
A Review of AutoML Software Tools for Time Series Forecasting and
Anomaly Detection

Christian O’Leary1, Farshad Ghassemi Toosi1 and Conor Lynch2

1Department of Computer Science, Munster Technological University, Cork, Ireland
2Nimbus Research Centre, Munster Technological University, Cork, Ireland

Keywords: Machine Learning, Deep Learning, AutoML, Software, Time Series, Forecasting, Anomaly Detection.

Abstract: Time series exist across a plethora of domains such as sensors, market prices, network traffic, and health
monitoring. Modelling time series data allows researchers to perform trend analysis, forecasting, anomaly de-
tection, predictive maintenance, and data exploration. Given the theoretical and technical knowledge required
to implement mathematical and machine learning models, numerous software libraries have emerged to fa-
cilitate the programming of these algorithms via automated machine learning (AutoML). Comparatively few
studies compare such technologies in the context of time series analysis and existing tools are often limited
in functionality. This review paper presents an overview of AutoML software for time series data for both
forecasting and anomaly detection. The analysis considers 28 metrics that indicate functionality coverage,
code maturity, and community support across 22 AutoML libraries. These aspects of software development
are crucial for the uptake and utilisation of AutoML tools. This study proposes a means of deriving a func-
tionality score for correlation analysis between variables such as lines of code, package downloads from PyPi,
and GitHub issue completion rate. This review paper also presents an overview of AutoML library features
which can facilitate informed decisions on which tools are most appropriate in various instances.

1 INTRODUCTION

The growing ubiquity of time series data and effective
modelling approaches has co-evolved with the prolif-
eration of sensing technologies (Lu and Xu, 2019),
digitisation (Qiu et al., 2016), the development of
programming tools (Abadi et al., 2015), and ongo-
ing academic research. Time series modelling has use
cases in many industries including agriculture (Zhang
et al., 2020), computing (Wu et al., 2018) and en-
ergy (Kavanagh et al., 2017). Applied instances in-
clude point forecasting (Lynch et al., 2021), density
forecasting (Bergmann et al., 2018), anomaly detec-
tion (Hundman et al., 2018), time series classification
(Ismail Fawaz et al., 2019) and exploratory analysis
(Gürtler and Paulsen, 2018). Methodologies range
from traditional statistical models (Bergmann et al.,
2018) to more modern approaches such as machine
learning (ML). ML is a subtopic within Artificial In-
telligence (AI) and is a highly complex field where
models applied to time series data include Random
Forests (Lago et al., 2018), K-Nearest Neighbours
(KNN) (O’Leary et al., 2021), Support Vector Ma-
chine (SVM) ensembles (Lynch et al., 2019), shal-

low neural networks (NNs) (Zhang et al., 2020) and
deeper NNs which are referred to by the term deep
learning (DL) (O’Leary et al., 2021).

Ordinarily, the process of implementing a time se-
ries model requires theoretical knowledge of the al-
gorithm itself, as well as proficiency in programming
and debugging. These prerequisites often present a
barrier to the field of time series analysis, restrict-
ing the range of implementable experiments with-
out an in-depth ability of the extensive range of
tasks required. Empirical ML analysis often includes
data gathering, data exploration, data cleansing, data
augmentation, feature engineering, feature selection,
scaling, model hyperparameter search, model train-
ing, post-processing, (nested) cross-validation, model
selection, model testing, statistical significance test-
ing, and reporting (He et al., 2021). To the author’s
knowledge, existing libraries reviewed in this paper
either exclude or only partially facilitate the major-
ity of these steps. Therefore, considerable manual ef-
fort is required to implement a solution that incorpo-
rates ML or statistical modelling. For instance, while
scikit-learn (Pedregosa et al., 2011) contains various
model implementations, end-users are required to re-

O’Leary, C., Toosi, F. and Lynch, C.
A Review of AutoML Software Tools for Time Series Forecasting and Anomaly Detection.
DOI: 10.5220/0011683000003393
In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 3, pages 421-433
ISBN: 978-989-758-623-1; ISSN: 2184-433X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

421



view, implement and test these functions in their re-
spective code.

In response to the innate difficulty of program-
ming for ML (Thessen, 2016), a wide range of auto-
mated ML (AutoML) libraries and frameworks have
emerged (see Section 3). The research presented here
evaluates the extent to which these tools fulfil the
needs of ML researchers with a particular focus on
time series forecasting and anomaly detection. The
analysis compares 22 Python-based libraries regard-
ing the functionalities these tools offer along with
the level of engagement from their developers and
the programming community at large. This compari-
son aims to provide a benchmark of quantitative and
qualitative metrics for selecting appropriate libraries
based on domain-agnostic information prior to exper-
imentation.

Section 2 provides an overview of time series fore-
casting and anomaly detection using traditional, ML
and DL approaches. Section 3 evaluates existing
Python-based AutoML libraries comparing the suit-
ability of each tool for forecasting and anomaly detec-
tion. The AutoML tools are discussed and contrasted
in Section 4 before conclusions are outlined in Sec-
tion 5.

2 BACKGROUND

A survey of ML for big data processing (Qiu et al.,
2016) revealed that ML, as a field of research, has
exploded in popularity for domains such as medicine,
Internet of Things (IoT) systems, social media, cyber-
security, computer vision, and recommender systems.
A popular application of ML modelling within these
domains is time series analysis, which includes fore-
casting (Borovykh et al., 2018) and anomaly detection
(Wu et al., 2018).

2.1 Time Series Data

Time series vary significantly in attributes depend-
ing on their source, even within the same organisa-
tion (Chatterjee et al., 2022). Time series datasets can
be decomposed into their respective base components
which often envelop trend, seasonality, cyclicity, and
irreducible noise. Trend refers to a long-term increase
or decrease in the mean series value. A time series
with a stable, unchanging trend is referred to as sta-
tionary. Time series seasonality denotes the regular
frequencies in the data. Time series may have mul-
tiple frequencies, e.g. temperatures follow both daily
and annual patterns. Cyclicity refers to cycles that oc-
cur irregularly; the period between cycles may vary.

Finally, irreducible noise or white noise refers to nat-
urally occurring minor fluctuations in points of data.
A time series may also contain anomalies. There is no
universal consensus for the definition of an anomaly,
possibly because the distribution of anomalies is typi-
cally difficult to determine given their sparsity (Goix,
2016). Anomalies are not guaranteed to be evenly dis-
tributed and may occur consecutively in bursts (Chat-
terjee et al., 2022).

2.2 Modelling Time Series Data

Exploratory analysis can be conducted on time se-
ries data using statistical methods and visual examina-
tion via plots such as autocorrelation function (ACF)
and partial autocorrelation function (PACF). Inher-
ently, visual scrutiny of these plots introduces sub-
jective error (O’Leary, 2020). Using these plots, a
feature set can be selected as a continuous window
of values (Lynch et al., 2019) or a smaller cohort of
highly correlated features (O’Leary, 2020). This pro-
cess can improve model accuracy and assist in pre-
venting overfitting (He et al., 2021). A feature set can
be augmented by the inclusion of engineered features
such as mapping features to Sine or Cosine waves
(Ugurlu et al., 2018) or by using Fourier Transforms
(Ghaderi and Kabiri, 2012). Feature sets can be opti-
mised further using dimensionality reduction methods
such as Principal Component Analysis (PCA) (Qiu
et al., 2016). While time series data is commonly as-
sociated with numeric data sources such as sensors
(Ahmad et al., 2017), prices (Ugurlu et al., 2018) and
traffic speeds (Kim et al., 2018), it is also possible to
transform other data formats (e.g. text) into time se-
ries data using various transformations (Zhang et al.,
2019).

