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Network security attacks have seen a significant increase in recent years. A remote attacker needs to under-

stand the topology of the victim network and extract as much information as possible for the hosts of the
network. The first step of a network attack is called reconnaissance and aims at gathering such information.
In this paper, we analyze the detection of such activity through the use of machine learning classifiers. We
identify which are the characteristics of reconnaissance activity that render it detectable and employ a heuristic
approach to decide optimal values for such fields that can produce undetectable port scanning traffic. Based on
those findings, a covert port scanning tool has been developed and made publicly available. The tool executes
the reconnaissance step of an attack in a way that it can evade being detected.

1 INTRODUCTION

Network security(Marin, 2005) is a set of technolo-
gies that protects the integrity, confidentiality, avail-
ability of data, and usability of network infrastructure
by preventing entry or proliferation within a network
of a wide variety of potential threats. Network secu-
rity involves creating a secure infrastructure for de-
vices, applications, and users in order to work in a se-
cure manner. Specifically, Network Security involves
antivirus software, endpoint detection, and response
(Kaur and Tiwari, 2021), application security, access
control, network analytics, firewalls, intrusion detec-
tion systems (Kanika, 2013), VPN encryption, and
more.

Port Scanning(De Vivo et al., 1999) is an integral
part of active reconnaissance attacks. It is the pri-
mary source for information gathering about the in-
frastructure of a target network for the attackers. Port
scanning identifies port availability by sending con-
nection requests to a target computer and recording
corresponding responses. Determining which ports
are in use enables attackers to understand which ap-
plications and services are active on the target ma-
chine. From there, an intruder can check for vulner-
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abilities and initiate his attack plan. Machine Learn-
ing algorithms are increasingly used in solving cyber-
security problems and mainly in the detection of at-
tacker’s activity in a system (Xin et al., 2018). Such
algorithms have also been proposed to be used for the
detection of standard port scanning activity and have
shown high accuracy rates.

In the present paper, the detection of port scan-
ning activity is analyzed and studied to understand
the optimal approach for that. Additionally, the actual
metrics that enable detection are identified and an ap-
proach to implement an evading scanning technique
that can achieve undetected scanning of a network is
presented. The main contributions of the paper are the
following:

* Identification of which are the most accurate clas-
sification algorithms with respect to detection of
port scanning attempts.

* Identification of which are the most statistically
significant parameters of network traffic that can
lead to the detection of port scanning attempts.

* Design and implementation of a covert port scan-
ning tool that can evade detection from aforemen-
tioned algorithms.

The rest of the paper is structured as follows. Sec-
tion 2 presents related work in the field of port scan-
ning detection using machine learning algorithms. In
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Section 3, various machine learning classification al-
gorithms are tested, to decide upon their applicabil-
ity to the problem. In Section 4, the results of the
ML algorithms are analyzed and the most important
features are identified. In Section 5, a heuristic ap-
proach is used to optimize the values of such feature,
to minimize the detection probability. In Section 6,
a covert port scanning tool that is able to evade de-
tection is presented. Finally, Section 7 presents our
conclusions.

