
YOLO: You Only Look 10647 Times

Christian Limberg1 a, Andrew Melnik2, Helge Ritter2 and Helmut Prendinger1

1National Institute of Informatics (NII), Tokyo, Japan
2Bielefeld University, Bielefeld, Germany

Keywords: Object Detection, Explainable AI/ML, YOLO, You Only Look Once.

Abstract: In this work, we explore the You Only Look Once (YOLO) single-stage object detection architecture and com-
pare it to the simultaneous classification of 10647 fixed region proposals. We use two different approaches
to demonstrate that each of YOLO’s grid cells is attentive to a specific sub-region of previous layers. This
finding makes YOLO’s method comparable to local region proposals. Such insight reduces the conceptual gap
between YOLO-like single-stage object detection models, R-CNN-like two-stage region proposal based mod-
els, and ResNet-like image classification models. For this work, we created interactive exploration tools for a
better visual understanding of the YOLO information processing streams: https://limchr.github.io/yolo_visu

1 INTRODUCTION

Much progress in detecting multiple objects in an im-
age using deep neural networks can be attributed to
the introduction of R-CNN (Girshick et al., 2014),
SSD (Liu et al., 2016), and YOLO (Redmon et al.,
2016) architectures. R-CNN and its improved ver-
sions like FasterRCNN (Ren et al., 2016) detect ob-
jects by first producing proposals for regions contain-
ing an object (Melnik et al., 2021), and then in a sec-
ond stage these proposals get passed through a classi-
fier network. YOLO and SSD work without a sep-
arate proposal stage by combining object detection
and classification into one stage. Four YOLO archi-
tecture successors along with other one-stage models
were proposed. They introduce improvements such
as the usage of anchor boxes, separate pathways for
different object sizes, deeper architectures, different
activation functions and a variety of other tricks and
tweaks (Redmon and Farhadi, 2016), (Redmon and
Farhadi, 2018), (Bochkovskiy et al., 2020).

We argue that the performance of these systems
can be understood as performing classification and
regression tasks for a high number of fixed region
proposals with their positions relating to the convolu-
tional grid. To this end, we implement several interac-
tive visualizations, that (i) show the inner processing
of the network and (ii) provide detailed insights how
YOLO achieves both high speed and high accuracy.

In this paper we obtain insights of the inner me-
chanics of YOLO by modifying two distinct visual-

a https://orcid.org/0000-0002-4903-3933

ization approaches that were originally developed for
examining classification CNNs, and are here adapted
and applied for the YOLO object detection model.
The first approach produces a saliency measure mo-
tivated by GradCam (Selvaraju et al., 2017). The sec-
ond approach is motivated by Inceptionism and Deep-
Dream (Mordvintsev et al., 2015) and optimizes the
input pattern that is fed into YOLO for matching a
specific target output response.

Both approaches use gradients for visualizing
characteristics of the network. In GradCam, we feed
an image with a target object into the network and
multiply activation and gradient in a particular inter-
mediate layer. On the other hand, in DeepDream we
are searching for optimal input patterns for minimiz-
ing a certain cost function on the prediction. In other
words, the input image itself is optimized in such a
way that the related output neuron response will get
closer to a desired target value.

The core findings of examining the modified ver-
sions of GradCam and DeepDream are:

• YOLO’s high-confidence grid cells are sparse;

• each of YOLO’s grid cells is attentive to a variable
and localized sub-region of the input image;

• YOLO’s attention is variable and directly related
to the output neuron of interest;

• optimal input samples can be generated that opti-
mize specific target outputs. This can be used for
explaining the trained features responsible for de-
tecting objects of e.g. a specific class, position or
shape;

Limberg, C., Melnik, A., Ritter, H. and Prendinger, H.
YOLO: You Only Look 10647 Times.
DOI: 10.5220/0011677300003417
In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 5: VISAPP, pages
153-160
ISBN: 978-989-758-634-7; ISSN: 2184-4321
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

153

• we can understand YOLO as performing paral-
lelized classification and regression tasks of many
image sub-regions. These regions efficiently
share most of their computation, resulting from a
high amount of overlap in CNNs.

