noatt−noatt
thresh← getT hresh(con f ig,binT hresh)

end if
predict← getPredict(thresh,matchDist)

end while

with the knowledge of the configuration. Refer to fig-
ure 2 that explains the same. But how do we deter-
mine if the difference in distribution is induced by
the attribute and not a generic sampling distribution
difference? For this, we cite (Terhörst et al., 2020a)
where it is shown that the state-of-the-art embedding
FaceNet embedding, has tremendous attribute predic-
tive power, and we use this evidence to back our ex-
perimental setup.

Please note that while preparing the graph 7 we
have made the following assumption: We have elimi-
nated the transparent eyeglasses, and let only the dark
glasses remain to avoid within-class variance).

We have further analyzed the impact of the pose
in the dataset to ensure we have no biased results. No
impact of the pose.

3.1.1 Embedding Used and Choice of Facial
Attributes for This Methodology

The embeddings used to demonstrate this technique
are InceptionResnetV1 pretrained on VGGFace2 (the
dataset has been removed from publicly available offi-
cial page. Tested on licensed personal copy) as made
available by FaceNet (Schroff et al., 2015), Arcface
model pre-trained on MS1M (Guo et al., 2016), Mag-
face (Meng et al., 2021) model pre-trained on MS1M
dataset.

The choice of attributes of this methodology is the
same as that discussed in the section section 2.3.

3.1.2 Scaling the in-Between Distribution Mean

While the above section offers an insight to operate
individually at each scale, the mechanism to do the
same is detailed below.

∀xi ∈ Xc

where c is configuration in question perform
xi−µgc

µic−µgc
(1)

where µgcis the Genuine mean, and µic is the impos-
tor mean defined for each of the configuration c i.e.
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att-att, noatt-att, noatt-noatt (for the rest of the pa-
per, please assume att= attribute present. noatt = at-
tribute absent i.e. no att) by passing a statistically rel-
evant huge number of pairs through the trained net-
work. Conceptually we are just zero-centering all
the genuine mean and using the inter-class mean dis-
tance as the scaling factor. This operation helps us
keep the threshold constant while scaling the match
distance. The mean-shifting mentioned above as a
conceptual operation lends itself to methods like pa-
rameter search of each of the configuration means
using methods such as Differential Evolution to find
configuration-specific mean. We used the same in us-
ing Scipy’s implementation of the same in graphs.

3.2 Attribute Aware Face Embedding
and Suppression (AAFES)

The primary object as described in the pipeline 3 is to
leverage identity-rich attribute-aware embedding, to
first run an attribute detector over (in this paper how-
ever we use available human annotated attribute labels
for experimental robustness). And once the attribute
is known (say eyeglasses) we apply the suppression
vector, which is essentially a mask we have created
that masks out the most sensitive neurons to a given
attribute, (details explained in this section) to zero out
the neurons showing maximal correlation. The algo-
rithms is given here 2. Note FacialAttributeDetecto-
rYesNo in the algorithm, in our experiment is replaced
with available attribute labels. It is to be noted that we
differ from the work (Diniz and Schwartz, 2021), in
that, we perform a correlation analysis of the final em-
bedding layer for a streaming validation data, as op-
posed to a lower dimensional representation of hidden
layer analyzed through images in the cited work.

The details of how the suppression vector is cre-
ated is the focus of the next two subsections

3.2.1 Motivation

We adopted a variation to the quantile streaming anal-
ysis as was used in (Fong and Vedaldi, 2018). We de-
viate from the cited work in that, we gather the acti-
vations of a given neuron (in our case, the embedding
layer neurons) by passing the validation data into the
model, and correlating it with the attribute label of the
image, as opposed to performing quantile analysis on
the same.

Algorithm 2: Algorithm to execute suppression of attribute-
aware embedding.