Numerous studies have compared implementa-
tions for ML, algebraic and statistical models with
each family of algorithms proving to be advantageous
under different conditions (Javeri et al., 2021). Curve
fitting and statistical models are computationally in-
expensive and can yield explainable results (Thessen,
2016). In contrast, ML models are difficult to inter-
pret for structural reasons, resulting in explainable
AI being an active field of research (Amarasinghe
et al., 2018). They also suffer from increased com-
putational complexity and slow fitting times (San-
turkar et al., 2019), necessitating optimisation strate-
gies to limit the number of model instances trained
(He et al., 2021). As none of the modelling ap-
proaches achieved supremacy across all problems in
forecasting and anomaly detection, both ML and non-
ML models are examined in this review paper.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

422



2.3 Mathematical Models

In a review of algebraic, semiparametric, statistical
and conventional ML models applied to milk yield
forecasts, Zhang et al. (2018) acknowledged the dif-
ficulty in comparing results across different use cases
where datasets and metrics differ. Cubic splines have
been found to be effective forecasting models, al-
though they are highly sensitive to outliers (Zhang
et al., 2018). For higher dimensional data, Multiple
Linear Regression (MLR) models can be effective as
forecasting models (Kaytez et al., 2015). Statistical
models can be fitted to time series data using princi-
ples of ACF/PACF analysis, autoregression, moving
averages, and smoothing or a combination thereof.
Other mathematical models include Autoregressive
(AR) (Lago et al., 2018), Dynamic Regression (DR)
(Lago et al., 2018), Holt-Winters (Kavanagh et al.,
2017) and hybrid models of the aforementioned.

Lago et al. (2018) compared 27 statistical and
ML models for electricity price forecasting observing
“a clear division” between the two families of algo-
rithms. The ML models achieved statistically signif-
icantly better accuracies than their counterparts, but
other studies (Kavanagh et al., 2017) have demon-
strated cases where statistical models can outper-
form ML models. The time taken to fit ML models
can be considerable (O’Leary and Lynch, 2022) and
they are less interpretable than statistical approaches
(Thessen, 2016).

Time series models can be applied to anomaly de-
tection by measuring the residuals of predictions ver-
sus newly observed data (Smith, 2017). Where the
residual exceeds a specified threshold, an anomaly is
assumed. Statistical error thresholds for anomaly de-
tection can be static (LinkedIn, 2022) or dynamically
calculated (Choudhary et al., 2017). Anomaly detec-
tion scores can also be calculated via PCA (Zhang
et al., 2019) or Robust PCA (RobustPCA or RPCA)
(Choudhary et al., 2017). To benchmark model run-
times for anomaly detection, Choudary et al. (2017)
implemented a series of statistical, ML, and time
series-based mathematical models, finding that mod-
els using thresholds calculated from streaming per-
centiles, mean, median, median absolute deviation or
autoregressive models may be preferable to ML under
extreme time constraints.

2.4 Machine Learning Models

ML is a data-driven approach where models attempt
to iteratively self-optimise from observed data. Time
series forecasting is supervised regression as past ob-
servations are used to train the model. Anomaly

detection is supervised classification if labels are
available and unsupervised otherwise. In practice,
anomaly detection modelling must often be unsuper-
vised as anomaly labels are rarely available in pro-
duction (Goix, 2016). Instead of relying on sta-
tistical tests, ML model hyperparameters are opti-
mised using manual specification or algorithms such
as grid search, randomised search, Genetic Algo-
rithms (GAs), etc. (He et al., 2021). ML models are
typically fitted on training data and evaluated on test
data (which simulates out-of-sample data). For ML
modelling, a third partition called a validation set is
often introduced to rank trained model instances that
are using different hyperparameters before the short-
listed model is finally evaluated on the test set.

Ridge, Lasso, Elastic Net, and Bayesian Ridge ex-
pand on traditional MLR models by adding penalty
terms to tune coefficients (Nguyen et al., 2020;
O’Leary et al., 2021). Such models adjust their pa-
rameters using a learning rate α. For ML models, the
value of a learning rate needs to be chosen carefully
(Ioffe and Szegedy, 2015). Overly large learning rates
may cause model parameters may fail to converge,
while small learning rates may slow training unnec-
essarily (Santurkar et al., 2019).

Support Vector Regression (SVR) models have
been used for forecasting as standalone models
(Grimes et al., 2014) and as part of ensembles such
as K-SVM-SVR (Lynch et al., 2019). The K-Nearest
Neighbour (KNN) model has been successfully used
for forecasting electricity prices (O’Leary et al., 2021)
and milk volumes (O’Leary and Lynch, 2022). Deci-
sion Trees are used for forecasting both as standalone
models (O’Leary and Lynch, 2022), and in ensem-
bles such as Random Forests (Lago et al., 2018) or
Extremely Randomised Trees (Extra Trees) (O’Leary
et al., 2021).

Dense neural networks (DNNs) are neuroscientifi-
cally inspired models that consist of layers of neurons
(Singh and Mohanty, 2015). The inputs to each neu-
ron are multiplied by weights that the model learns
with a learning rate using algorithms such as back-
propagation. NNs have grown increasingly ‘deep’ in
terms of layers (He et al., 2021), although smaller
networks remain effective for time series forecasting
(Nguyen et al., 2020). The increased network depth
of DNNs allows them to learn complex and non-linear
relationships at the cost of longer training times (Ioffe
and Szegedy, 2015) and less explainable outputs (Yu
et al., 2019).

A limitation of DNNs is that they do not retain any
internal state based on memories of recently observed
data beyond their learned parameters. Recurrent Neu-
ral Networks (RNNs) solve this problem using a neu-

A Review of AutoML Software Tools for Time Series Forecasting and Anomaly Detection

423



ron’s output as an additional input connection. This
forms a feedback loop that makes RNNs and their
relatives particularly adept in dealing with sequen-
tial data, e.g. time series (Ugurlu et al., 2018) and
natural languages (Lynch et al., 2020). Other forms
of RNN include Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and Gated Re-
current Unit (GRU) (Cho et al., 2014).

Conventional Neural Networks (CNNs) consist of
convolutional layers, pooling layers and finally one
or more densely connected layers. CNNs are most
commonly used for higher dimensional data which is
often required for image analysis (Lynch et al., 2020),
but they can be adapted to time series forecasting.
Firstly, the time series data can be formatted into a
2D matrix and passed as an image (Kim et al., 2018).
Alternatively, CNNs can use 1-dimensional filters for
feature identification (O’Leary, 2020).

Autoencoders (AE) are a type of neural network
that can be used in both supervised and unsupervised
modelling and are commonly used in hybrid model ar-
chitectures (Wang et al., 2017). AE models include a
bottleneck that forces the network to learn a compact
representation of data. AE models can be used for
unsupervised anomaly detection by leveraging a re-
construction loss metric as a proxy for anomaly score
(Zhao et al., 2022).

In the field of anomaly detection, it is widely ac-
knowledged that labelled data are generally unavail-
able, necessitating the use of unsupervised or semi-
supervised approaches (Ahmad et al., 2017). Alter-
natively, some researchers have used generative mod-
els to create synthetic labels for training models, al-
though these models are less effective at detecting real
anomalies (Chatterjee et al., 2022). Some proxy met-
rics for estimating the ranking of anomaly detection
models without labels via Mass-Volume and Excess-
Mass curves have been proposed, but follow-up re-
search has been sparse and inconclusive (Warzynski
et al., 2021).

