
Bypassing Multiple Security Layers Using Malicious USB Human
Interface Device

Mathew Nicho1 a and Ibrahim Sabry2 b
1Research and Innovation Centre, Rabdan Academy, Abu Dhabi, U.A.E.

2College of Technology Innovation, Zayed University, Dubai, U.A.E.

Keywords: Arduino, USB, HID, Administrative, Controls, Bypass, Payload.

Abstract: The Universal Serial Bus (USB) enabled devices acts as a trusted tool for data interchange, interface, and
storage for the computer systems through Human Interface Devices (HID) namely the keyboard, mouse,
headphone, storage media and peripherals that use the USB port. However, with billions of USB enabled
devices currently in use today, the attacker’s potential to seamlessly leverage this device to perform malicious
activities by bypassing security layers presents serious risk to systems administrators. The paper thus presents
a comprehensive review of the multiple attacks that can be leveraged using USB devices and the
corresponding vulnerabilities including countermeasures. This is followed by the demonstration of five
attacks to validate the threat and the associated vulnerabilities by bypassing four security layers namely (1)
two server operating system (OS) controls, (2) one group policy control, and (3) antivirus. The attack was
performed by plugging in a USB that is connected with the Arduino Micro board to install three differently
crafted malwares into the victim machine (Windows Server 2012). As a result, the Arduino device that has
been programmed to act like a Human Interaction Device (HID) was able to bypass all the four layers
successfully, with execution on the first three layers. The attack-vulnerability theoretical model, the
demonstration of the five attacks, and the subsequent analysis of the attacks provide academics with multiple
domains (countermeasures) for further research, as well as practitioners to focus on critical IT controls.

1 INTRODUCTION

The threat posed by maliciously modified Universal
Serial Bus (USB) devices is real, potent,
unsuspecting, relatively easy to execute with deadly
consequences, and with a high rate of success. The
USB is the most commonly used standard in 5G
generation computer systems for peripheral
communications (Singh, Biswal, Samanta, Singh, &
Lee, 2022). Attackers can modify the firmware of a
USB device to masquerade a generic USB flash drive
to act as an attacker-controlled, automated, mouse
and keyboard (Cronin, Gao, Wang, & Cotton, 2022).
In January 2022, the FBI issued a public warning over
a USB attack campaign in which numerous USB
drives, embedded with malicious codes, were sent to
employees at organizations in the transportation,
defense, and insurance sectors between August and
November 2021 (Hill, 2022). From a global
perspective, more than half (54%) of global

a https://orcid.org/0000-0001-7129-3988
b https://orcid.org/0000-0001-9886-9414

organizations reported USB-based attacks in 2021, up
more than 15 percent from 2020 (Rose, 2022). USB
device malware is being leveraged as part of larger
cyber-attack campaigns against industrial targets
such that 81% of malware seen on USB drives in
industrial facilities can disrupt industrial control
systems (Honeywell, 2022). From an infection
perspective, removable media were responsible for
nine percent of all incidents responded to in January
2022, increasing to 20 percent for incidents where the
initial infection vector involved a physical endpoint
(Mir, Wong, & Manahan, 2022). USB connections
and associated devices are inherently trusted (Davis,
2011) and assumed secure by the users partly due to
assumed secure ownership and physical proximity of
the device (Yang et al., 2015).

The USB enabled peripherals have become an
attractive tool for launching cyber-attacks (Nissim,
Yahalom, & Elovici, 2017) since a programmable
USB device can be used to masquerade as a Human

Nicho, M. and Sabry, I.
Bypassing Multiple Security Layers Using Malicious USB Human Interface Device.
DOI: 10.5220/0011677100003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 501-508
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

501

Interface Device (HID) (Lawal, Gresty, Gan, &
Hewitt, 2021). With billions of USB devices currently
in use, the USB protocol is among the most widely
adopted protocols today due to its plug-and-play
capabilities and the vast number of devices which
support the protocol (Denney, Erdin, Babun, Vai, &
Uluagac, 2019). As the USB port on a computer
system can be considered an open port, it gets
exposed to malware with weakened defenses from
anti-virus, or security control (Wahanani, Idhom, &
Kurniawan, 2020). Furthermore, attackers can design
malicious USB devices so that once the USB
handshake is completed, and malicious scripts or
activities can be executed on the host (Cronin et al.,
2022).