2 RELATED WORK

Detecting Port Scanning attacks using Machine
Learning algorithms is one of the most popular trends
in the Cyber-defense field. Bertoli et al. in (Bertoli
et al., 2021) described the AB-TRAP framework
which consists of (i) the generation of the attack
dataset, (ii) the bonafide dataset, (iii) training of
the machine learning models, (iv) implementation of
the models and (v) the performance evaluation of
the model. They test AB-TRAP in two environ-
ments: LAN and the Internet. In both cases, has
been achieved low resource utilization and the De-
cision Tree classifier provided the best performance
for the training and realization phases. Wankhede in
(Wankhede, 2019) provided anomaly detection using
machine learning techniques. Specifically, various
types of anomalies such as DoS attacks, DNS poi-
soning, and Port Scanning are presented and can be
detected by using supervised machine learning tech-
niques like feedforward neural networks. Balram et
al. in (Balram and Wiscy, 2008) described the de-
tection of TCP SYN scanning using packet counts
and neural networks. Through their work, they in-
vestigated the effectiveness of using counts of vari-
ous aggregated TCP control packets in detecting TCP
SYN scanning. Also, a neural network was trained
in order to capture normal as well as port scanning
data. TCP SYN, SYN/ACK and FIN packets show
definite patterns in their behaviour for legitimate con-
nections. As regards the detection of TCP SYN scan-
ning, a deviation from the normal behaviour is ob-
served. Jirapummin et al. in (Jirapummin and Kan-
thamanon, 2002) proposed a hybrid neural network
approach for IDS. In more detail, they presented an
intrusion detection system based on Self-Organizing
Maps (SOM) and Resilient Propagation Neural Net-
works (RPROP) for visualizing and classifying in-
trusion and normal patterns. Andropov et al. in
(Andropov et al., 2017) presented network anomaly
detection using artificial Neural networks. Through
their work, they presented a method of identifying
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and classifying network anomalies using an artificial
neural network for analyzing data gathered via Net-
flow protocol. The results showed high percentages
of successful identifications after a number of itera-
tions. Algaolahi et al. in (Algaolahi et al., 2021) used
supervised machine learning classifiers in order to de-
tect port scanning attacks. Specifically, their work is
focused on detecting port scanning attacks by using
different machine learning algorithms and comparing
them to find the best one. As regards the results, some
algorithms such as Decision Tree and Random Forest
reach nearly 100 percent of accuracy with a short time
of training and testing.

3 DETECTION OF
RECONNAISSANCE ACTIVITY

As mentioned in the previous Section, various ap-
proaches exist in the literature that attempts to auto-
matically detect reconnaissance activity. The major-
ity of existing approaches address port scanning de-
tection, as this enables attack mitigation in its early
stages. As regards, port scanning detection, one so-
lution can be traditional network intrusion detection
systems which are complex and require resources and
maintenance. An alternative approach could be based
on lightweight machine learning classifiers, that upon
being properly trained can provide a fast detection
mechanism for reconnaissance network activity. The
paper focuses on machine learning-based detection of
reconnaissance activity and the evasion of detection
from such approaches.

3.1 The Classifiers

In the present Section, five commonly used ma-
chine learning classifiers were picked and used to
detect port scanning activity. The machine learn-
ing classifiers that were tested were: (a) De-
cision Tree (DT)(Kotsiantis, 2013), (b) Random
Forest (RT)(Pal, 2005), (c) Multi-layer Perceptron
(MLP)(Ramchoun et al., 2016), (d) k-Nearest Neigh-
bours (KNN)(Viswanath and Sarma, 2011) and (e)
Naive Bayes (NB)(Rish et al., 2001).

3.2 The Data-Set

The classifiers were trained and tested upon a dataset
built through the use of the AB-TRAP Project!. The
aforementioned project allows the integration of real-
istic background traffic with traffic produced by port

Uhttps://github.com/c2dc/AB-TRAP
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Table 1: TCP port scanning tools and techniques.

Port scan- | TCP Port scanning techniques

ning tools

Nmap SYN, Connect, FIN, XMAS, NULL,
ACK, Window

Unicornscan | SYN, Connect, FIN, XMAS, NULL,
ACK

Hping3 SYN, Connect, FIN, XMAS, NULL,
ACK

Zmap SYN

Masscan SYN

scanning tools. Specifically, the attack network traf-
fic consists of Port scanning tools and techniques as
described in Table 1. Regarding the normal traffic
dataset, the MAWILab dataset (Fontugne et al., 2010)
has been used. It is 15 minutes of daily traffic from
a transpacific backbone between the USA and Japan.
The data-set used consists of 416,249 packets in total,
out of which 100,520 have been produced by recon-
naissance activity, while the rest 315,729 correspond
to normal traffic.