Isolation Forests are unsupervised tree-based
models that work by partitioning the dataset under
the assumption that anomalies are uncommon and are
measurably different from normal data. Time series
bitmaps are effective for unsupervised anomaly de-
tection and visualisation. Time series bitmaps pro-
cess sliding windows of data of a fixed length which is
set via hyperparameter. One-Class SVM (OCSVM) is
an unsupervised variant of the traditional SVM model
that assumes one normal and one anomalous class.

It should be noted that standard regression models
such as NNs, KNR, SVR, etc. can also be adapted
for unsupervised anomaly detection if combined with
a threshold algorithm. Where a time series fore-

casting model’s predictions experience an error be-
yond a threshold, an anomaly can be assumed. Such
thresholds can be static, based on the modelling error
(Hundman et al., 2018), or learned as hyperparame-
ters (Chatterjee et al., 2022).

Choudhary et al. (2017) found ML models to be
superior in terms of accuracy to statistical models, al-
beit at the cost of greater runtimes for both anomaly
detection and forecasting. The disparity in accuracy is
attributed to a lack of robustness in statistical models
to concept drift.

2.5 Modelling in Practice

The Python programming language (Python, 2022)
has a rich ecosystem of open-source libraries and
frameworks available on public Git repository sites
such as GitHub (Github, 2022) and the Python Pack-
age Index (PyPI, 2022). A 2021 Stack Overflow (SO)
survey (StackOverflow, 2021) of over 80,000 pro-
grammers indicated Python as the prevailing ML pro-
gramming language. The survey reported that 48.24%
of programmers use Python while other programming
languages used for scientific computing such as R and
MATLAB were used by 5.07% and 4.66% of users
respectively. Python libraries used for ML can be
high-performance as they are built on C libraries and
can run models on Graphics Processing Units (GPU)
using Compute Unified Device Architecture (CUDA)
(NVIDIA, 2017).

Scikit-learn is a popular ML library containing
many model implementations. The scikit-learn main-
tainers do not recommend scikit-learn for training
NNs at scale as the library is not CUDA compat-
ible. TensorFlow is a framework for constructing
NNs via lower-level tensor manipulation (Abadi et al.,
2015). TensorFlow is compatible with CUDA en-
abling NNs to be trained using NVIDIA GPUs which
significantly reduces training times. TensorFlow also
incorporates the Keras library (Francois, 2022). Other
NN frameworks include PyTorch (Paszke et al., 2017)
and MXNet (Chen et al., 2015). Anomaly detection
libraries include PyOD (Zhao et al., 2022), Lumi-
nol (LinkedIn, 2022) and Prophet (Facebook, 2022).
The statsmodels library contains functionality for sta-
tistical modelling including ARIMA, SARIMA, etc.
(Seabold and Perktold, 2010).

3 AutoML LIBRARIES AND
FRAMEWORKS

AutoML can incorporate many phases of a typical ML
pipeline including data cleaning, data augmentation,

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

424



feature selection, model training, HO and AO (Bahri
et al., 2022). AutoML systems tend to be highly
configurable, although increased configuration can
be overwhelming for some practitioners (Thessen,
2016).

AutoML may use data augmentation which in-
volves generating synthetic data to enlarge a dataset.
Data augmentation is typically used for image data
(He et al., 2021) but has been successfully applied
to time series data by Javeri et al. (2021). Javeri et
al. effectively doubled the size of a COVID dataset
in their AutoML pipeline by transitioning from daily
to half-day forecasts; half-day values were imputed
using a Seasonal Auto-Regressive Integrated Moving
Average (SARIMA) model. This improved the over-
all accuracy of their model and has a regularisation
effect.

AutoML pipelines use a variety of model opti-
misation methods that can be categorised into archi-
tecture optimisation (AO) and (HO). AO is specific
to NN models and is synonymous with Neural Ar-
chitecture Search (NAS). It refers to the automatic
optimisation of a NN’s architecture which can con-
sist of many low-level operations, e.g., convolution,
pooling and concatenation (He et al., 2021). A wide
variety of NAS methods have emerged including re-
inforcement learning, gradient descent, and evolu-
tionary algorithm approaches. It should be noted
that NAS is still an open problem as there are cases
where sophisticated AO algorithms may not outper-
form randomised searches (He et al., 2021). There are
many advanced HO methods including contracting
grid searches (Hesterman et al., 2010), randomised
searches (Bergstra and Bengio, 2018) and Bayesian
approaches. Hyperparameter searches are inherently
limited by their specified search spaces (Bahri et al.,
2022). HO and AO can occur jointly or separately
via a two-stage process (He et al., 2021). In the two-
stage approach, NAS is conducted using a fixed set
of hyperparameters. Having achieved a local opti-
mum, hyperparameter tuning is then applied to the
model (He et al., 2021). The majority of research on
NAS has, however, traditionally focused on non-time
series-related problems such as image classification
(He et al., 2021). As a result, some researchers noted
that conventional NAS algorithms are not appropriate
for anomaly detection AutoML workflows (Li et al.,
2020a).

Given one dataset in isolation, it is computation-
ally costly to train and test many models, but the avail-
ability of multiple datasets allows for the use of meta-
learning (Feurer et al., 2021). Meta-learning involves
recording the performances of models across various
datasets to learn to predict (via a meta-learner model)

what models are suitable for an unseen dataset (Bahri
et al., 2022). By predicting what model and hyperpa-
rameters should be employed, costly search space ex-
ploration can be partially avoided (Bahri et al., 2022).
For time series data, meta-features may include statis-
tics such as the number of instances, autocorrelation,
seasonality, or trend (Chatterjee et al., 2022). The
meta-learner used for model selection used can vary;
Feurer et al. (Feurer et al., 2021) used a policy se-
lector, while Chatterjee et al. (Chatterjee et al., 2022)
used a Random Forest classifier and one multi-task
NN per algorithm. Multiple studies have espoused
AutoML via meta-learning as a means of rapidly
training models more effectively with respect to time
than manually specified algorithms (Chatterjee et al.,
2022). However, creating a training dataset for meta-
learners is expensive (Feurer et al., 2021) and the
effectiveness of meta-learning is tied to the level of
similarity between encountered datasets (Bahri et al.,
2022). For anomaly detection, it is possible to em-
ploy unsupervised models, but existing meta-learner
models are still based on supervised algorithms (Bahri
et al., 2022).