The HID that is a component of the user interface
system can be exploited using a micro controller
embedded with a malicious code to perform
malicious actions leading to Malicious HID (MHID).
Commonly used HID devices can be identified by
many Operating Systems (OS) without the need for
specific setup or configuration. Furthermore, the
concept of Plug-and-Play (PnP) feature in HIDs
(Techopedia, 2019) amplifies the attack surface
thereby exposing the vulnerability. Despite the
critical nature of USB device attacks, papers focusing
on a holistic perspective of analyzing multiple
vulnerabilities associated with HID devices is lacking
in this domain.

This research takes an exploit and vulnerability
approach by presenting a taxonomy of vulnerabilities
attributed to HID via the USB protocols through the
demonstration of successful attacks bypassing
multiple security layers. In this respect, this paper
makes the following contributions.

 Provides an overview of attacks on the USB
ecosystem by identifying the computer based
attacks and vulnerabilities.

 Demonstrates a simulated attack on a server
bypassing multiple security layers.

 Analyses the vulnerability associated with the
four security layers with suggested
countermeasures.

 Demonstrates the criticality of the threat to
security practitioners through the exploited
vulnerabilities to take appropriate measures.

The paper is structured as follows. Section two
and three discusses existing research on HID based
attacks and vulnerabilities. Section four and five
illustrates the HID based simulated attacks and
corresponding countermeasures followed by a final
section concluding the research.

2 USB ATTACKS USING HID

Attackers have used USB peripherals to launch
cyberattacks, exploiting the vulnerabilities,
properties, and capabilities of these devices (Davis,
2011). In this respect, the USB protocol is the most
widely-used connector to connect a range of
peripheral devices to computers (Neuner, Voyiatzis,
Fotopoulos, Mulliner, & Weippl, 2018). It uses a
tiered-star topology, where the center of the star is the
USB host, which defines the USB, that is
implemented as a combination of hardware,
firmware, and software residing inside the computer.

The HIDs have elevated privileges, because the
systems’ OS assumes that commands executed from
the HID are coming from an authorized user. Altering
a USB device to simulate keyboard or mouse is a
method to emulate an HID by hiding malicious codes
for malicious actions (Nasution, Purwanto, Virgono,
& Alam, 2014). Attack techniques using peripheral
devices may use USB devices by emulating a USB
Ethernet adapter. This enables the USB device to act
as a DHCP server that directs traffic through a
malicious DNS (Tischer et al., 2016). Attacks
deploying social engineering methods leveraging
USB are aimed at organizations to make the attack
happen (Anderson & Anderson, 2010; Davis, 2011;
Pham, Syed, & Halgamuge, 2011).

The USB Rubber Ducky is a keyboard emulator
hidden within a USB thumb drive case. Since 2010,
IT professionals, penetration testers, and hackers
have used the Rubber Ducky to create the most
widely used commercial keystroke injection attack
(Nissim et al., 2017). BadUSB attacks are initiated
when the host performs a malicious firmware update
in which the USB device’s firmware is modified by
the attacker where it acts according to how it was
programmed by the attacker (Cannoles & Ghafarian,
2017). Another type of USB-based attack is a driver-
related attack, in which an attacker inserts a
compromised malicious USB device into the host,
causing the host to download a malicious driver
crafted to execute malicious code or exploit a buffer
overflow vulnerability (Caudill & Wilson, 2014). The
attack methodology deployed for the use of bad USBs
is through reprogramming the device’s USB protocol
stack. Using micro controller devices namely the
Raspberry pi Pico, Intel 8051, the micro controller’s
logic circuit programming is altered, and the primal
functioning of a simple IoT device is transitioned to
be used in cyber-attacks. There are also attacks that
are oriented toward the Denial of Service (DoS) of the
host computer. Once such attack is termed the USB
Killer attack where a look alike flash drive acts as an

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

502

electric discharger capable of destroying sensitive
components on the host (Nissim et al., 2017). This
attack was successfully demonstrated through the
‘Stuxnet’ worm attack.