Features of the traffic that were identified as not
generic enough for this study were removed. Exam-
ples of such features are link layer (layer 2) fields
and features that are redundant or invariable such as
source [P address, destination IP address, IP version,
etc. Table 2 shows the fields that were fed to the clas-
sifiers.

3.3 C(lassification Results

Using the described data-set, the classifiers were as-
signed a supervised learning task in the form of
a binary classification problem; classifying packets
as “Attack” (reconnaissance activity) or “Normal”
(background traffic). The data-set was split into train-
ing and test sets at a ratio of 70-30%. Table 3 presents
the accuracy ratio per classifier.

The results show that most of the classifiers (all
apart from Naive Bayes) achieve very high accuracy
ratios approximately equal to 99%.

4 ANALYSIS OF
RECONNAISSANCE TRAFFIC

In the present Section, further analysis of the results
of the experiments described in the previous Section
is attempted. The goal of this analysis is to understand
the data upon which port scanning traffic is detectable
by most algorithms with a very high accuracy ratio.
To achieve this we need to find the fields (features) of
the IP packets which were the most statistically signif-
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icant for classifiers to achieve the final result. For each
of the algorithms used, we analyzed the features’ im-
portance and concluded on the most significant fields.
This analysis has been conducted upon the mean de-
crease impurity approach(Li et al., 1984).

Table 4 depicts the importance of all features that
have non negligible effect for at least one of the used
classifiers. However, for the MLP classifier it was not
possible to calculate the most important fields and it
is not included in the Table 4.

The results shown in Table 4 enable us to conclude
on a minimal set of features which allow classifiers to
successfully detect the port scanning activity. Those
fields are:

e ip.ttl: Tools tend to pick a specific ttl value for
the packets they send and this enables classifiers
to identify such packets.

* tep.sreport: Scanning tools tend to pick default
ports as source ports for the packets they send and
thus those are easily detected.

* tcp.window_size: The packets sent have specific
sizes as well, which makes such detectable.

* tep.seq: The TCP sequence number gets default
values which make the packets detectable.

S EVADING DETECTION

In this section, an approach to implement a port scan-
ning approach that can evade detection by a trained
classifier is discussed. In other words, the covert port
scanning tools proposed attempt to conduct recon-
naissance steps while the packets it produces are not
classified as ”Attack” by the classifier.

The main concept for implementing such a tool
is to build upon the important fields identified in the
previous Section. Choosing appropriate values for the
four fields discussed could enable the tool to evade de-
tection. In practice, the packets produced by the scan-
ning tool shall resemble more to the packets of normal
traffic (at least for the significant fields). So the main
task is to optimize the values of those fields towards
lowering the detection probability by all classifiers.

This optimization problem has been approached
through the use of genetic algorithms. The problem to
be solved is to select the optimal values for the packet
fields, identified as the most significant ones, to min-
imize the probability for the reconnaissance activity
to be detected. The large size of the search space
(all possible values for the four fields) prohibits the
exhaustive search approach. Hence, a heuristic opti-
mization method has to be employed(Rothlauf, 2011),
so we selected to use a genetic algorithm.
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Table 2: Packet Fields/ ML Features.

| Packet Field | Description \

ip.id The IP identifier (IP-ID) is a 16 (32) bits field in the IPv4 (v6) header.

ip.flags.df When set, the df (Don’t Fragment) indicates that the packet cannot be frag-
mented for transmission.

ip.ttl The TTL field, Time To Live, of an IP packet represents the maximum number
of IP routers that the packet can go through before being discarded.

ip.len Specifies the length of the IP packet that includes the IP header and the user
data.

ip.dsfield The Differentiated Services field marking packets for Different Quality-Of-

Service (QoS) levels. For example, data belonging to voice and video protocols
have no acceptance for the delay.

tcp.sreport

Identifies the sending port.

tcp.seq TCP is a byte-oriented sequencing protocol. A Sequence Number field is nec-
essary to ensure that missing or misordered packets can be detected and fixed.