In practice, AutoML libraries vary in function-
ality, scope, and community engagement as pre-
sented in Tables 1 and 2. The 22 AutoML libraries
selected include some of the most popular open-
source Python-based AutoML libraries. AdaNet is
a TensorFlow-based AutoML framework for learn-
ing NN-based ensembles (Cortes et al., 2017). Au-
toGluon is a library for deep learning and ensem-
bles for text, image, and tabular data (Erickson et al.,
2020). AutoKeras (or Auto-Keras) is a library that
automates the optimisation of a selection of Keras
models (Jin et al., 2019). Auto-PyTorch jointly per-
forms both hyperparameter and architecture optimisa-
tion of DL models (Zimmer et al., 2021). The auto-
sklearn library is an AutoML library built on scikit-
learn using meta-learning (Feurer et al., 2021). Au-
toTS is a library for developing statistical, ML and
DL forecasting models at scale (Catlin, 2022). ETNA
is a time series AutoML framework with a wide va-
riety of forecasting functions and some for anomaly
detection (Tinkoff.AI, 2022). EvalML is a general
AutoML framework with statistical and ML models
with some time series functionality (Alteryx, 2022).
FEDOT automates ML pipeline development using
evolutionary algorithms (Nikitin et al., 2022). The
Fast and Lightweight AutoML Library (FLAML) is
a lightweight AutoML library with HO (Wang et al.,
2021). H2O is an open-source AutoML framework
for distributed learning (H2O, 2022). Hyperopt-
sklearn is a Python library that combines the func-
tionality of Hyperopt and scikit-learn for automatic

A Review of AutoML Software Tools for Time Series Forecasting and Anomaly Detection

425



model optimisation (Komer et al., 2019). Kats (Kits
to analyse time series) is a library specifically for
time series analysis including forecasting (Facebook,
2022), anomaly detection, (Meta, 2022) and meta-
learning (Chatterjee et al., 2022). LightAutoML is a
general AutoML library for supervised classification
and regression (Vakhrushev et al., 2022). Ludwig is
a general-purpose toolbox for ML modelling on tabu-
lar data for problems such as classification, forecast-
ing, natural language processing, etc. (Molino et al.,
2019). Active Anomaly Detection with Meta-Policy
(Meta-AAD) uses a meta-policy with reinforcement
learning to optimise anomaly detection models (Zha
et al., 2020). Outlier Detection via Meta-Learning
(MetaOD) is a Python tool using meta-learning for
outlier detection (Zhao et al., 2021). MLBox is an
AutoML Python library with both optimisation and
preprocessing features (De Romblay, 2022). The ml-
jar library is an AutoML Python package for tabular
data with options for (paid) remote learning (Plonska
and Płoński, 2021). PyCaret is a low-code ML li-
brary for generic ML modelling including some func-
tionality for time series modelling and anomaly de-
tection (Ali, 2020). Python system for Outlier De-
tection with Database Support (PyODDS) is a super-
vised outlier detection library with database support
(Li et al., 2020b). Tree-based Pipeline optimisation
Tool (TPOT) is a Python AutoML tool that uses Ge-
netic Algorithms for model optimisation (Olson et al.,
2016).

Statistics from the 19th of August 2022 are pre-
sented for each software tool in Table 1. These fluc-
tuate given the dynamic nature of software develop-
ment. The metrics in Table 1 present an approximate
view of the maturity, popularity, and community en-
gagement behind each project. The lines of code met-
ric counts lines of Python code. The Stars, Forks,
and Commits correspond to their respective values
on GitHub. The last update time corresponds to the
time since the last commit on the main/master branch.
GitHub Issues correspond to user-submitted bug re-
ports, feature requests, questions, and other issues.
The issue completion rate is calculated as the num-
ber of closed issues divided by the total. Most of the
GitHub-related figures are subject to regular change
but provide some quantifiable estimates of both de-
veloper and user engagement. As PyPi is the main
repository for publicly available Python packages, the
number of package downloads from PyPi is also in-
cluded as both a total and from the previous month
from PyPi Stats (Flynn, 2022). SO is a Q&A web-
site with over 21 million recorded questions and mil-
lions of monthly visits, making it one of the most
prominent programming resources available (Stack-

Overflow, 2021). The SO tag count represents the
number of user-submitted questions relating to a par-
ticular software package. It should be assumed that
this count will not include questions where the library
was not tagged.

Table 2 compares the libraries in terms of selected
functionality. Resource limits refer to the capability
of the software to impose constraints via limits on
overall runtime, CPU, RAM, or GPU usage. Most of
the libraries use a parameter specifying the number of
iterations or models, but these do not guarantee that
the simulations will end within a specific timeframe.
Preprocessing includes features such as aggregation,
feature scaling, imputation, etc. Model/output visual-
isation refers to the presence of incorporated classes
or functions to visualise or tabulate results automat-
ically. Data augmentation may include resampling
methods, generative NNs or any method for extend-
ing a dataset with new data. Feature engineering in-
volves the creation of feature sets through extrapo-
lation or collecting historical values to use as a slid-
ing ‘window’. Feature selection involves the shortlist-
ing of features from the prospective feature set based
on metrics such as feature importance scores. The
availability of statistical, ML, and DL models are also
listed with an additional ‘anomaly detection’ column
presented to clarify which of these libraries offer in-
tegrated anomaly detection. HO and AO indicate the
model self-tuning capabilities of the software. The
following time series-specific functionality are also
examined: time-based cross-validation (TCV), time
series formatting features, and multi-output regres-
sion predictions which are required for forecasting
beyond one period. Finally, the presence of built-in
pipeline Serialisation functionality is recorded. Fea-
tures are ignored where virtually all of the libraries
have such capabilities, thus making the comparison
redundant. Feature implementation was determined
by scanning existing library documentation for the
relevant functionalities. Where a feature was not out-
lined in the documentation, the Python source code
was also manually examined for any undocumented
functionality. Where a library has dedicated AutoML
modules, only those modules are considered for ex-
amination. For example, the H2O library has some
feature selection functionalities that may not be sup-
ported by the H2OAutoML class.

4 DISCUSSION

Section 3 describes 22 AutoML libraries using 28
technical and non-technical characteristics. The fea-
sibility of examining these variables via statistical

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

426



Table 1: Statistics on AutoML Tools.

Software Name
Lines of
Code

Repository Activity GitHub Issues PyPi Downloads SO
Tag
Count

Stars Forks Commits Last
Update

Open Closed Total Close
Rate

Last
Month

Total

AdaNet 28,106 3,417 531 440 2 years 63 49 112 0.44 659 158,503 4
AutoGluon 86,748 4,729 621 1,069 6 hours 152 582 734 0.79 118,763 2,335,813 0
AutoKeras 18,513 8,586 1,373 1,322 2 days 94 743 837 0.89 41,271 837,509 60
Auto-PyTorch 63,141 1,740 216 249 29 days 37 193 230 0.84 920 15,578 0
auto-sklearn 62,864 6,440 1,175 2,742 1 hour 108 806 914 0.88 35,344 838,285 15
AutoTS 28,639 560 51 233 2 months 10 40 50 0.80 39,163 923,229 0
ETNA 38,636 562 53 467 2 hours 54 295 349 0.85 5,507 37,426 0
EvalML 92,561 525 71 1,815 7 minutes 253 1,414 1,667 0.85 7,948 169,491 1
FEDOT 50,474 427 48 635 2 hours 90 261 351 0.74 1,160 26,882 0
FLAML 26,202 2,023 296 369 4 days 44 191 235 0.81 29,579 632,880 0
H2O 185,282 5,939 1,924 31,136 23 hours 65 6,161 6,226 0.99 428,906 17,173,047 1,857
Hyperopt-sklearn 11,730 1,362 253 399 3 months 70 53 123 0.43 8,422a 1,167,652 0c