3 USB BASED
VULNERABILITIES

Attacks exploiting USB ecosystem vulnerabilities are
varied (see figure 1) with the most recent and potent
being the Rubber Ducky. The Rubber Ducky
vulnerability (Nohl & Lell, 2014) that is
demonstrated in this research makes use of the weak
threat detection by the OS and host machine, even
with various controls in place. This is possible due to
the configuration flexibility provided by the Arduino
microcontroller in order to run malicious scripts that
can control the host machine through the input of
PowerShell commands embedded into the Arduino
C++ script, resulting in the download and execution
of the malicious payload. Since, USB devices are
innocuous by their nature and ubiquity, their
architecture of the USB ecosystem is ‘complex’ and
deeply ‘embedded’ in the OS. Furthermore, the
features of the USB protocol that resemble wide-area
networking protocols can be ‘underappreciated’. This
combination of complexity, embeddedness, and
under appreciation is the foremost vulnerability
feature of MHID (Johnson, 2014).

3.1 Encryption & Data Misplacement

Attacks by MHIDs exploiting the OS in computer
systems is a serious risk due to the inherent trust given
by the OS to HIDs. In this respect, the use of
malicious HID devices has exposed critical
vulnerabilities in OS (Zhao & Wang, 2019). HID
vulnerabilities that can be exploited include poor
encryption and data misplacement, systems
misconfiguration, unpatched and outdated software.
Since HIDs are not inherently malicious, USB device
firmware (drivers) are not typically scanned by OS.
In addition, OS embedded antimalware systems are
unable to detect or defend against these types of
attacks. Therefore, HIDs are more susceptible to
manipulation as they gain seamless access to the host
machine. Once connected to the computer system,
they can pose as a peripheral such a mouse or
keyboard or download the malicious payload or
execute a code on the host machine that would further
weaken the system. The USB protocol vulnerability
that could allow a USB device to impersonate

peripheral devices occurs due to the lack of device
authentication, authorization and a security
mechanism that needs to verify the data or the
messages received from a device (Ticu, 2021). A Man
in the Middle (MITM) attack can also be effected
using MHID due to the lack of appropriate end-to-end
encryption. Hence, when a MHID is plugged in (Ex.
Rubber Ducky), it can tap into the duplex
communication pathway and steal sensitive
information (Acar, Lu, Uluagac, & Kirda, 2019).

3.2 Systems Misconfiguration

This vulnerability is portrayed by system assets such
as operating systems where their internal settings may
be vulnerable. In addition, the application or
operating system settings may be disparate in terms
of security (Scaife, Peeters, & Traynor, 2018).
Additionally, while running the research experiment
it evident that the policy integrated into the GPO is to
deny access of “all removable storage classes”, which
means that it does not include removable peripheral
HIDs namely keyboard and mouse.

3.3 Unpatched/Outdated Software

Outdated OS pose serious threat in relation to the use
of malicious HID devices since the unpatched
software is outdated with less security update support
from the vendor. Thus, cybercriminals will tend to
track users that use unpatched or outdated system
software as it will be easy to compromise and to
access and retrieve sensitive information and data
(Zhao & Wang, 2019). Figure 1 summarizes the
vulnerabilities and the associated attack vectors.

4 SIMULATION AND ANALYSIS

In this simulated experiment, we target the USB
protocol function drivers namely the device function,
function driver, and device controller driver. We
opted to go with the Arduino Micro board, as it is one
of the boards with built in USB capabilities, that
would allow us to use its connection to act as an
external keyboard or mouse when connecting to a
machine. Thereafter, we used a male-to-male USB
adapter which allows for easy plug and play
functionality to the Arduino board. To upload the
script onto the board we used the Arduino IDE
environment that acts as a communication bridge
between the host machine and the board.