By a simple post-processing step, only a very
sparse selection of YOLO’s output neurons are con-
sidered for the actual prediction, and the result
of most output neurons is simply ignored. For
YOLO.v4, the detection of a picture leads to a total
number of 10647 classification/regression pairs, ob-
tained by summing up the squared grid shapes times
the number of anchor boxes ((132 + 262 + 522) ∗ 3).
This number is dependent on the image dimensions
used for train YOLO.v4 which is 416x416 pixels. It
has to be adapted for other image dimensions, since
the dimensions of the grids would also change, if we
assume the same network architecture.

This article is organized as follows: In Section 2
we explain the YOLO.v4 architecture and discuss its
main principles. In Section 3 we introduce our first
interactive visualizations of YOLO. Then we intro-
duce the adapted GradCam in Section 3.1 and Deep-
Dream approach in Section 3.2. Finally, in Section 4,
we draw our conclusion and point out some analogies
of YOLO’s computational strategy to computational
structures found in biological vision, where a good
trade-off between speed and accuracy is tantamount
as well.

2 YOLO ARCHITECTURE

In our experiments, we used a TensorFlow imple-
mentation1 of YOLO.v4 (Bochkovskiy et al., 2020)
that uses the original weights. Other YOLO imple-
mentations can be found here: YOLO.v1-v32 and
YOLO.v53. While there are newer versions of YOLO
out, YOLO.v4 was an optimal choice based on per-
formance, architecture clarity and code-availability.
However, our experiments should be reproducible for
following YOLO versions.

The network architecture is divided into two parts
(see Fig. 1): First, the image is processed by a back-
bone network for feature extraction and second, the
YOLO head is calculating object bounding boxes.

1https://github.com/hunglc007/tensorflow-yolov4-tflite
2https://pjreddie.com/darknet/yolo/
3https://github.com/ultralytics/yolov5

2.1 Backbone Network

In YOLO.v4, darknet53 is used as a backbone for
feature extraction. The network assumes input rgb-
images of size (416 : 416). It consists of 23 residual
blocks and 77 convolutional layers. Five of the con-
volutional layers downsample the input by applying
strides of 2. The backbone’s output feature map and 2
intermediate outputs (after the fourth and fifth down-
sampling steps) are then passed into the YOLO.v4
head.

2.2 YOLO Head

The YOLO head consists of 31 convolutions with a
stride of 1 and padding for ensuring the same output
size. Also, the three different paths from the backbone
are concatenated in the YOLO head at different points
with upsampling and downsampling operations (see
Fig. 1).

The YOLO.v4 head has 3 different output path-
ways supporting the detection of smaller, medium and
larger sized objects.

The first output from the YOLO head is the small
objects pathway after 2 upsampling operations and
2 concatenations with all paths of the backbone net-
work. After another downsampling and concatena-
tion with skip-connection, the medium objects path-
way is defined and after a last downsampling paired
with a concatenation, the final output of the large ob-
jects pathway is defined.

2.3 Anchor Boxes

Anchor boxes are predefined bounding box patterns
used by YOLO to delineate regions for object candi-
dates. Each of YOLO’s three pathways uses 3 dif-
ferent anchor box patterns (9 in total, see Fig. 1 right
column). Each pathway further provides a grid of dif-
ferent resolutions (52x52x255 for small, 26x26x255
for medium, and 13x13x255 for large sized objects).
Each grid cell is estimating the 3 respective anchor
boxes. Each anchor box has 85 channels (summing
up to 255 channels per grid cell). Five of the 85 chan-
nels (x,y,w,h,c) represent the x- and y-displacement of
the center of the object’s bounding box, the width and
height of the bounding box and a confidence value de-
noting that the specific anchor box is detecting an ob-
ject. p denotes the remaining 80 channels that are rep-
resenting a probability value for each of the 80 classes
for the COCO dataset.