Require: N image pairs to match
threshold← Threshold determined by inferencing
embedding over large test-set
suppressionVector ← Determined by our method
for a given attribute
ta1← 0 (Facial attribute yes/no for the first image)
ta2← 0 (Facial attribute yes/no for the second im-
age)
t1← None (Face template generated by DNN for
image 1)
t2← None (Face template generated by DNN for
image 2)
predict ← None (Final genuine impostor predic-
tion by matching function)

Ensure: i = 0,1...N matching pairs
while N ̸= 0 do

t1← DNNEmbeddingGenerator(probe)
t2← DNNEmbeddingGenerator(gallery)
ta1← FacialAttributeDetectorYesNo(t1)
ta2← FacialAttributeDetectorYesNo(t2)
if ta1 = 1 then

t1← t1⊙ suppVector
else

t1← t1
end if
if ta2 = 1 then

t2← t2⊙ suppVector
else

t2← t2
end if
matchDist← RMSE(t1, t2)
predict← getPredict(threshold,matchDist)

end while

3.2.2 Correlating Attribute Label with
Embedding Neurons and Generating
Suppression Vector

Let V be a n1 dimensional embedding, and L be a
n2 dimensional attribute label vector (consisting of 0s
and 1s). Let k be the number of samples in the valida-
tion dataset. For the k samples we now have a n1× k
matrix of embedding. We also have a k× n2 label-
ing matrix for the k samples. Appending the Vi to the
Li, where i represents a particular sample we get a
n1+ n2 dimensional vector Pi for each of k samples.
Using the P matrix of Pi vectors we can now form a
covariance matrix as follows:

CP,Pt =
∑

N
i=1(Pi− P̄)(Pi− P̄)t

N−1
(2)
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Figure 3: On the left, the regular DNN; Proposed method on the right, where we determine the config using attribute detector
network, and use mapped scaling factor.

Since the covariance matrix scales up the correlation
as per the activation values it is dealing with, we per-
form normalized correlation to get the absolute value
of correlation (independent of neuron activation) to
determine which neuron relatively fires most. The re-
lationship between the correlation coefficient matrix,
R, and the covariance matrix, C, is

Ri j =
Ci j√

Cii ∗C j j
(3)

The matrix above can be decomposed as follows:

R =

(
E M
Mt Et

)
(n1+n2)×(n1+n2)

(4)

..where E and symmetric ET is the normalized
cross correlation between the embedding, and M and
symmetric MT are normalized cross-correlations be-
tween the embedding vector and the label vector for
a given label. It is the M matrix of shape n1× n2
that is of interest to us in our suppression. Now
for a given label n2i, we have an embedding cor-
relation vector n1i which is put into 10 bins in the
histogram and index values corresponding to corre-
lation value greater than the second topmost bin and
less than bottom-most 2 bins are chosen. The em-
bedding size we used is size 1792, penultimate to the
fully-connected layer generated embedding of 512 on
the InceptionResnetV1 network (while pre-trained on
VGGFace2, trained on CelebaA by us). It is to be
noted that performing correlation analysis on the final
512 embedding too works just as well. Interestingly
while our trained network shows a high correlation for
the discussed attributes, a similar attempt to check the
correlation on the pre-trained embedding of 512 gen-
erated by InceptionResnetV1 on the same discussed
attributes shows that all correlation values like just
about 0.000. Thus showing no strong correlation of
specific neurons with any attribute, while our embed-
ding does.

3.2.3 Network Used and Training

The network used here is InceptionResnetV1 pre-
trained on VGGFaces2 as made available by FaceNet

(Schroff et al., 2015) as a starting point. The lay-
ers up to ReductionB layer were frozen. Refer Fig-
ure 4 for schematic diagram. This choice of using a
pre-trained network and freezing initial layers was ar-
gued in (Ranjan et al., 2016) to be well suited for face
analysis tasks (attribute detection in our case). The
training was conducted on the Pytorch (Paszke et al.,
2019) platform.

Dropout from the penultimate layer was removed
for ensuring that there is sparsity in the embedding
generated for attribute learning. The remaining lay-
ers were trained on the CelebA dataset with over 40
attributes and over 10,000 identities. Though we fo-
cus on only 4 attributes outlined in the section sec-
tion 2.3, we leverage all the available attribute labels,
to exploit the attribute correlations in the multi-task
setting. Pre-processing is limited to MTCNN (Zhang
et al., 2016) detection, and RGB normalization. At-
tribute and identity accuracy on CelebA dataset as fol-
lows. On attributes accuracies are Smiling - 93% ,
Goatee - 96 %, Heavy-Makeup -90.5% and Mustache
- 96 % on Celeba. Since CelebA doesn’t make an
identity validation set available, we split the training
set to 80-20 ratio, to determine a verification accuracy
on a validation set of 91 %. These stats are just to
show that our approach while doesn’t claim a generic
face embedding that can be SOTA ( for instance the
embedding generated by training above has 82% on
LFWA dataset), finetunes to a specific dataset con-
taining identity and attribute labeling, and thus enable
both identity and attribute classification, and further
using our proposed suppression method enhances the
identity classification.