Bypassing Multiple Security Layers Using Malicious USB Human Interface Device

503

Figure 1: USB Vulnerabilities exploited by HIDs.

4.1 USB Rubber Ducky Set up

In this paper, we selected the Rubber Ducky option
rather than the BadUSB, as the BadUSB can only be
executed on USB 3.0 flash drives that contain the
Phison 2303 micro-controller (with limited
availability) while the Rubber Ducky is a lot faster
than BadUSB and a Teensy and is readily available.
It does not contain any embedded malware, but only
executes commands to download it from specific IP
address via the victim’s browser. The environment set
up for the experiment consists of two virtual
machines, namely the Kali Linux VM (attacker), and
Windows Server 2012 (victim). The Server version of
Windows was used in order to create an active
directory, and simulate a direct attack on the Server
to gain administrative controls while logged in as the
admin (Figure 2).

In order to masquerade Arduino as an HID, we
connected the Arduino and configure it using the IDE
interface. The IDE interface allows the user to create
scripts using C++ programming language, which was
uploaded into the Arduino board to execute upon

reconnecting the board to the machine. This converts
the Arduino into a “rubber ducky” to take control of
the keyboard and uses it to run commands on the
victim machine.

Figure 2: Attack flowchart.

In the C++ script we also inserted a script to
disable the Windows Defender (Box 1).

Box 1: Script to disable Windows Defender.

Keyboard.print("powershell start
powershell -A 'Set-MpPreference -
DisableRea $true' -V
runAs"); typeKey(KEY_RETURN);

We also inserted the script to download the
malicious file via the victim’s browser (open the web
client and download the file from the Kali Apache
server) and execute it (Box 2). We ensured that the
script libraries for the keyboard are available, so that
the Arduino would be able to connect as a Rubber
Ducky. This can be seen with the #include
‘Keyboard.h’ function, which allows the Arduino to
gain access to the keyboard library scripts. The
Keyboard.press and Keyboard.release functions
control the victim machine’s keyboard in order to
type in the intended commands on PowerShell.
Thereafter, we created the malicious Windows
payload to open a reverse_tcp connection using
msfvenom.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

504

Box 2: Script for accessing and downloading the malware
from an external IP address.

Keyboard.print("powershell -
windowstyle hidden (New-Object
System.Net.WebClient).DownloadFile('h
ttp://192.168.100.6//share/whysoserio
us.exe','%TEMP%\\whysoserious.exe');
Start-Process
\"%TEMP%\\whysoserious.exe");
 typeKey(KEY_RETURN);
 // Ending stream
 Keyboard.end();
}
/* Unused endless loop */
void loop()

Thereafter, we configured Windows Server 2012

to create the Active Directory in order to simulate the
server environment. We ensured that the Windows
Firewall and Windows Defender are up and running
as in a real environment. In order to simulate the
varied security layers in an organizational network we
conducted three simulated attacks (A, B, C) on
Windows Server 2012. In all first option the attack
was done with the two security layers namely
Windows firewall, and Windows Defender activated.
For B, we added a third security layer by configuring
Windows Group Policy Object (GPO) to disable USB
ports in the Server. In the last option a fourth security
layer was added by installing and activating an
antivirus.

4.2 Attack Option A

This option simulates the security structure of
Windows Server in a normal network scenario of
organizations where the use of USB is allowed. We
begin the experiment by plugging in the Arduino
board through the USB port and waiting for the script
to run. Thereafter, The Arduino automatically
downloaded and installed the malware onto the
Windows Server 2012 through the URL. This was
done without any human intervention via the
PowerShell command that was embedded in the
Arduino (See box 2). We were able to successfully
navigate the system33 folder which would only be
allowed for administrator access on the windows
machine. We also successfully ran the clearrev,
getuid, ps (process list) and ifconfig (Network
information) commands to simulate malicious actions
performed by hackers and get additional information
on the machine. The Arduino device was able to
bypass two security layers of admin controls in order
to download the payload onto the machine.
Furthermore, the software was downloaded onto the

%temp% folder of the windows machine, which was
appropriate for the attacker for stealth reasons. This
demonstrates the significance of the USB
vulnerability, as the Arduino was easily able to
bypass admin controls just by connecting to the
victim machine as an external keyboard.