tep.len The TCP payload size is calculated by taking the “Total Length” from the IP
header (ip.len) and then substract the ”IP header length” (ip.hdr_len) and the
”TCP header length” (tcp.hdr_len).

tep.hdr_len A 4-bit field containing the length of the IP header in 32-bit increments.

tep.flags.fin Last packet from sender.

tep.flags.syn

Synchronize sequence numbers. Only the first packet sent from each end should
have this flag set. Some other flags and fields change meaning based on this
flag, and some are only valid when it is set, and others when it is clear.

tep.flags.reset

Reset the connection.

tep.flags.push

Asks to push the buffered data to the receiving application.

tep.flags.ack

Indicates that the Acknowledgment field is significant. All packets after the
initial SYN packet sent by the client should have this flag set.

tep.flags.urg

Indicates that the Urgent pointer field is significant.

tep.flags.cwr

Congestion window reduced flag is set by the sending host to indicate that it
received a TCP segment with the ECE flag set and had responded in congestion
control mechanism.

tcp. window_size

The size of the receive window, which specifies the number of window size
units that the sender of this segment is currently willing to receive.

tcp. urgent_pointer

If the URG flag is set, then this 16-bit field is an offset from the sequence
number indicating the last urgent data byte.

tcp. options.mss_val

The Maximum Segment Size (MSS) is a TCP Option and sets the largest seg-
ment that the local host will accept.

Table 3: Accuracy ratio per classifier. Table 4: Features Importance.
ML Classifier ‘ Accuracy Ratio ‘ | Feature [DT [RF [kNN [NB |
Random Forest (RF) 0.9902 ip.dsfield 0.025 | 0.000 | 0.000 | 0.000
Multi-layer Perceptron (MLP) 0.9906 t‘cp. op- | 0.011 | 0.000 | 0.057 | 0.000
k-Nearest Neighbours (kNN) 0.9867 tions.mss_val
Naive Bayes (NB) 0.4288 tep.hdr_len | 0.000 | 0.111 | 0.000 | 0.000

tep.  win- | 0.000 | 0.101 | 0.181 | 0.000

The approach used was to employ the pre-trained dow _size
classifiers and then construct typical scanning pack- tep.sreport | 0.000 | 0.000 | 0.174 | 0.000
ets (for which the values of the four significant fields tcp.seq 0.000 | 0.000 | 0.000 | 0.089

were selected heuristically). Each selection of values
corresponds to a traffic packet, which can be fed to the

trained classifiers, and upon the probability that the depicted in Figure 1.

packet is identified as port scanning, we can conclude

the fitness of the selection of values. The workflow is

The design parameters of the genetic algorithm
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are as follows:

* The search space comprises all possible combi-
nations of values for the four fields. Because the
candidate values for fields, such as port, size, or ttl
are actually large ranges of integer values (most of
which may be invalid or non-applicable) we con-
strained the search space according to the most
used values. By analyzing the traffic data-set, we
picked the most 20 common values for each field,
thus creating a search space with a solutions pop-
ulation p = 20%.

* Each solution is represented by an array of four
elements denoted as f that represents the value
assigned to each field.

¢ The fitness function is defined as:

N .
Fit(f) = Z,-:lplgobz(f)

, where prob;(f) is the probability that a packet
constructed with the values of f is classified as
port scanning activity by classifier i and N is the
total number of classifiers.

* The initial population size is 100.
* The mutation probability is 0.1.

e The next generation is determined by uniform
crossover, with crossover probability equal to 0.5,
an elite ratio of 0.01, and 0.3 of the population
consisting of the fittest members of the previous
generation (aka parents).

* The algorithm terminates when the maximum
number of allowed iterations is used. This number
is calculated as itermax = 50 % p.

In order to select the most appropriate values, a pro-
gram has been developed in Python. The main func-
tions of the program are:

* Data structure with values for the most important
fields such as IP TTL, TCP Source Port, and TCP
Window Size as captured in “Normal” network
traffic.