Kats 83,507 3,901 392 553 1 day 34 100 134 0.75 44,990 607,668 4
LightAutoML 35,595 231 12 28 11 days 0 3 3 1 3,372 115,869 0
Ludwig 91,121 8,475 1,002 2,806 15 hours 188 624 812 0.77 2,429 124,023 19
Meta-AAD 1,194 34 10 6 15 months 0 1 1 1 0 0 0
MetaOD 1,685 106 17 38 6 months 3 3 6 0.50 252 7,775 0
MLBox 22,043 1,343 270 1,121 2 years 18 74 92 0.80 6,469 177,362 0
mljar 22,043 2,023 285 1,010 3 days 95 398 493 0.81 8,288 797,714 3
PyCaret 74,142 6,132 1,411 3,997 6 days 271 1,429 1,700 0.84 902,608 6,650,713 124
PyODDS 5,215 199 34 115 2 years 6 0 6 0 155b 14,240 0
TPOT 12,233 8,705 1,498 2,390 21 days 252 605 857 0.71 47,993 1,650,310 9
SO = Stack Overflow. Data accurate as of the 19th of August 2022. a Might not be maintained, b Not updated since first upload, c There are, however,
118 matches for “hyperopt” some of which have clear references to the package.

analysis was evaluated by examining the variables
with regard to the linearity of relationships, outliers,
and monotonicity. The relationships between each
of the 12 variables in Table 1 were determined to be
non-linear and some variables were not normally dis-
tributed or had outliers. Thus, Spearman rank correla-
tion was selected to measure the monotonicity of the
relationship between variables. To facilitate the incor-
poration of the 16 variables in Table 2, feature cate-
gorisations were converted into an ordinal encoding:
0 indicates a feature is not implemented, 0.5 indicates
some implementation with limitations and 1 indicates
a full implementation for general usage in an AutoML
pipeline. These functionality scores are subjective
and are used for comparative purposes only. For ex-
ample, the auto-sklearn library receives a score of 0.5
for DL as it only supports MLPs via scikit-learn. The
scores for each library or framework were summed
and included in the Spearman rank correlation anal-
ysis which is presented in Table 3 (a p value of 0.05
is assumed for all statistical testing). The Stack Over-
flow (SO) Tag Count was excluded because the data
was sparse as many of the packages do not seem to
have an associated tag on SO.

The analysis presented in Table 3 offers insights
into the relationships between the aforementioned
variables. Lines of code strongly correlate with the

functionality score (0.77, p=3.03e− 05). This sug-
gests that repository size could be useful as a proxy
metric for total functionality coverage, although this
does not necessarily indicate the universal applicabil-
ity of functionality to all users. For example, the H20
library is by far the largest tool with 185,000 lines
of code, but some of the functionality is unrelated to
time series analysis, e.g. image preprocessing. As this
study focuses on time series forecasting and anomaly
detection, H2O’s functionality score is lower than
smaller but more specialised libraries such as ETNA.
The lines of code metric has a moderate correlation
with the number of GitHub commits (0.58, p=0.005)
which implies a large degree of variability in commit
size. There is a moderate correlation between func-
tionality score and the number of closed GitHub is-
sues (0.54, p=0.0091) and the total number of GitHub
issues (0.52, p=0.0122). While many closed issues
may be an indicator of functionality, the correlation
is weaker than with lines of code. A possible rea-
son is that not all closed issues result in code fixes or
new features. Many GitHub issues relate to user ques-
tions, documentation changes or are simply closed by
maintainers. The 0.99 correlation (p=6.55e−17) be-
tween total issues and closed issues may indicate re-
dundancy between the two variables. Similar redun-
dancy may exist between the PyPi download metrics;

A Review of AutoML Software Tools for Time Series Forecasting and Anomaly Detection

427



Table 2: AutoML Library/Framework Functionality.

Software Name Resource
Limits

Pre-
processing

Serialisation MOV Data
Augmentation

Feature
Engineering

Feature
Selection

Statistical
Models

AdaNet No No Yes Yes2 No No No No
AutoGluon Time, presets Yes Yes Yes Yes Yes Yes No
AutoKeras No1 Yes SO No Images Only Yes No No
Auto-PyTorch Time, memory Yes Yes Yes Resampling Yes Not for TS Not for

forecasting
auto-sklearn Time, memory,

CPU
Yes SO No Resampling Yes Yes No

AutoTS No Yes Yes Yes No Yes No Yes
ETNA No Yes No Yes Resampling Yes Yes Yes
EvalML Time Yes Yes Yes No Yes Yes Yes
FEDOT Time Yes Yes Yes No Yes No Yes
FLAML Time Yes SO No Not for TS No No Yes
H2O Time, memory Yes Yes Yes Not via API3 Yes No Limited6

Hyperopt-sklearn Time Yes No No No Yes No No
Kats No Yes Yes Yes Resampling4 Yes Yes Yes
LightAutoML Time Yes SO Yes No Yes Yes No
Ludwig Time Yes Yes Yes No Not for TS No No
Meta-AAD No Yes Yes No No Yes N/A5 No
MetaOD No Yes Yes No No Yes N/A5 Yes
MLBox No Yes No No No Yes Yes No
mljar Time, modes Yes Yes Yes No Yes Yes No
PyCaret Time Yes Yes Yes No Yes Not for TS Yes
PyODDS No Yes No Yes No No No A.D. only
TPOT Time Yes SO No No Yes Yes No
AD = Anomaly Detection, MOV = Model Output Visualization, SO = returns Serialisable Object, TS = Time series. 1 Uses trials, 2 TensorBoard,
3 Possible via GUI, 4 Some resampling by statistical models and for the meta-learner, 5 uses meta-features, 6 Not in AutoML module, available otherwise

Software Name ML
Models

DL
Models

AD HO Architecture
Optimisation

TCV Formats
Data for TS
prediction

Multi-
output
prediction

AdaNet Yes7 Yes No No Yes No No Yes
AutoGluon Yes Yes No Yes Yes No Yes Yes
AutoKeras No Yes No Yes Yes No Yes Yes
Auto-PyTorch No forecasting Yes No Yes Yes No Yes Yes
auto-sklearn Yes MLP* No Yes MLP only No No Yes
AutoTS Yes Yes No Yes No Yes Yes Yes
ETNA Yes Yes Outliers only Yes No Yes Yes Yes
EvalML Yes No No Yes No Yes Yes Yes
FEDOT Yes Yes No Yes No Yes Yes Yes
FLAML Yes Yes No Yes No No No Yes
H2O Yes Yes Supervised Yes No No Yes Yes
Hyperopt-sklearn Yes MLP* No Yes MLP only No Yes No
Kats Forecasting

only
Forecasting
only

Yes Yes Limited No Yes Yes

LightAutoML Yes No No Yes No Yes Yes No
Ludwig No Yes Binary Supervised Yes Yes No Yes Yes
Meta-AAD No Yes Semi-supervised No No No No No
MetaOD Yes No Semi-supervised Yes No No No No
MLBox Yes Encoders

only
No Yes No No No No

mljar Yes MLP* No Yes MLP only Custom
available

No No

PyCaret Yes MLP* Yes Yes MLP only Yes Yes Yes
PyODDS AD only AD only Supervised Yes Yes No Yes No
TPOT Yes Yes8 No Yes No No No No9

AD = Anomaly Detection, HO = Hyperparameter Optimisation, MLP = scikit-learn’s MLP class, TCV = Time-based Cross-Validation,
TS = Time series. 7 Linear Estimator, 8 They recommend custom validation, 9 In progress (https://github.com/EpistasisLab/tpot/pull/1001)

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

428



the monthly and total download figures have a corre-
lation of 0.93 (p=0.0007).