Our multi-task training architecture differs from
(Wang et al., 2017) in that we use the same final em-
bedding for the classification of both tasks because
we desire a single embedding to encapsulate identity
and attribute information, such that attribute neurons
can later be suppressed. The network is denoted as
f (I;θ), where θ is the parameter set of the deep ar-
chitecture and we use I to denote the training images.
Suppose we have M facial attributes and P face identi-
ties. We model the minimization of the expected loss
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Figure 4: The left half is frozen, while the right half of In-
ceptionResnetV1 is trained.

as follows

Θ,Wa,Wp = argminL(I;Θ,Wa,Wp) (5)

where L (I;Θ,Wa,Wp) is loss function defined of the
task and defined as

L (I;Θ,Wa,Wp)=La (Wa · f (I;Θ))+Lp (Wp · f (I;Θ))
(6)

where Wa ⊆R512×2×M (we have 512x2 here to ac-
commodate a binary classification for each attribute,
with CrossEntropy applied over it) and Wp ⊆ R512×P

are the learned weights for facial attribute and face
identification tasks.

3.2.4 Choice of Attributes in CelebA for AAFES
Method

In addition to section 2.3, for this particular method,
we choose the Smiling attribute because it has more
class balance and hence trains better. The class im-
balance and hence the balance shown by the smiling
attribute is shown in the fig 5

Figure 5: Positive class rate of the smiling attribute is bal-
anced and labeling robust as well.

3.2.5 Sanity Check of Attribute Learning and
Suppression

It is critical that we perform sanity checks if indeed
the attribute is learned by looking at the right regions
of the image, and also if we are really able to isolate
neurons that correlate most with a given face attribute.
For the former, we have performed occlusion exper-
iments, while for the latter we have neuron suppres-
sion to see if face attribute predictions flip.

Figure 6: Pixel level occlusion patch to show the largest
drop in accuracy. The same was performed for Smiling and
bangs.

Table 1: Accuracy before and after suppression in percent-
age for available labels of high confidence from MAAD on
VGGFace2.

Attribute Samples Before (%) After (%)
Smiling 3800 75 0.03
Eyeglasses 4100 98 0.08

Occlusion Experiments: Since our methodology
hinges on the activation of a neuron given a face at-
tribute, in order to ensure that the model has learned
the right regions we performed occlusion experiments
by patching various aspects of images and noticing
drops in classification accuracy. In the fig 6 , you’ll
see the patched image on the left and the prediction
confidence plotted on the right. The same was re-
peated for several other attributes such as bangs, and
our subject attribute smiling.

Prediction flip with suppression: In order to check
the effect of suppressing the neurons as deduced
from the distribution of correlation value of embed-
ding neurons, performed the sign flipping experiment,
where I added to the activations a slightly positive
value (about 1 or 1.5) for negatively correlated neu-
rons, and subtracted the same value for activations
with positive correlation, and check the effect of pre-
diction on the accuracy of the attribute. Here is the
accuracy for the attribute before and after the inter-
vention, as applied on VggFace2 dataset (with at-
tribute labels picked up from MAAD annotations of
VGGFace2 (Terhörst et al., 2020b). The attribute cor-
relation values were derived from activations on a val-
idation set of CelebA, and is being here as shown on
another dataset i.e. VggFace2. Here is “Table 1“
demonstrating the flip in attribute accuracy

4 RESULTS

4.1 Evaluation Methodology

The evaluation method can be summarized as fol-
lows: A standard face verification evaluation involves
generating genuine-impostor pairs from probe and
gallery and then splitting the full list of pairs into
train and eval in K-Fold manner. The training set here
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helps determine the optimum threshold for Equal Er-
ror Rate (EER), and the threshold is applied to the
test, to get the test accuracy. The TPR/FPR is gen-
erated from the K-fold test set and averaged. Here
we do the same except that we do it for each of the
configurations as detailed in section 2.1 i.e. att-att,
att-noatt and noatt-noatt by buckets the probe-gallery
and generating genuine-imposter pair conditioned on
the three configurations. Detailed steps below:

• Using MTCNN detector to get a clear region
around the face.