» Using a Genetic Algorithm that feeds with the
above values each one of the ML classifiers such
as Decision Tree, Random Forest, Multi-layer
Perceptron, Naive Bayes, and k-Nearest Neigh-
bours.

* The Genetic Algorithm returns the values that will
have the highest average score for the above clas-
sifiers.

The implementation of the above mechanism is
shown in Figure 1. By forging a new packet with
the values, which have been calculated by the Genetic
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Perceptron
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Classifier

k-Nearast
L—» MNeighbours
Classifier

Figure 1: Genetic Algorithm.

Algorithm, it is possible to evade detection for Port
Scanning.

The approach proposed is based on the idea of
picking values for fields of the packets (that can be
manipulated) which will make detecting port scan-
ning activity harder. Of course, it is feasible to
train classifiers upon the packets produced by our ap-
proach, but a dynamically configured port scanning
tool can successfully evade detection, as retraining
classifiers would not be an easy measure to take.

6 COVERT NETWORK
SCANNING TOOL

In this section, we present a covert port scanning tool
that was developed in Python through the use of the
Scapy Framework. The tool performs a number of
port scanning techniques and through the use of the
values calculated in Section 5 it is able to evade de-
tection by all classifiers discussed in the previous Sec-
tions. The tool and its source code are available at
GitHub?.

The tool implements TCP SYN Scan, TCP Con-
nect Scan, TCP NULL Scan, TCP FIN Scan, and TCP
XMAS Tree Scan and enables the user to retrieve in-
formation about a network, without being detected.

To validate this claim we went through a number

Zhttps://github.com/ilbe753/Simple-Port-Scanner



of experiments. Specifically, we performed different
port scanning attempts for different types of scanning
(TCP SYN Scan, TCP Connect Scan, TCP NULL
Scan, TCP FIN Scan, and TCP XMAS Tree Scan).
For each of the above port scanning attempts, the net-
work traffic was captured, through the use of wire-
shark>.

We trained a number of classifiers (DT, RF, MLP,
kNN, NB) according to the analysis presented in Sec-
tion 3. To make the experiment more realistic, we
trained those classifiers with multiple combinations of
real-world background traffic and traffic chunks pro-
duced by a number of port scanning tools, such as
nmap®, zmap®, masscan®, and hping’.

The covert scanning tool was used to conduct a
number of reconnaissance attempts with various tech-
niques. The activity of the covert scanning tool was
not detected in any of the scenarios. For all combina-
tions of the (a) classification algorithm, (b) scanning
tool that has been used for training the classifier and
(c) scanning technique used by the covert tool, the ac-
tivity of the latter remained undetected.

7 CONCLUSIONS

In this paper, the detection of reconnaissance activ-
ity through the use of ML classifiers has been stud-
ied. Literature was analyzed and both efficient algo-
rithms and use-full network packet fields to the pro-
cess were identified. The extracted information was
used to train a number of classifiers in order to detect
port scans with high accuracy. This has confirmed
that it is feasible to detect port scanning activity with
this approach.

Consequently, the most significant packet fields
that enable high accuracy ratio metrics for most of
the algorithms were identified a genetic algorithm ap-
proach was used to heuristically decide the optimal
values for such fields that would enable port scan-
ning activity while remaining undetected by classi-
fiers. Based on those findings, a covert port scanning
tool was developed and made publicly available for
the network security research community. The tool
was tested under various circumstances and it has al-
ways evaded detection.

As future work plans, we foresee that we can
add dynamic updates of the evasion capabilities
of the proposed tool, according to novel scanning

3https://www.wireshark.org/
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Shttps://github.com/zmap/zmap
Shttps://github.com/robertdavidgraham/masscan
7https://www.kali.org/tools/hping3/
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tools/algorithms. Re-defining the significant fields
and the proper values for those may be done centrally
and then updating the configuration parameters of all
instances of the covert scanning tool through an over-
the-air update.
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