The GitHub issue close rate was included as a po-
tential proxy metric for developer engagement, but
it did not statistically significantly correlate with the
other metrics in Table 3. One potential reason for the
lack of correlation is that some of the smaller libraries
have GitHub issue completion rates with high vari-
ability due to having few issues. The other GitHub-
related metrics of stars, forks, commits, open issues,
and closed issues all correlate strongly with each
other. There is a statistically significant moderate cor-
relation between PyPi downloads from the last month
and the functionality score (0.47, p=0.0273). The rel-
ative weakness of the correlation may be caused by
the discrepancy between the time series-based func-
tionalities evaluated in this review versus the needs
of the broader research community, e.g. natural lan-
guage processing, and image classification. The start-
ing year of a project on PyPi was originally consid-
ered as a metric but was excluded due to noisy data;
some packages were renamed or deprecated.

The H2O library has the largest codebase with ap-
proximately twice as many lines of code as the sec-
ond largest tool, i.e. EvalML. H2O also has the most
commits (>31,000), the largest GitHub issue comple-
tion rate (>98%), and the greatest number of total
downloads from PyPi (>17 million) although PyCaret
has the most downloads from the previous month
(>900,000).

Table 2 compares the 22 libraries in terms of func-
tionality. While this study weighs features equally,
users may value features differently, which would re-
sult in varying functionality scores. For example,
some may prefer statistical to DL models for time-
sensitive applications, whereas other users may only
use ML and DL models if their data experiences con-
cept drift. Under Resource Limits, it can be observed
that libraries offer varying constraints on model ex-
ploration via input parameters, e.g. not all libraries
support time limits but may instead rely on spec-
ifying the number of iterations which is less pre-
cise. H2O, auto-sklearn, and Auto-PyTorch also of-
fer memory limits which may prove beneficial for
hardware-constrained environments such as micro-
controllers. All of the libraries except for AdaNet pro-
vide some level of pre-processing. Larger libraries are
not necessarily more popular amongst users as sug-
gested by the lack of a statistically significant correla-
tion between lines of code and total downloads.

Data augmentation functions for time series are
uncommon except via resampling. While feature se-
lection is not supported by many of the libraries, it
is implicitly irrelevant for those using meta-features

(e.g. Meta-AAD, MetaOD). Some libraries such as
H2O do offer feature selection outside of their Au-
toML functionality. unsupervised anomaly detection
models are atypical although supervised implementa-
tions are more commonly supported (e.g. Ludwig and
PyODDS). Support for fully unsupervised anomaly
detection via metrics such as Excess-Mass is non-
existent. While PyCaret offers unsupervised anomaly
detection models, these require a contamination hy-
perparameter to be manually specified which may not
be possible for unseen data. The meta-learning mod-
ule in Kats can simulate labelled data but this may be
less effective than modelling using real data (Chatter-
jee et al., 2022).

Most of the libraries do not support AO outside of
scikit-learn’s CPU-based MLP classes despite NAS
being a popular research topic (He et al., 2021). Con-
versely, statistical models are less prominent in Au-
toML papers but there are several AutoML libraries
that offer implementations of statistical models in
some capacity (e.g. PyCaret and Kats). Most libraries
do not support time-based cross-validation.

5 CONCLUSIONS

The prevalence of time series data has motivated re-
search of statistical and ML approaches for forecast-
ing and anomaly detection. Time series data is com-
plex to model due to temporal correlations, a lack
of anomaly labels, high dimensionality from lagged
data, and the sheer volume of data being produced.
Statistical, ML and DL approaches have all been
shown to be effective time series models under dif-
ferent experimental conditions (Javeri et al., 2021).
AutoML approaches have benefited from increased
attention from the research community (Xu et al.,
2017), but there are still open problems around effi-
ciency compared to more basic approaches (He et al.,
2021). While AutoML has been applied to time series
forecasting and anomaly detection, most AutoML re-
search appears to have been applied to more popular
research problems such as image and language mod-
elling (He et al., 2021), necessitating a comprehensive
review of how effective existing AutoML tools are for
time series modelling.

The Python programming environment contains
many software libraries that can be used for effec-
tive data preprocessing, feature selection, ML and
DL modelling, etc. As AutoML tools offer varying
degrees of automation and relevancy to time series
modelling, this paper presents a review of 22 such
libraries across 28 metrics. The lines of code met-
ric correlates strongly with a functionality score de-

A Review of AutoML Software Tools for Time Series Forecasting and Anomaly Detection

429



Table 3: Spearman Rank Correlations on AutoML Tool Statistics.

Metric
Lines of
Code

Repository Activity GitHub Issues PyPi Downloads Func.
ScoreStars Forks Commits Open Closed Total Close Rate Last Month Total

Lines of Code - 0.38 0.41 0.58 0.47 0.65 0.61 0.29 0.42 0.32 0.77
Stars 0.38 - 0.96 0.77 0.70 0.72 0.73 0.04 0.69 0.70 0.16
Forks 0.41 0.96 - 0.84 0.70 0.77 0.79 0.05 0.74 0.77 0.17
Commits 0.58 0.77 0.84 - 0.84 0.92 0.91 0.15 0.64 0.64 0.38
Open Issues 0.47 0.70 0.70 0.84 - 0.86 0.89 -0.01 0.54 0.58 0.40
Closed Issues 0.65 0.72 0.77 0.92 0.86 - 0.99 0.36 0.66 0.60 0.54
Total Issues 0.61 0.73 0.79 0.91 0.89 0.99 - 0.25 0.67 0.63 0.52
Close Rate 0.29 0.04 0.05 0.15 -0.01 0.36 0.25 - 0.19 0.08 0.25
Downloads Last Month 0.42 0.69 0.74 0.64 0.54 0.66 0.67 0.19 - 0.93 0.47
Total Downloads 0.32 0.70 0.77 0.64 0.58 0.60 0.63 0.08 0.93 - 0.27
Functionality Score 0.77 0.16 0.17 0.38 0.40 0.54 0.52 0.25 0.47 0.27 -
Functionality scores are derived from Table 2: 0=not implemented, 0.5=partially implemented, 1=fully implemented. Statistically significant (p ≤ 0.05)
results are presented in bold and strong correlations are underlined. Correlations (?): <0.1 = Negligible, 0.1-0.39 = Weak,
0.4-0.69 = Moderate, 0.7-0.89 = Strong, ≥0.9 = Very Strong

rived from a quantitative analysis of features (0.77,
p=3.03e− 05). Some other metrics proved to be less
useful for the correlation-based analysis employed in
this study. For example, the GitHub issue completion
rate did not correlate significantly with any other met-
ric. The repository-related metrics such as the number
of stars, forks, etc. correlated most strongly with each
other which may suggest redundancy. A limitation of
the approach taken in this work is that the method of
scoring functionality is manual and is therefore time-
consuming and open to human error.

AutoML libraries are lacking in terms of fully un-
supervised anomaly detection using metrics such as
Mass-Volume and Excess-Mass curves (Goix, 2016).
Approaches that use unsupervised models rely on
synthetic data or manually specified hyperparameters
indicating the proportion of expected anomalies.