4.3 Attack Option B

In this phase of the attack we added a third security
layer by configuring the GPO to block USB ports on
the server by launching the GPO tool on the domain
controller. Once the gpupdate /force command to
enforce the GPO was executed, we tested the GPO by
connecting a USB drive to the OS where the USB was
denied (figure 6) access thus validating the
enablement of the GPO. When the experiment was
restarted by plugging in the Arduino board through
the USB port, the script was successful in executing
the malware. It’s important to note that even though
GPO was active, the Arduino micro masquerading as
a HID managed to bypass the GPO security control.
Subsequently, we repeated the commands in first
attack by successfully navigating to the system33, ran
the clearrev, getuid, ps (process list) and ifconfig
commands, getting the same outputs as in the
previous attack. This demonstrate that despite the
activation of the GPO blocking USB ports, the
Arduino script was successful in taking over the
victims’ machines’ keyboard and execute the
programmed powershell commands to download the
malicious software from the network and even
execute it.

4.4 Attack Option C

In this option, we build on the previous result by
adding a fourth security layer by downloading and
installing Webroot SecureAnywhere antivirus (listed
among the top ten in 2022) onto the Windows Server
2012 VM. When we ran our experiment, the Arduino
script was successful in penetrating the four defensive
layers. However, the antivirus (fourth defensive
layer) detected and blocked the malware when the
Arduino script attempted to download and execute the
malware, thus preventing the execution of the
malware.

This signifies that while the Arduino script was
successful in its initial operation, the infection was
unsuccessful. In this respect, the antivirus was unable
to detect the Rubber Ducky, but detected the malware
signature. Since we used msfvenom to create the
malware (C1), we repeated the same attack by
creating a second malware with FatRat (Option 6:

Bypassing Multiple Security Layers Using Malicious USB Human Interface Device

505

Create FUD Backdoor 1000% with PwnWinds). We
simulated the same experiment but with the same
result as in C1. Furthermore, we created a third
malware with Veil Evasion (Option 22:
poweshell/meterpreter/rev_tcp.py) and did the same
attack with the same result as in C1 and C2. Table 1
thus demonstrates the result of the five attacks. Since,
malwares are continuously evolving, so too are
antivirus endpoint security solutions. This is a
characteristic that makes every malware unique in its
signature or fingerprint. This identification
information is regularly updated onto the antivirus
database and stored as virus definitions This process
is done in order to be up to date with new versions of
malware signatures/fingerprints. If a match is
detected by the antivirus, it alerts the user while also
containing the virus in a sandbox environment
(Vigderman & Turner, 2022). However, when we
attempted to bypass this feature, with a modified
script, we were unsuccessful in installing and
executing the malware.

Table 1: The five attack configurations with the results.

 GPO Firewall W
Defender

AV Result

A x Yes Yes* x S
B Yes Yes Yes* x S

C1 Yes Yes Yes* Yes U**
C2 Yes Yes Yes* Yes U**
C3 Yes Yes Yes* Yes U**

(‘Yes’ means that the security layer was active; ‘x’ signifies
it is inactive; S denotes that the attack is successful, while
U denotes its unsuccessful in executing the malware)

*The Windows Defender was running, but was disabled by
the Arduino with the embedded PowerShell script:
"powershell start powershell -A 'Set-
MpPreference -DisableRea $true' -V
runAs"
** The Arduino script ran successfully, but the malware
was detected as a Trojan.

In order to counter the fourth defensive layer
(bypass and/or disable the Webroot Realtime
antivirus), we added a powershell command to the
script, which would uninstall the antivirus software.
But, this method was unsuccessful due to the software
requiring the user to enter an auto generated
CAPTCHA code, which is an effective
countermeasure to avoid tampering with the antivirus
software. However, two methods can bypass the
above preventive method. First, a successful
penetration can be done using a zero day or near zero-
day malware to evade antivirus software. Secondly,
through the use of different malware authoring tools
to update the malware in the Apache Server folder

using the same malware name as in Box 2
(whysoserious.exe'). With multiple malware
authoring tools readily available and with multiple
options in each of these tools, evasion is not difficult.