• Splitting all images of CelebA or IJB-C (IJB-C
relevant only to eyeglass attribute) dataset into
two bins. The first bin has sub-bins, for each fea-
ture, and in turn, each of these bins contains all
the identities who are identified with that feature.
Similarly a second, has 40 sub-bin, for each fea-
ture, and in turn, each of these bins contains all
identities who are not identified with that feature

• Half of all the images in the lowest bins are used
for probe and the rest for a test.

• Creating pairs of images from the probe and
gallery set above and iterating through them from
disk with architected Pytorch DataLoader (includ-
ing a change on their open source sampler pro-
gram) to generate a maximum number of pairs,
then generating their embedding, and further their
RMSE distance

• For the generated RMSE and the Gen-
uine/Impostor label assigned as 0/1, a validation
split of 80-20 is done, with K-fold of 10.

• For each training set, a range of thresholds is eval-
uated and for the best threshold, the accuracy is
computed on the validation (20 percent) set.

• This process is repeated for all 10 folds and aver-
age accuracy and TPR/FPR values are reported.

• Since there are a lot more impostor pairs at dis-
posal compared to genuine pairs, the random
genuine-pair-count number of images was sam-
pled from impostor pairs, over 100 trials, and av-
erage accuracy was reported.

4.2 Results for Operating Point
Adjustment by Mean Scaling

4.2.1 Results on CelebA Dataset

As can be seen in the graphs 7 plotted, where each
row represents a particular attribute, the ROC graphs
on the left, show the three individual configurations
(att/att,att/noatt, noatt/noatt) in color, and the ROC
of the configuration agnostic full pairs of images in

Individual Configuration Full data
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Figure 7: Top to bottom: Eyeglass, Heavymakeup, Goatee,
Mustache. ROC plots on left are for individual configura-
tion; And on the right on full data, with scaling in brown
and; without-scaling in black. The labels on all the graphs
are of the form Accuracy as a number; Intra/inter pair count
and protocol.

black. The image on the right plots the configuration
agnostic graph with and without scaling operation as
described in section 3.1.1. The result clearly shows
that in most configurations our scaling approach beats
the state-of-the-art at best by 1 % (Eyeglass and goa-
tee). Tables showing accuracies 3 for InceptionRes-
netV1 pretrained on VggFace2 by FaceNet versus
ours.

The table 2 lists the mean and variance before
and after the scaling operation. This shows that once
scaling and shifting are done, all three configura-
tions end up with GMean (genuine mean) of 0, and
IMean(impostor mean) of 1.

4.2.2 Results on IJB-C Dataset

The IJB-C dataset covers about 3,500 identities with
a total of 31,334 images and 117,542 unconstrained
video frames. We used the occlusion labeling (corre-
sponding to occlusion grid numbers 07 and 09 of IJB-
C https://www.nist.gov/system/files/documents/2017/
12/26/readme.pdf ) corresponding to the left eye re-
gion and the right eye region, to identify all the
individuals wearing the eyeglass; Similarly, for at-
tribute occluded forehead we used occlusion labels
occ1,occ2,occ3,occ4,occ5 and occ6. We further split
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Table 2: GMean is the Genuine mean and Gstd is Genuine Standard deviation. Likewise, Imean is Impostor mean.

Att-Att Att-NoAtt NoAtt-NoAtt Full Data
GMean GStd IMean IStd GMean GStd IMean IStd GMean GStd IMean IStd GMean GStd IMean IStd

Eyeglass Before Scale 32.34 7.49 46.5 7.74 42 6.54 53 6.46 38 7.79 55 6.55 38.69 7.87 53.74 6.92
Eyeglass After Scale 8e-05 0.53 0.99 0.54 0.0339 0.59 0.16 0.58 0.00 0.45 1.004 0.38 0.007 0.496 1.00 0.4901

Heavy Makeup Before Scale 33.32 7.30 52.90 7.18 40.16 7.18 55.13 6.25 38.06 7.75 55.46 6.55 38.24 7.53 54.38 6.82
Heavy Makeup After Scale 0.24 0.35 0.12 0.42 0.99 0.35 0.14 0.52 1.03 0.442 4.1 0.37 0.062 0.47 1.00 0.377

Goatee Before Scale 35.0015 7.66 51.98 6.83 38.9 7.54 55.88 5.95 38.97 7.54 55.88 5.95 38.086 7.75 55.25 6.26
Goatee After Scale 9e-05 0.45 1.00 0.40 0.994 0.445 1.002 0.35 0.994 0.44 1.99 0.35 0.003 0.446 1.0011 0.359

Mustache Before Scale 36.4 7.66 52.47 6.58 38.79 7.79 55.85 5.94 38.13 7.78 54.95 6.58 37.86 7.84 54.9 6.39
Mustache After Scale -0.05 0.47 1.00 0.41 0.0004 0.46 1.00 0.39 0.00 0.45 0.99 0.34 -0.009 0.46 0.99 0.37

Table 3: Verification accuracy.