The presented evaluation could be deepened by
the use of automatic code quality scanning tools
such as SonarQube (SonarQube, 2022) or GitHub’s
(Github, 2022) Dependabot for identifying security
issues, bugs, test coverage, portability issues, and cy-
clomatic complexity. The measures chosen in this
study do not directly capture the documentation qual-
ity of each software tool, but clone detection and cov-
erage analysis have been proposed in other studies
(Wingkvist et al., 2010). The number of academic
citations relating to a project may be a useful met-
ric for future works, although this is limited to mea-
suring the activity of publishing researchers and may
exclude many industry-based practitioners. Alterna-
tive metrics for analysis could also include the date of
the first commit on GitHub to indicate project lifespan
or a ’time-to-fix’ metric where start and end dates of
GitHub issues are used to assess maintainer activity.
Another avenue for future work could compare the
aforementioned libraries via empirical analysis across
a range of common time series datasets for forecast-

ing and anomaly detection. ML models can have
long training times and are highly energy-intensive
(Lacoste et al., 2019). Empirical experiments could
therefore be expanded to evaluate the environmental
impact of training ML models via proxy metrics such
as CPU/GPU usage or computation runtimes.

ACKNOWLEDGEMENTS

The authors acknowledge the contribution of Morgain Siede
for guidance on statistical analysis. Thanks are extended to
MTU for their support via the Recurrent Funding Allocation
Model (RFAM) program.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,
Z., Citro, C., and Corrado, G. S. (2015). Tensor-
Flow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems.

Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. (2017). Un-
supervised real-time anomaly detection for streaming
data. Neurocomputing, 262.

Ali, M. (2020). PyCaret.
Alteryx (2022). Evalml.
Amarasinghe, K., Kenney, K., and Manic, M. (2018).

Toward Explainable Deep Neural Network Based
Anomaly Detection. In 11th Intl. Conf. on Human
System Interaction. IEEE.

Bahri, M., Salutari, F., Putina, A., and Sozio, M. (2022).
AutoML: state of the art with a focus on anomaly de-
tection, challenges, and research directions. Intl. Jour-
nal of Data Science and Analytics, 14.

Bergmann, D., Connor, D., and Thuemmel, A. (2018). An
Evaluation Of Point And Density Forecasts For Se-
lected Eu Farm Gate Milk Prices. Intl. Journal of Food
and Agricultural Economics, 6.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

430



Bergstra, J. and Bengio, Y. (2018). Random Search for
Hyper-Parameter Optimization. Journal of Machine
Learning Research, 13.

Borovykh, A., Bohte, S., and Oosterlee, C. W. (2018). Con-
ditional Time Series Forecasting with Convolutional
Neural Networks. arXiv:1703.04691 [stat].

Catlin, C. (2022). AutoTS.
Chatterjee, S., Bopardikar, R., Guerard, M., Thakore, U.,

and Jiang, X. (2022). MOSPAT: AutoML based
Model Selection and Parameter Tuning for Time Se-
ries Anomaly Detection. arXiv:2205.11755.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., and
Xiao, T. (2015). Mxnet.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y.
(2014). Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation.

Choudhary, D., Kejariwal, A., and Orsini, F. (2017). On
the Runtime-Efficacy Trade-off of Anomaly Detection
Techniques for Real-Time Streaming Data.

Cortes, C., Gonzalvo, X., Kuznetsov, V., Mohri, M., and
Yang, S. (2017). AdaNet: Adaptive Structural Learn-
ing of Artificial Neural Networks. In Proc. of the 34th
Intl. Conf. on Machine Learning.

De Romblay, A. (2022). MLBox.
Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy,

P., Li, M., and Smola, A. (2020). AutoGluon-Tabular:
Robust and Accurate AutoML for Structured Data.

Facebook (2022). Prophet.
Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and

Hutter, F. (2021). Auto-Sklearn 2.0.
Flynn, C. (2022). PyPI Stats.
Francois, C. (2022). Keras: the Python deep learning API.
Ghaderi, H. and Kabiri, P. (2012). Fourier transform and

correlation-based feature selection for fault detection
of automobile engines. In The 16th CSI Intl. Sympo-
sium on Artificial Intelligence and Signal Processing.

Github (2022). Github.
Goix, N. (2016). How to Evaluate the Quality

of Unsupervised Anomaly Detection Algorithms?
arXiv:1607.01152.

Grimes, D., Ifrim, G., O’Sullivan, B., and Simonis, H.
(2014). Analyzing the impact of electricity price fore-
casting on energy cost-aware scheduling. Sustainable
Computing: Informatics and Systems, 4.

Gürtler, M. and Paulsen, T. (2018). The effect of wind and
solar power forecasts on day-ahead and intraday elec-
tricity prices in Germany. Energy Economics, 75.

H2O (2022). H2O.ai.
He, X., Zhao, K., and Chu, X. (2021). AutoML: A survey of

the state-of-the-art. Knowledge-Based Systems, 212.
Hesterman, J. Y., Caucci, L., Kupinski, M. A., Barrett,

H. H., and Furenlid, L. R. (2010). Maximum-
Likelihood Estimation With a Contracting-Grid
Search Algorithm. IEEE Trans. on Nuclear Science.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term
Memory. Neural computation, 9.

Hundman, K., Constantinou, V., Laporte, C., Colwell, I.,
and Soderstrom, T. (2018). Detecting Spacecraft
Anomalies Using LSTMs and Nonparametric Dy-
namic Thresholding. Proc. of the 24th ACM SIGKDD
Intl. Conf. on Knowledge Discovery & Data Mining.

Ioffe, S. and Szegedy, C. (2015). Batch Normalization: Ac-
celerating Deep Network Training by Reducing Inter-
nal Covariate Shift. arXiv:1502.03167 [cs].

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L.,
and Muller, P.-A. (2019). Deep learning for time series
classification: a review. Data Mining and Knowledge
Discovery, 33.

Javeri, I. Y., Toutiaee, M., Arpinar, I. B., Miller, J. A., and
Miller, T. W. (2021). Improving Neural Networks
for Time-Series Forecasting using Data Augmentation
and AutoML. In 2021 IEEE Seventh Intl. Conf. on Big
Data Computing Service and Applications.

Jin, H., Song, Q., and Hu, X. (2019). Auto-Keras: An Ef-
ficient Neural Architecture Search System. In 25th
Conf. on Knowledge Discovery & Data Mining. As-
sociation for Computing Machinery.

Kavanagh, K., Barrett, M., and Conlon, M. (2017). Short-
term electricity load forecasting for the integrated sin-
gle electricity market (I-SEM). In 2017 52nd Intl.
Universities Power Engineering Conf.

Kaytez, F., Taplamacioglu, M. C., Cam, E., and Hardalac, F.
(2015). Forecasting electricity consumption: A com-
parison of regression analysis, neural networks and
least squares support vector machines. Intl. Journal
of Electrical Power & Energy Systems, 67.

Kim, Y., Wang, P., Zhu, Y., and Mihaylova, L. (2018). A
Capsule Network for Traffic Speed Prediction in Com-
plex Road Networks. arXiv:1807.10603.

Komer, B., Bergstra, J., and Eliasmith, C. (2019).
Hyperopt-Sklearn. In Automated Machine Learning:
Methods, Systems, Challenges.

Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T.
(2019). Quantifying the Carbon Emissions of Ma-
chine Learning.

Lago, J., De Ridder, F., and De Schutter, B. (2018). Fore-
casting spot electricity prices: Deep learning ap-
proaches and empirical comparison of traditional al-
gorithms. Applied Energy, 221.

Li, Y., Chen, Z., Zha, D., Zhou, K., Jin, H., Chen, H.,
and Hu, X. (2020a). AutoOD: Automated Outlier De-
tection via Curiosity-guided Search and Self-imitation
Learning.