The YOLO architecture can also be trained on a
dataset with an arbitrary number of classes. Then p
will denote the number of classes in the dataset. For

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

154

large pathway
13x13x255

Output Heads Anchor Boxes

Backbone Network
conv layers 0-77

downsampling with strides

YOLO Head
conv layers 78-109

(depicted below)

YOLO Head

 9

8

7

6

5

4

1

2

3

416x416x3

52x52x256

26x26x512

13x13x512

small pathway
52x52x255

255 channels = 85 * 3 anchors
85 = 5 XYWHC neurons + 80 class

probabilities
(the same for medium and large pathways)

medium pathway
26x26x255

5 5 5

5

small pathway
52x52x255

medium pathway
26x26x255

52x52x256

26x26x512

13x13x512

large pathway
13x13x255

5

upsampling

downsampling

channel-wise
concatenation

block of
5 conv layers

12x16

19x36

40x28

36x75

76x55

72x146

142x110

192x243
459x401

Figure 1: A simplified schematic of the YOLO.v4 network architecture.

example (Melnik et al., 2022) trained the YOLO ar-
chitecture to detect faces and classify each detected
face into 10 age classes (0-10 years old, 10-20, 20-30,
30-40, 40-50, 50-60, 60-70, 70-80, 80-90, 90-100).

For training, all bounding boxes from the COCO
dataset were assigned to one (or several) of the YOLO
anchor boxes, based on their Intersection over Union
(IoU) value with the box patterns (see Section 2.4 for
more details). Thus, after training, each of these 9 an-
chor boxes is trained to predict its own type of bound-
ing box shape. Thus, the learnt anchor boxes work
like templates for detecting objects of different sizes
and shapes. There is e.g. an anchor box for detecting
rather big, vertical-shaped objects and there is an an-
chor box for detecting smaller horizontal objects, etc.
The YOLO architecture has 3 anchor boxes per grid
cell, where the resolution of the grid changes with the
3 pathways. A confidence value near 0 indicates that
no object was found located spatially within the grid
cell. In Section 2.4 we further discuss how the train-
ing signal for the different anchor boxes, i.e. their rep-
resenting neurons, is calculated.

2.4 Training

As explained in the previous section, the YOLO
network is trained to map a 416x416x3 input ar-
ray into three head output pathways (grids of shape
52x52x255, 26x26x255, and 13x13x255) to repre-
sent the input at appropriate discretization outputs for
“small”, “medium” and “large” objects, with each
grid cell specifying three 85-dimensional channels for
encoding 3 object bounding boxes. A grid cell can
also opt not to represent its maximum of three boxes4:
each channel that represents a box indicates this by
setting its c-variable to 1, thereby assigning meaning
for the remaining 4+80 x,y,w,h and p neurons. Oth-
erwise, if c=0, these components are not to be inter-
preted as specifying anything.

With this representation convention, any dataset
with images of annotated axis-aligned bounding
boxes that represent the outline of objects can be
straightforwardly translated into target values for

4Note that the maximum of three representable boxes per
channel is not in any deep way related to the number of
three pathways - it is perfectly thinkable to specify YOLO
architectures where these numbers are chosen to differ.

YOLO: You Only Look 10647 Times

155

channel components of the three output pathways.
For each image and each bounding box label, the 3
differently sized grid cells at the spatial center of the
object are identified. Each grid cell can be represented
by 3 different anchor boxes. For training the network,
the anchor boxes getting a positive training signal (de-
scribed below) have to be identified.