5 COUNTERMEASURES

While, tools and techniques for detecting USB-
related attacks have been proposed and implemented,
currently there are no fool proof technique for fully
guarding against potential USB malicious attacks, as
most solutions may be circumvented. As with most
security systems, applying specific IT control
corresponding to each security layer offers the best
chance to increase security as discussed below. The
sub sections below provide a categorised discussion
on the security that can be applied at the different
USB system layers.

5.1 USB Functional Layer

The USBFILTER system, which is a packet-level
access control (firewall) for USB, can allow or deny
USB device functionality by defining specific
measures (Tian, Bates, Butler, & Rangaswami, 2016).
The researchers instrumented the host's USB stack
between the USB device driver and the USB
controller, allowing them to filter packets at the
operating system's low level (kernel). Furthermore,
USBFILTER can specify which programs (e.g.,
Zoom) are permitted to use which USB devices (e.g.,
webcams, speakers, and microphones), preventing
malicious software on the host from enabling or
accessing protected USB devices (Neuner, 2017).
Cinch is based on the same principles as
USBFILTER. However, it isolates all USB devices
from the host and routes communication through a
virtual machine that acts as a gateway, enforcing
access policies (Angel et al., 2016). There are certain
scripts like DuckHunter that are designed to run in the
background and monitor the typing speed. The
program effectively blocks keyboard input when a
Rubber Ducky attack is detected (Pmsosa, 2020).
While a tool such as SandUSB acts as a middleman
between the device and connected host, the tool
places the connected USB into a sandbox
environment to detect any malicious activity, by
scanning and analyzing the device. The tool looks at
three different aspects that may be detected as
malicious such as keyboard typing speed or pattern,
any attempts to change OS configuration, and finally
the detection of malicious payload on the storage
device (Loe, Hsiao, Kim, Lee, & Cheng, 2016).

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

506

5.2 USB Physical Layer

USB port blockers are an efficient way to prevent
users from connecting unauthorized USB devices
with malicious payloads. An attacker is less likely to
target systems with USB port blockers in the case of
a Rubber Ducky attack. USB port blockers, which
come with a special key that unlocks and locks the
device once installed, can be installed on critical
systems in a network that contains sensitive files. The
disadvantage of USB port blockers is that they are
still vulnerable to physical tampering if not
monitored. Rubber Ducky devices operate at speeds
that are impossible to detect by standard users in a
company. Various payload scripts are readily
available for download from the internet, allowing
even those with no computer experience to carry out
a Rubber Ducky attack (Karystinos, Andreatos, &
Douligeris, 2019).

5.3 USB Link Layer

Commercial Rubber Ducky attack countermeasures
makes it impossible for Rubber Ducky devices to
emulate a keyboard. When a USB device connects to
the computer and the Operating System recognizes it
as a keyboard, the anti-virus prompts the user to enter
a numerical challenge code generated by the anti-
virus from the 'new' USB keyboard. Keyboard
authorization is a term used to describe such a
procedure. As a result, the anti-virus will only allow
the use of a keyboard that has been authorized and
will block any other keyboard that has not been
authorized. Even if it could not detect the Rubber
Ducky device, it can detect the malware launched by
the Rubber Ducky (Raghavan, 2020).

From an encryption perspective, commercial
solutions exist where if the USB device manufacturer
is trusted and the signing key is kept secure, the
firmware is considered trusted. Another potential way
to prevent the Rubber Ducky attack is by restricting
access to elevated Command Prompt (cmd). Running
cmd as an administrator unlocks a whole set of
actions that can be performed on a computer. That’s
why an administrator should set a password for using
elevated cmd to stop any Rubber Ducky programmed
to seek out administrative privileges.