Li, Y., Zha, D., Venugopal, P., Zou, N., and Hu, X. (2020b).
PyODDS: An End-to-end Outlier Detection System
with Automated Machine Learning. In Companion
Proc. of the Web Conf.

LinkedIn (2022). Luminol.
Lu, Y. and Xu, L. D. (2019). Internet of Things (IoT) Cy-

bersecurity Research: A Review of Current Research
Topics. IEEE Internet of Things Journal, 6.

Lynch, C., Kehoe, J., Bain, R., Zhang, F., Flynn, J.,
O’Leary, C., and Smith, G. (2019). Application of a
SVM-based model for day-ahead electricity price pre-
diction for the single electricity market in Ireland. In
39th Intl. Symposium on Forecasting.

A Review of AutoML Software Tools for Time Series Forecasting and Anomaly Detection

431



Lynch, C., O’Leary, C., Smith, G., Bain, R., Kehoe, J.,
Vakaloudis, A., and Linger, R. (2020). A review of
open-source machine learning algorithms for twitter
text sentiment analysis and image classification. In
Intl. Joint Conf. on Neural Networks.

Lynch, C., O’Leary, C., Sundareshan, P. G. K., and Akin,
Y. (2021). Experimental Analysis of GBM to Expand
the Time Horizon of Irish Electricity Price Forecasts.
Energies, 14.

Meta (2022). Kats.
Molino, P., Dudin, Y., and Miryala, S. S. (2019). Ludwig.
Nguyen, Q. T., Fouchereau, R., Frénod, E., Gerard, C., and

Sincholle, V. (2020). Comparison of forecast mod-
els of production of dairy cows combining animal and
diet parameters. Computers and Electronics in Agri-
culture, 170.

Nikitin, N. O., Vychuzhanin, P., Sarafanov, M., Polonskaia,
I. S., Revin, I., Barabanova, I. V., and Maximov, G.
(2022). Automated evolutionary approach for the de-
sign of composite machine learning pipelines. Future
Generation Computer Systems, 127.

NVIDIA (2017). CUDA Zone.
O’Leary, C. (2020). Capsule Networks for Electricity Price

Forecasting. Master’s thesis, MTU.
O’Leary, C. and Lynch, C. (2022). An Evaluation of Ma-

chine Learning Approaches for Milk Volume Predic-
tion in Ireland. In Irish Signals and Systems Conf.

O’Leary, C., Lynch, C., Bain, R., Smith, G., and Grimes,
D. (2021). A Comparison of Deep Learning vs Tra-
ditional Machine Learning for Electricity Price Fore-
casting. In 2021 4th Intl. Conf. on Information and
Computer Technologies. IEEE.

Olson, R. S., Bartley, N., Urbanowicz, R. J., and Moore,
J. H. (2016). Evaluation of a Tree-based Pipeline Op-
timization Tool for Automating Data Science. In Proc.
of the Genetic and Evolutionary Computation Conf.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., and Lin, Z. (2017). Automatic differenti-
ation in PyTorch.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., and Blondel, M. (2011).
Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research.

Plonska, A. and Płoński, P. (2021). MLJAR.
PyPI (2022). The Python Package Index.
Python (2022). Python.org.
Qiu, J., Wu, Q., Ding, G., Xu, Y., and Feng, S. (2016). A

survey of machine learning for big data processing.
EURASIP Journal on Advances in Signal Processing.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2019).
How Does Batch Normalization Help Optimization?
arXiv:1805.11604.

Seabold, S. and Perktold, J. (2010). Statsmodels: Econo-
metric and Statistical Modeling with Python. Proc. of
the 9th Python in Science Conf.

Singh, N. and Mohanty, S. R. (2015). A Review of Price
Forecasting Problem and Techniques in Deregulated
Electricity Markets. Journal of Power and Energy En-
gineering, 03.

Smith, T. (2017). ARIMA estimators for Python.
SonarQube (2022). Code Quality and Code Security.
StackOverflow (2021). Stack Overflow Developer Survey.
Thessen, A. (2016). Adoption of Machine Learning Tech-

niques in Ecology and Earth Science. One Ecosystem.
Tinkoff.AI (2022). Etna.
Ugurlu, U., Oksuz, I., and Tas, O. (2018). Electricity Price

Forecasting Using Recurrent Neural Networks. Ener-
gies, 11.

Vakhrushev, A., Ryzhkov, A., Savchenko, M., Simakov, D.,
Damdinov, R., and Tuzhilin, A. (2022). LightAu-
toML: AutoML Solution for a Large Financial Ser-
vices Ecosystem.

Wang, C., Wu, Q., Weimer, M., and Zhu, E. (2021).
FLAML: A Fast and Lightweight AutoML Library.

Wang, L., Zhang, Z., and Chen, J. (2017). Short-Term Elec-
tricity Price Forecasting With Stacked Denoising Au-
toencoders. IEEE Trans. on Power Systems, 32.

Warzynski, A., Falas, L., and Schauer, P. (2021). Excess-
Mass and Mass-Volume anomaly detection algorithms
applicability in unsupervised intrusion detection sys-
tems. In IEEE 30th Intl. Conf. on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises.

Wingkvist, A., Ericsson, M., Lincke, R., and Löwe, W.
(2010). A Metrics-Based Approach to Technical Doc-
umentation Quality. In 2010 7th Conf. on the Quality
of Information and Communications Technology.

Wu, J., Zeng, W., and Yan, F. (2018). Hierarchical Tem-
poral Memory method for time-series-based anomaly
detection. Neurocomputing, 273.

Xu, D., Wang, Y., Meng, Y., and Zhang, Z. (2017). An
Improved Data Anomaly Detection Method Based on
Isolation Forest. In 2017 10th Intl. Symposium on
Computational Intelligence and Design, volume 2.

Yu, L., Liu, L., Pu, C., Gursoy, M. E., and Truex, S.
(2019). Differentially Private Model Publishing for
Deep Learning. Symposium on Security and Privacy.

Zha, D., Lai, K.-H., Wan, M., and Hu, X. (2020). Meta-
AAD: Active Anomaly Detection with Deep Rein-
forcement Learning.

Zhang, F., Shine, P., Upton, J., Shaloo, L., and Murphy,
M. D. (2018). A Review of Milk Production Forecast-
ing Models: Past & Future Methods. In Dairy farming
operations management, animal welfare and milk pro-
duction.

Zhang, F., Upton, J., Shalloo, L., Shine, P., and Murphy,
M. D. (2020). Effect of introducing weather parame-
ters on the accuracy of milk production forecast mod-
els. Information Processing in Agriculture, 7.

Zhang, X., Xu, Y., Lin, Q., Qiao, B., Zhang, H., Dang, Y.,
and Xie, C. (2019). Robust log-based anomaly detec-
tion on unstable log data. In Joint Meeting on Euro-
pean Software Engineering Conf. and Symposium on
the Foundations of Software Engineering. ACM.

Zhao, Y., Nasrullah, Z., and Li, Z. (2022). PyOD: A Python
Toolbox for Scalable Outlier Detection.

Zhao, Y., Rossi, R. A., and Akoglu, L. (2021). Automating
Outlier Detection via Meta-Learning.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

432



Zimmer, L., Lindauer, M., and Hutter, F. (2021). Auto-
Pytorch: Multi-Fidelity MetaLearning for Efficient
and Robust AutoDL. IEEE Trans. on Pattern Anal-
ysis and Machine Intelligence, 43.

A Review of AutoML Software Tools for Time Series Forecasting and Anomaly Detection

433