The anchor boxes that have an IoU greater than
0.3 compared to the annotated object bounding boxes
from the dataset are chosen to get a positive training
signal. If there is no anchor box fulfilling this crite-
ria, the anchor box with the largest IoU is selected to
get the positive training signal. All positive anchor
boxes are getting non-zero encoded values in the re-
spective positions of the target vector used for train-
ing. They are getting a confidence value of 1, encoded
values for x,y,w,h of the respective object bounding
box, and a soft 1-hot-encoded vector representing the
object class as p. All other fields in the target vector
are set to 0’s for “no object present”.

With the so-defined target values the architecture
can be straightforwardly trained to model the input-
output relationship in the training data. This architec-
ture can be compared to an ensemble of output paths,
where each path is trained to detect the most appro-
priate bounding boxes (Bach et al., 2020).

3 VISUALIZATION

For a deeper inquiry into the nature of the path-
way/grid cells representation that emerges under this
training in YOLO, we implemented an interactive vi-
sualization of all pathways/grid cells for several im-
ages (see Fig. 2).

The number of detectable objects is limited to
10647. However, also in a quite busy image with
many small objects covering the whole space (e.g.
Fig. 2 image 2), this number isn’t reached by far.
Since only a few anchor boxes get a non-zero training
signal, also the number of active (or high confident)
anchor boxes in a prediction step is rather sparse. In
fact, most of the anchor boxes are low-confidence and
just “thrown away”. The few anchor boxes that have a
high confidence are post processed and build the final
detection result.

Fig. 3 depicts the confidence mapping of a predic-
tion. By shifting the input image a few pixels, one
can see how the anchor boxes’ confidences are also
shifting and an anchor box of a neighboring grid cell
“takes over”.

We find that a maximum of 4 grid cells have a
high confidence to detect a certain object, but most
of the time only 1 or 2 grid cells are active. Fig. 2

Figure 2: With our interactive visualization, the full grid
layers of the YOLO.v4 network can be depicted for several
images. The YOLO architecture has 3 different pathways
for recognizing objects of different sizes. The recognition
heads are located in 2d-grids of different resolutions. Each
grid element can detect underlying objects based of 3 pos-
sible anchor box shapes. Each anchor box refines estimates
of the x- and y-position, the width and the height, a confi-
dence value and a probability vector of each class used for
training. The bounding boxes are labeled with the predicted
class, the certainty value and an index of the displayed an-
chor box (we depict only the most confident anchor box out
of the 3 possible). Object proposals with a high certainty
are colored blue. The interactive version of this plot can be
accessed via https://limchr.github.io/yolo_visu/index.html#
fig2.

further shows that all of these active grid cells have
fairly similar bounding boxes, so as a post-processing
step an ordinary non-maximum suppression can be
applied, choosing the bounding box with the highest
confidence.

3.1 Saliency-Based Analysis of YOLO
Layers

In this section we present an analysis of the re-
sponses of YOLO’s output pathways in terms of their
“saliency pattern” of an intermediate convolutional
layer. To compute a suitable saliency measure, we
build on the GradCam approach (Selvaraju et al.,
2017), which calculates gradients based on an out-

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

156

Figure 3: Shifting the actual input image below the grid
cells makes apparent how the confidences of the anchor
boxes (blue means high confidence) are shifted and neigh-
boring grid cells get activated. The interactive version of
this plot can be accessed via https://limchr.github.io/yolo_
visu/index.html#fig3.

put neuron under consideration (e.g., typically a class-
neuron of the one-hot encoded output layer of a clas-
sification CNN).

To produce a scalar that indicates the importance
of a particular feature channel, the original algorithm
first averages the gradients at the (usually last) con-
volutional layer over the spatial dimensions of the
layer’s channels. The scalar is then multiplied with
the actual activation values of neurons. The result
is an importance-weighted saliency map. The spatial
pattern of these values across the convolutional layer
and thus the corresponding input image shows which
input region is accountable for the response on the se-
lected output neuron.

For applying this technique to YOLO, we have to
make several changes. We can not use the very last
convolutional layer because of the different architec-
ture of the network (the last convolutional layers don’t
have that much saliency information because of the
grid outputs). Therefore, we use an intermediate layer
for computing saliency maps.