6 CONCLUSION

This paper demonstrated a simulated attack by an
USB drive masquerading as a malicious human
interface device using Arduino micro-controller. Our

device was able to bypass four security layers namely
the OS Firewall, the OS Antivirus, the OS security
control (GPO), and partly evade the installed
antivirus. The identified and analyzed vulnerabilities
provide valuable insights into probable
countermeasures that can be deployed providing
greater visibility of the threat and corresponding
countermeasures. This shows the critical nature of
USB based HID attacks that can penetrate networks
through a malicious or an unsuspecting insider.. The
experiment shows the severity of the USB
vulnerability.

While our paper is not without its limitations, each
of these listed limitation provides avenues for further
research. First, since we did a direct attack on a
server, an attack simulating a system in a network via
a secure remote connection can provide network
based vulnerabilities as well. Second, we created
malware using three malware authoring tools. With
numerous malware authoring tools available to
hackers, the fourth security layer can be fully
bypassed using zero day or near zero-day malware.
Third, we used a script to de activate the Windows
Defender. Research on innovative script can
deactivate similar antivirus programs. Fourth, the
research can be extended to include experimental
methods for gaining domain admin users rights in
LDAP or active directory and illustrate more about
the extent to which admin domain privileged can be
controlled. Finally, we did not specifically test the
countermeasures against specific attacks for
validating the countermeasures.

REFERENCES

Acar, A., Lu, L., Uluagac, A. S., & Kirda, E. (2019). An
analysis of malware trends in enterprise networks.
Paper presented at the International Conference on
Information Security.

Anderson, B., & Anderson, B. (2010). Seven deadliest USB
attacks: Syngress.

Angel, S., Wahby, R. S., Howald, M., Leners, J. B., Spilo,
M., Sun, Z., . . . Walfish, M. (2016). Defending against
malicious peripherals with Cinch. Paper presented at
the 25th USENIX Security Symposium (USENIX
Security 16).

Cannoles, B., & Ghafarian, A. (2017). Hacking experiment
by using usb rubber ducky scripting. Journal of
Systemics, 15(2), 6671.

Caudill, A., & Wilson, B. (2014). Making BadUSB work
for you. Paper presented at the presented at Derbycon
4.0. Available online from.

Cronin, P., Gao, X., Wang, H., & Cotton, C. (2022). Time-
print: Authenticating USB flash drives with novel

Bypassing Multiple Security Layers Using Malicious USB Human Interface Device

507

timing fingerprints. Paper presented at the 2022 IEEE
Symposium on Security and Privacy (SP).

Davis, A. (2011). USB-undermining security barriers.
Black Hat Briefings.

Denney, K., Erdin, E., Babun, L., Vai, M., & Uluagac, S.
(2019). Usb-watch: a dynamic hardware-assisted usb
threat detection framework. Paper presented at the
International Conference on Security and Privacy in
Communication Systems.

Hill, M. (2022). BadUSB explained: How rogue USBs
threaten your organization. CSO Online. Retrieved
from https://www.csoonline.com/article/3647173/
badusb-explained-how-rogue-usbs-threaten-your-
organization.html

Honeywell. (2022). Honeywell Industrial USB Threat
Report. Retrieved from Houston: https://
honeywellprocess.blob.core.windows.net/public/Mark
eting/Honeywell-USB-Threat-Report.pdf

Johnson, P. C. (2014). How USB Does (and Doesn’t)
Work: A Security Perspective. Security, 39(4), 12-15.

Karystinos, E., Andreatos, A., & Douligeris, C. (2019).
Spyduino: Arduino as a HID exploiting the BadUSB
vulnerability. Paper presented at the 2019 15th
International Conference on Distributed Computing in
Sensor Systems (DCOSS).

Lawal, D., Gresty, D. W., Gan, D., & Hewitt, L. (2021).
Have You Been Framed and Can You Prove It? Paper
presented at the 2021 44th International Convention on
Information, Communication and Electronic
Technology (MIPRO).