Attribute InceptionResnetV1 Ours

Eyeglasses 84.9 85.9
HeavyMakeup 87 87.2

Goatee 88.9 89.3
Mustache 88.5 88.7

the data into bins of att, noatt, att-noatt discussed in
section 2.1 and inferenced the two SOTA approaches,
Facenet, ArcFace (Deng et al., 2019), Magface (Meng
et al., 2021) over it. Our results in “Table 4” shows
that our method section 3.1.2 for eyeglasses attribute
shows a significant up to 1 % improvement on ear-
lier SOTAs such as Facenet and ArcFace, while on
the recent SOTA Magface, it equals it, showing that
the SOTA Magface compared to other approaches,
is much more robust in dealing with variation in at-
tributes. For occluded forehead, an attribute which
is more difficult compared to eyeglass (since a lot of
eyeglasses in IJB-C dataset is the see-through eye-
glass providing minimal but definite occlusion), our
method improves by over 2 % over magface, while
on Facenet it shows 1 % improvement, and ArcFace
shows 0.5% improvement We used to 14900 template
pairs of occluded forehead to report this, and 60000
template pairs of eyeglass attribute to report this.

4.3 Results for Embedding Suppression
Method

4.3.1 ROC Curve for the Dataset with the
Attribute in the Wild

The ROC-curve 10, shows a 3 percentage improve-
ment in the accuracy of verification after the suppres-
sion of the attribute.

4.3.2 Qualitative Results

• Figure 9 qualitative demonstrates our results.

• We also analyzed if a RMSE was to be taken only
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Figure 8: Top: ROC plots for Facenet on IJB-C dataset.
From the accuracy numbers, one can see the average
of att/noatt/att-noatt protocol is better than combined (in
black) accuracy. Bottom: The plot shows an improvement
in accuracy i.e. 0.5 % increase when mean scaling is done.

cosidering the suppressed neurons, the response
was maximum when pair of images different in
the presence of the attribute

5 CONCLUSIONS

In this paper, we proposed two methods of exploit-
ing attribute information available before matching.
In the first case, we determined an ideal operating
point for each configuration (att-att, att-noatt, noatt-
noatt) separately, and used these operating points to
match the pairs at test time (after determining whether
each image in the matching pair has the attribute or
not using attribute detector). To prove the validity
of the same, we used a shift-scale method or param-
eter search using the Differential-evolution method
over learned configuration-specific genuine-impostor
mean values from training data, and used the plots
showed it beats state-of-the-art verification accuracy
on CelebA dataset (for 4 listed attributes) and in case
of IJB-C dataset beats SOTA for a tougher occluded-
forehead attribute while equaling accuracy for eye-
glass attribute. In the second approach, we demon-
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Table 4: Accuracy post att, noatt and att-nott binning individually. Without CSOT refers to current SOTA; CSOT is our
method that uses individual bin thresholds and aggregates the result as explained.

Attribute Model att noatt att-noatt Without CSOT CSOT (Ours)

Eyeglasses Facenet 83.3 87.6 83.0 83.9 84.6
Arcface 88.7 86.6 84.2 85.9 86.4
Magface 95.9 92.3 90.8 93 93.0

Forehead Occlusion Facenet 80.5 85.9 75.7 80.0 80.7
Arcface 84.7 84.2 79.5 82.1 82.7
Magface 93.3 93.0 85.8 88.7 90.7

Figure 9: The top two rows are genuine pairs and the last
row is the impostor pair matched correctly after the suppres-
sion of maximal activation.

Figure 10: The yellow line demonstrates the improvement
in matching after suppression.

strated a way to create attribute-aware embedding and
showed verification accuracy can be increased by sup-
pressing the neurons in the embedding correlating

highly with a given attribute, thus showing a method
to suppress the attribute information arguing that sev-
eral applications and methodologies which generate
such embeddings will benefit with the suppression to
increase verification accuracy.
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