We found out that we can generate much more
descriptive saliency maps by multiplying the out-
put of the intermediate layer element-wise with the

Figure 4: Our adapted Detection GradCam visualizes the
saliency map of a single output neuron. The columns repre-
sent the saliency maps of the x-shift, y-shift, width, height,
confidence and probability neuron of a selected grid cells of
the large pathway (13x13 grid). As rows, we depict saliency
maps for convolutional layers 75, 103, 104 and 105. Each
plot represents the saliency map averaged over 15 images
(15x13x13) having class “person” under the corresponding
grid cell’s position. The interactive version of this plot can
be accessed via https://limchr.github.io/yolo_visu/index.h
tml#fig4.

plain gradients of this layer (e.g. calculated from
the w-neuron or the h-neuron of one specific grid
cell/anchor box) and average the output channels. But
still, the so-obtained result is pretty noisy. We did an-
other trick for getting a clearer pattern: We query sev-
eral images from the COCO dataset that have an in-
stance of a particular class (e.g. “person”) located at
a particular spatial image position, i.e. where the un-
derlying YOLO grid cell would get a positive train-
ing signal. We pass 15 of these images through our
adapted GradCam algorithm and average the result
images for getting a saliency map for this grid cell. By
repeating the process for all grid cells (omitting bor-
der grid cells since in the dataset are too few samples
having persons located in the border areas), we get a
clearer visualization and we can see how the saliency
of YOLO will shift as we hover over the image (see
Fig. 4).

The figure shows that the saliency is focused be-
low the corresponding grid cell’s position. Further,
it depicts that the saliency map of the w-neuron and
x-neuron has a rather wider activation, while the h-
neuron’s and y-neuron’s saliency map has a rather
vertical activation, i.e. the detection is more sensitive
to these areas. The activation of the p-neuron, which
is representing the class “human” in p) and especially
the c-neuron is more focused to the center.

YOLO: You Only Look 10647 Times

157

3.2 Optimization-Based Analysis of
YOLO Input Patterns

Back in 2014/2015, the Inceptionism and DeepDream
approaches (Mordvintsev et al., 2015) showed that
input images can be optimized for maximizing a
particular intermediate or output neuron of the net-
work. Those input images then show patterns that
the respective neurons are responsive to (Olah et al.,
2017). The optimization process is achieved by
forward-passing an image into the network and back-
propagating the gradients back into the input layer.
The input layer, or rather say, the subsequently chang-
ing input image, is then modified by adding the nor-
malized gradient multiplied by a optimization rate.
The weights of the neural network, however, are
frozen and do not change.

The main difference regarding detection models
is that we usually want to optimize for multiple out-
put neurons, since we can not only estimate the class
of the object but also its shape and position, which
relates to additional regression problems. In other
words, we not only want to maximize the stimulus of
a particular neuron of a one-hot encoded output layer
by gradient ascent, we are using a gradient descent ap-
proach for optimizing several of YOLO’s output neu-
rons to be a specific target value (e.g. the object’s
height should be 200 pixels). Doing this, we can re-
quire the target object to have a specific size and posi-
tion in the image simultaneously with optimizing for
specific features/classes.

In our experiments, we are starting the optimiza-
tion process with a grey image. The gradients are cal-
culated by considering all neurons of a specific grid
cell/anchor box to be a pre-defined target value. We
set the confidence neuron c and the target class’ p-
neuron of this anchor box to be optimized to be 1, all
other neurons in p are optimized to be 0. The x,y,w,h-
neurons can be set to be optimized to a specific target
value.