Loe, E. L., Hsiao, H.-C., Kim, T. H.-J., Lee, S.-C., &
Cheng, S.-M. (2016). SandUSB: An installation-free
sandbox for USB peripherals. Paper presented at the
2016 IEEE 3rd World Forum on Internet of Things
(WF-IoT).

Mir, H., Wong, S., & Manahan, B. (2022). Top Attack
Vectors: January 2022. Retrieved from https://expel.
com/blog/top-attack-vectors-january-2022/

Nasution, S. M., Purwanto, Y., Virgono, A., & Alam, G. C.
(2014). Integration of kleptoware as keyboard
keylogger for input recorder using teensy USB
development board. Paper presented at the
Telecommunication Systems Services and Applications
(TSSA), 2014 8th International Conference on.

Neuner, S. (2017). Bad things happen through USB. Wien,
Neuner, S., Voyiatzis, A. G., Fotopoulos, S., Mulliner, C.,

& Weippl, E. R. (2018). Usblock: Blocking usb-based
keypress injection attacks. Paper presented at the IFIP
Annual Conference on Data and Applications Security
and Privacy.

Nissim, N., Yahalom, R., & Elovici, Y. (2017). USB-based
attacks. Computers & Security, 70, 675-688.

Nohl, K., & Lell, J. (2014). BadUSB-On accessories that
turn evil. Black Hat USA, 1(9), 1-22.

Pham, D. V., Syed, A., & Halgamuge, M. N. (2011).
Universal serial bus based software attacks and
protection solutions. Digital Investigation, 7(3-4), 172-
184.

Pmsosa. (2020). Duckhunt: Prevent Rubberducky (or other
keystroke injection) attacks, DuckHunter. Retrieved
from https://github.com/pmsosa/duckhunt

Raghavan, R. (2020). An Introduction to Bad USB Attacks.
Retrieved from https://acodez.in/badusb-attack/

Rose, A. (2022). Cybercriminals bring the USB back,
 with a vengeance. Retrieved from https://
www.itp.net/opinion/cybercriminals-bring-the-usb-back
-with-a-vengeance#:~:text=More%20than%20half%20
(54%25),environment%20as%20an%20acceptable%2
0option.

Scaife, N., Peeters, C., & Traynor, P. (2018). Fear the
reaper: Characterization and fast detection of card
skimmers. Paper presented at the 27th USENIX
Security Symposium (USENIX Security 18).

Singh, D., Biswal, A. K., Samanta, D., Singh, D., & Lee,
H.-N. (2022). Juice Jacking: Security Issues and
Improvements in USB Technology. Sustainability,
14(2), 939.

Techopedia. (2019, November). What Does Human
Interface Device (HID) Mean. Retrieved from
https://www.techopedia.com/definition/19781/human-
interface-device-hid

Tian, D., Bates, A., Butler, K. R., & Rangaswami, R.
(2016). Provusb: Block-level provenance-based data
protection for usb storage devices. Paper presented at
the Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security.

Ticu, M. (2021). USB Traffic Analyzer-digUSB. Paper
presented at the 2021 12th International Symposium on
Advanced Topics in Electrical Engineering (ATEE).

Tischer, M., Durumeric, Z., Foster, S., Duan, S., Mori, A.,
Bursztein, E., & Bailey, M. (2016). Users really do plug
in USB drives they find. Paper presented at the 2016
IEEE Symposium on Security and Privacy (SP).

Vigderman, A., & Turner, G. (2022). How Does
Antivirus Software Work? Retrieved from https://
www.security.org/antivirus/how-does-antivirus-work/

Wahanani, H., Idhom, M., & Kurniawan, D. (2020). Exploit
remote attack test in operating system using arduino
micro. Paper presented at the Journal of Physics:
Conference Series.

Yang, B., Qin, Y., Zhang, Y., Wang, W., & Feng, D.
(2015). TMSUI: A trust management scheme of USB
storage devices for industrial control systems. Paper
presented at the International Conference on
Information and Communications Security.

Zhao, S., & Wang, X. A. (2019). A Survey of Malicious
HID Devices. Paper presented at the International
Conference on Broadband and Wireless Computing,
Communication and Applications.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

508