The target matrices have the shape of the 3 out-
put pathways and gradients are computed as the dif-
ference of target matrix and actual output values.
({13x13,26x26,52x52}x3x85). Other than directly
back-propagating these gradients through the net-
work, they are first multiplied by a multiplier mask
that is weighting each output neuron. If we set the a
multiplier in that mask to a high value, the gradient of
the respective output neuron would be more influen-
tial to the optimization process. A value of 0 in the
multiplier mask would neglect the respective neuron.
We thereby give the c- and p-neuron of the positive
anchor box a weight of 10 each - making them more
influential regarding the update process. In our ex-

Figure 5: Video demonstrating the optimization process of
several classes of the COCO data set by our proposed “Deep
Detection Dream” approach. The video can be accessed via
https://limchr.github.io/yolo_visu/index.html#fig5.

periments we set the target confidences of all other
anchor boxes to 0 with a small multiplier. If we set
the multiplier of all other anchor boxes to 0, i.e. ig-
noring them for calculating the gradient, the process
would converge faster to the target class but may also
include other classes at random positions as well. As
loss function we use a weighted sum of the L1-loss
loss and the total variation score for reducing noise.

In classification networks for reducing noise often
shift and/or rotation operations are applied to the in-
put image (Olah et al., 2017). However, we found out
that in detection networks this will affect the detec-
tion position so that the optimization process is not
converging well. Using the described method “Deep
Detection Dream” we created optimized input images
for several classes of the COCO data set used to train
YOLO. In Fig. 5 several of these optimization pro-
cesses are visualized for the center grid cell of the
large object pathway. The object’s target width and
height are 200 pixels each, this is 41% of the image
width/height.

Next, the capabilities to generate objects at a cer-
tain image position are illustrated. In Fig. 6 we are
optimizing an object for every grid cell. The result
is strongly resembling Fig. 4 and supports our claim
that each grid cell is attentive to its underlying image
area.

Not only the object class and position can be op-
timized towards a desired value but also the object’s
dimensions, i.e. its width and height. This can be ex-
plored by another interactive visualization in Fig. 7.

It can be seen that a non-matching configuration
of output head and w,h target values is affecting the
result quality, i.e. generating small objects with the
large object head does not result in a well recogniz-

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

158

Figure 6: By our proposed “Deep Detection Dream” ap-
proach, we can generate objects in specific spatial image
regions. The static print figure can only show for a single
position specification the associated sensitivity region. The
interactive version, accessible via https://limchr.github.io/y
olo_visu/index.html#fig6, allows to explore the sensitivity
region as a function of an interactively chosen position.

Figure 7: By our proposed detection dream approach, we
can generate objects with specific attributes like in this case
an adjustable height. The interactive version of this plot can
be accessed via https://limchr.github.io/yolo_visu/index.h
tml#fig7.

able images. Other experiments also showed, that if
the samples of a particular object class are usually
small in the images of the training data base, those

classes cannot reconstructed well with the big anchor
boxes neither.

However, Fig. 7 extends our statement to the effect
that the attentive image region is variable in size and
also shape.

4 CONCLUSION

The visualization of saliency patterns and optimized
input images of YOLO reveal that YOLO acts like
parallelized classification CNNs: each anchor box’s
saliency is pointed to an underlying subarea of the
image and on this subarea classification and regres-
sion tasks are focused. These tasks are locally inter-
dependent (the dimensions and location of a box are
determined by its contents and vice versa). However,
this tight spatial coupling focuses the propagation of
the gradients and their interactions, creating a strong
“spatial hierarchy”-bias that makes learning and sub-
sequent processing very efficient.

This is not dissimilar to the information process-
ing in human visual cortex (Sheth and Young, 2016;
Melnik et al., 2018). In the primary visual cortex V1,
features are extracted and passed to secondary visual
cortex V2, where the information is split into a dorsal
and ventral stream for localizing (dorsal) and classi-
fying (ventral) objects. The dorsal stream is more ex-
plorative, showing a wider activation in the biological
saliency map for localizing objects and movements in
the scenery, where the ventral stream’s activation fo-
cuses more on the center of the object (see (Sheth and
Young, 2016) Fig. 2). We can see similar properties
also in Fig. 4, when comparing columns x,y,w,h with
c,p: x,y define the relative position of the detected
object and w,h represent the dimensions of the object.
I.e. the four neurons estimate where the object is,
while c and p determine if there is an object present,
and the object’s class (what is it?). The saliency map
activations of x,y,w,h is rather wide, focusing on the
object borders (x,w for horizontal and y,h for vertical
border areas) for determining where exactly it is, and
the activation of c,p is more narrow and focused to the
center, comparable to the dorsal and ventral stream of
the biological model.

The nature of an artificial neural network, and es-
pecially a CNN, is that it consists of many parallel
operations for one layer. This relates to a simple ma-
trix multiplication. GPUs are built for this purpose
and modern GPUs can do many matrix calculations
in a very short amount of time. So it seems natural to
exploit this feature and just “throw away the uninter-
esting results”, i.e. the low confidence detections.

YOLO: You Only Look 10647 Times

159

Compared to early 2-stage detectors, which had
intermediate steps for selecting, e.g. region proposals
which were then fed into a second neural network,
the advantage is a massive speed increase (and only a
minor loss in accuracy) since this intermediate steps
take time since they are running on the CPU.

In this article, we demonstrated and visualized the
inner mechanics of the YOLO architecture. Our key
message is that YOLO is not really “looking once”,
but a lot more often. Because of a clever exploitation
of Artificial Neural Network structures, which make
it possible to share most of the computation between
regions and also allow to easily parallelize the compu-
tations on a GPU, this can be very fast and efficient.

Our findings might be used for future develop-
ments in architecture design or for evaluating trained
models. Interesting future work include the improve-
ment of these visualization techniques. Also, the pro-
posed detection dream approach might be used to de-
termine how much information about a training image
is actually saved “within the weights of the network”
by setting the target output to the actual prediction
output of the model and optimize from a gray image.
Also, different other constraints can be added to the
optimization loss. By including the distance to a color
histogram into the loss function, the reconstructed im-
ages might can be improved to have a more realistic
color distribution.

ACKNOWLEDGEMENTS

This work was supported by a fellowship within the
IFI program of the German Academic Exchange Ser-
vice (DAAD).

REFERENCES

Bach, N., Melnik, A., Rosetto, F., and Ritter, H. (2020).
An error-based addressing architecture for dynamic
model learning. In International Conference on
Machine Learning, Optimization, and Data Science,
pages 617–630. Springer.

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020).
Yolov4: Optimal speed and accuracy of object detec-
tion. arXiv preprint arXiv:2004.10934.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 580–587.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). Ssd: Single shot
multibox detector. In European conference on com-
puter vision, pages 21–37. Springer.

Melnik, A., Akbulut, E., Sheikh, J., Loos, K., Buettner, M.,
and Lenze, T. (2022). Faces: Ai blitz xiii solutions.
arXiv preprint arXiv:2204.01081.

Melnik, A., Harter, A., Limberg, C., Rana, K., Sünderhauf,
N., and Ritter, H. (2021). Critic guided segmentation
of rewarding objects in first-person views. In German
Conference on Artificial Intelligence (Künstliche In-
telligenz), pages 338–348. Springer.

Melnik, A., Schüler, F., Rothkopf, C. A., and König, P.
(2018). The world as an external memory: the price of
saccades in a sensorimotor task. Frontiers in behav-
ioral neuroscience, 12:253.

Mordvintsev, A., Olah, C., and Tyka, M. (2015). Inception-
ism: Going deeper into neural networks.

Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature
visualization. Distill. https://distill.pub/2017/feature-
visualization.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.

Redmon, J. and Farhadi, A. (2016). Yolo9000: Better,
faster, stronger.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement.

Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In arXiv.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626.

Sheth, B. R. and Young, R. (2016). Two visual pathways
in primates based on sampling of space: exploitation
and exploration of visual information. Frontiers in in-
tegrative neuroscience, 10:37.

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

160

